1
|
Wei K, Zhang L, Li N, Gao K, Li X, Li J, Wang S, Mao X. A colorimetric biosensor composed of split aptamers and mannan oligosaccharide nanozyme to monitor synthetic His-tagged food biomolecules. Food Chem 2025; 466:142108. [PMID: 39612832 DOI: 10.1016/j.foodchem.2024.142108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
Food synthetic biology is garnering increasing attention for its potential to generate bioactive components. His-tag is one of the most popular tags used in food synthetic biology. Herein, His-tag, His-tagged proteins, and His-tagged peptides were adopted as the model targets, and a commonly used biosensor was developed to monitor His-tagged food biomolecules, using split aptamers as specific recognition probes and nanozyme as the transduction element. A strategy to generate high-affinity split aptamers was proposed, obtaining a pair of split aptamers for His-tag (Kd = 132 nM). AuNPs-mannan oligosaccharide nanozyme was fabricated and combined with the split aptamers to develop the biosensor. The functional mechanism of the probes and the nanozyme was revealed. The biosensor demonstrated good sensitivity, selectivity, and practicability when analyzing synthetic His-tagged proteins and peptides in real-world samples, with a limit of detection of 12.44 nM. The strategies provide robust reference for developing analytical methods for synthetic biomolecules.
Collapse
Affiliation(s)
- Kaiyue Wei
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Ling Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Nan Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Kunpeng Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Xuehan Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Jiao Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| |
Collapse
|
2
|
Liu S, Zhao J, Wu J, Wang L, Yao C, Hu J, Zhang H. A microfluidic paper-based fluorescent sensor integrated with a smartphone platform for rapid on-site detection of omethoate pesticide. Food Chem 2025; 463:141205. [PMID: 39293375