1
|
Lee DY, Venter C, Choi Y, Park JM, Han D, Kim JS, Park JW, Namkung S, Mariano E, Lee J, Park KH, Jang A, Don-Kim G, Hur SJ. Market Status of Meat Analogs and Their Impact on Livestock Industries. Food Sci Anim Resour 2024; 44:1213-1251. [PMID: 39554824 PMCID: PMC11564142 DOI: 10.5851/kosfa.2024.e77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 05/21/2024] Open
Abstract
The alternative meat industry, which aims to replace traditional livestock products, is experiencing growth. However, information regarding this industry remains limited, and plant-based meat analogs that have already entered the market are not growing as rapidly as initially anticipated. Moreover, the traditional livestock industry has significant concerns that the growth of meat analogs will encroach upon the livestock market and strongly opposes the approval of cultured meat and other meat analogs. In this study, we investigated the latest research on the production of plant-based meat analogs and examined the current market status of these products. We also predicted the impact of the growth of meat analogs on the livestock industry. Our findings indicate that the meat analog market has secured a substantial presence in the United States and European markets and is gradually expanding in major Asian countries, such as South Korea, China, and Japan. Additionally, while the meat analog market is growing slowly, the traditional livestock industry continues to expand. Furthermore, our analysis shows that the growth of the meat analog market, including plant-based meat analogs, has had a minimal impact on the traditional livestock market so far. Nevertheless, it is essential to continuously monitor potential market changes resulting from future advancements in meat analog technologies.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Colin Venter
- Department Physiological Sciences,
Stellenbosch University, Matieland 7602, South Africa
| | - Yeongwoo Choi
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Mo Park
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ji Won Park
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seok Namkung
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Kyu-Hyun Park
- Department of Animal Industry Convergence,
Kangwon National University, Chuncheon 24341, Korea
| | - Aera Jang
- Department of Animal Products and Food
Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Gap Don-Kim
- Graduate School of International
Agricultural Technology, Institutes of Green Bio Science &
Technology, Seoul National University, Pyeongchang 25354,
Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
2
|
Zhang Y, Lin X, Wang Y, Ye W, Lin Y, Zhang Y, Zhang K, Zhao K, Guo H. The non-covalent and covalent interactions of whey proteins and saccharides: influencing factor and utilization in food. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38961829 DOI: 10.1080/10408398.2024.2373386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
During the application of Whey proteins (WPs), they often have complex interactions with saccharides (Ss), another important biopolymer in food substrate. The texture and sensory qualities of foods containing WPs and Ss are largely influenced by the interactions of WPs-Ss. Moreover, the combination of WPs and Ss is possible to produce many excellent functional properties including emulsifying properties and thermal stability. However, the interactions between WPs-Ss are complex and susceptible to some processing conditions. In addition, with different interaction ways, they can be applied in different fields. Therefore, the non-covalent interaction mechanisms between WPs-Ss are firstly summarized in detail, including electrostatic interaction, hydrogen bond, hydrophobic interaction, van der Waals force. Furthermore, the existence modes of WPs-Ss are introduced, including complex coacervates, soluble complexes, segregation, and co-solubility. The covalent interactions of WPs-Ss in food applications are often formed by Maillard reaction (dry or wet heat reaction) and occasionally through enzyme induction. Then, two common influencing factors, pH and temperature, on non-covalent/covalent bonds are introduced. Finally, the applications of WPs-Ss complexes and conjugations in improving WP stability, delivery system, and emulsification are described. This review can improve our understanding of the interactions between WPs-Ss and further promote their wider application.
Collapse
Affiliation(s)
- Yafei Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoya Lin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yiran Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wenhui Ye
- Inner Mongolia Yili Industrial Group Company Limited, Hohhot, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Food Laboratory of Zhongyuan, Luohe, China
| | - Yuning Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Kaixuan Zhao
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei, China
| | - Huiyuan Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Zhang Y, Zhang Y, Ding R, Zhang K, Guo H, Lin Y. Self-Assembled Nanocarrier Delivery Systems for Bioactive Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310838. [PMID: 38214694 DOI: 10.1002/smll.202310838] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Indexed: 01/13/2024]
Abstract
Although bioactive compounds (BCs) have many important functions, their applications are greatly limited due to their own defects. The development of nanocarriers (NCs) technology has gradually overcome the defects of BCs. NCs are equally important as BCs to some extent. Self-assembly (SA) methods to build NCs have many advantages than chemical methods, and SA has significant impact on the structure and function of NCs. However, the relationship among SA mechanism, structure, and function has not been given enough attention. Therefore, from the perspective of bottom-up building mechanism, the concept of SA-structure-function of NCs is emphasized to promote the development of SA-based NCs. First, the conditions and forces for occurring SA are introduced, and then the SA basis and molecular mechanism of protein, polysaccharide, and lipid are summarized. Then, varieties of the structures formed based on SA are introduced in detail. Finally, facing the defects of BCs and how to be well solved by NCs are also elaborated. This review attempts to describe the great significance of constructing artificial NCs to deliver BCs from the aspects of SA-structure-function, so as to promote the development of SA-based NCs and the wide application of BCs.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuning Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
- Food Laboratory of Zhongyuan, Luohe, 462300, China
| |
Collapse
|
4
|
Dragoev SG. Lipid Peroxidation in Muscle Foods: Impact on Quality, Safety and Human Health. Foods 2024; 13:797. [PMID: 38472909 DOI: 10.3390/foods13050797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
The issue of lipid changes in muscle foods under the action of atmospheric oxygen has captured the attention of researchers for over a century. Lipid oxidative processes initiate during the slaughtering of animals and persist throughout subsequent technological processing and storage of the finished product. The oxidation of lipids in muscle foods is a phenomenon extensively deliberated in the scientific community, acknowledged as one of the pivotal factors affecting their quality, safety, and human health. This review delves into the nature of lipid oxidation in muscle foods, highlighting mechanisms of free radical initiation and the propagation of oxidative processes. Special attention is given to the natural antioxidant protective system and dietary factors influencing the stability of muscle lipids. The review traces mechanisms inhibiting oxidative processes, exploring how changes in lipid oxidative substrates, prooxidant activity, and the antioxidant protective system play a role. A critical review of the oxidative stability and safety of meat products is provided. The impact of oxidative processes on the quality of muscle foods, including flavour, aroma, taste, colour, and texture, is scrutinised. Additionally, the review monitors the effect of oxidised muscle foods on human health, particularly in relation to the autooxidation of cholesterol. Associations with coronary cardiovascular disease, brain stroke, and carcinogenesis linked to oxidative stress, and various infections are discussed. Further studies are also needed to formulate appropriate technological solutions to reduce the risk of chemical hazards caused by the initiation and development of lipid peroxidation processes in muscle foods.
Collapse
Affiliation(s)
- Stefan G Dragoev
- Department of Meat and Fish Technology, Technological Faculty, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Tian X, Zhang Y, Li H, Jiao Y, Wang Q, Zhang Y, Ma N, Wang W. Property of mud and its application in cosmetic and medical fields: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4235-4251. [PMID: 35254605 DOI: 10.1007/s10653-022-01228-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Mud is a semi-colloidal substance formed by the mixture of inorganic, organic and water under the influence of various physical and chemical factors through geological and biological processes. The chemical composition of mud is complex, rich in Ca2+, Zn2+, Mg2+, Na+ and other mineral elements, also contains organic matter such as humic acid, fulvic acid and acetic acid. In cosmetic field, mud can improve the activity of glutathione enzyme and superoxide dismutase in skin, which helps the skin anti-aging. Besides, it also can improve the skin microbial community, due to its distinctively physical properties, mineral ions, microorganisms, etc. In medical field, mud can treat osteoarthritis, especially knee osteoarthritis which has been studied extensively, and it can also increase the chemotaxis of macrophages. On the one hand, the use of clay (a kind of refined mud) can protect the gastrointestinal tract and treat some gastrointestinal diseases. On the other hand, clay is often used as carriers or composites in drug delivery, especially in skin drug delivery, showing very positive results. The purpose of this review is to present an overview of current knowledge about the application of mud in cosmetic and medical fields and to provide ideas for further research in mud.
Collapse
Affiliation(s)
- Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Haichao Li
- College of Chemistry and Chemical Engineering, Qinghai Nationalities University, Xining, 810007, People's Republic of China
| | - Yuzhen Jiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qiuli Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yumeng Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ning Ma
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
6
|
Chen J, Zhang X, Bassey AP, Xu X, Gao F, Guo K, Zhou G. Prospects for the next generation of artificial enzymes for ensuring the quality of chilled meat: Opportunities and challenges. Crit Rev Food Sci Nutr 2022; 64:3583-3603. [PMID: 36239319 DOI: 10.1080/10408398.2022.2133077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As living standards rise, the demand for high-quality chilled meat among consumers also grows. Researchers and enterprises have been interested in ensuring the quality of chilled meat in all links of the downstream industry. Nanozyme has shown the potential to address the aforementioned requirements. Reasons and approaches for the application of nanozymes in the freshness assessment or shelf life extension of chilled meat were discussed. The challenges for applying these nanozymes to ensure the quality of chilled meat were also summarized. Finally, this review examined the safety, regulatory status, and consumer attitudes toward nanozymes. This review revealed that the freshness assessment of chilled meat is closely related to mimicking the enzyme activities of nanozymes, whereas the shelf life changes of chilled meat are mostly dependent on the photothermal activities and pseudophotodynamic activities of nanozymes. In contrast, studies regarding the shelf life of chilled meat are more challenging to develop, as excessive heat or reactive oxygen species impair its quality. Notably, meat contains a complex matrix composition that may interact with the nanozyme, reducing its effectiveness. Nanopollution and mass manufacturing are additional obstacles that must be overcome. Therefore, it is vital to choose suitable approaches to ensure meat quality. Furthermore, the safety of nanozymes in meat applications still needs careful consideration owing to their widespread usage.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University, Aachen, Germany
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Kaijin Guo
- Institute of Orthopedics, Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Ferysiuk K, Wójciak KM, Trząskowska M. Fortification of low‐nitrite canned pork with willow herb (
Epilobium angustifolium
L.). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Karolina Ferysiuk
- Department of Animal Food Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 Street 20‐704 Lublin Poland
| | - Karolina M. Wójciak
- Department of Animal Food Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 Street 20‐704 Lublin Poland
| | - Monika Trząskowska
- Institute of Human Nutrition Sciences Department of Food Gastronomy and Food Hygiene Chair of Food Hygiene and Quality Management Warsaw University of Life Sciences SGGW Nowoursynowska 159c 02‐776 Warsaw Poland
| |
Collapse
|
8
|
Mubarik S, Sharma R, Hussain SR, Iqbal M, Nawsherwan, Liu X, Yu C. Breast Cancer Mortality Trends and Predictions to 2030 and Its Attributable Risk Factors in East and South Asian Countries. Front Nutr 2022; 9:847920. [PMID: 35360680 PMCID: PMC8964109 DOI: 10.3389/fnut.2022.847920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Background Amidst the rising breast cancer burden in Asia, we aim to predict the future mortality risk due to breast cancer and identify the risk-attributable deaths for breast cancer among East and South Asian countries. Methods We used country-level data to predict the trends in the next decade relating to female breast cancer mortality by employing data from 1990 to 2019 from the Global Burden of Disease 2019 study. We used the stochastic mortality modeling and prediction techniques to forecast the age-specific and risk-attributable breast cancer mortality trends at the regional and national levels of East and South Asia. Results The number of deaths caused by the breast cancer is predicted to increase in East and South Asian countries in the next decade (2020-2030). Age-standardized death rate (ASDR) of breast cancer is predicted to increase by 7.0% from 9.20/100,000 (95% CI: 6.04-12.12) in 1990 to 9.88/100,000 (95% CI: 7.12-11.4) in 2030 in East Asia, and about 35% increase from 13.4/100,000 (95% CI: 9.21-16.02) in 1990 to 18.1/100,000 (95% CI: 13.23-21.10) in 2030 in South Asia. At the national level, the highest percent change in ASDR between 1990 and 2030 was reported in Pakistan (a 62% increase) and Nepal (a 47% increase). The highest percent change in breast cancer mortality between 2020 and 2030 for females of age group 80-84 years was observed in Pakistan [21.6, (95% CI, 20.6-94.7)], followed by Afghanistan [13.3 (4.0-80.8)], and Nepal [36.6 (11.1-125.7)] as compared to the other countries. In the females of aged 50-80 years, the predicted death rates were associated with high body mass index, high-fasting plasma glucose, and diet high in red meat, across the majority of countries under study. Furthermore, reductions in percent change in mortality rates occurred in several countries with increases in sociodemographic index (SDI), notably across high SDI countries. Conclusion Breast cancer mortality risk varies substantially across East and South Asian countries with higher mortality risk in low/middle SDI countries. Early detection using screening, awareness among females and health workers, and cost-effective and timely treatment of patients with breast cancer is vital in stemming the tide of breast cancer in the next decade.
Collapse
Affiliation(s)
- Sumaira Mubarik
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Rajesh Sharma
- University School of Management and Entrepreneurship Delhi Technological University Delhi, New Delhi, India
| | - Syeda Rija Hussain
- Department of Health Sciences, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Mujahid Iqbal
- Department of Psychology, School of Philosophy, Wuhan University, Wuhan, China
| | - Nawsherwan
- Institute of Cardiovascular Diseases, Xiamen University, Xiamen, China
| | - Xiaoxue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|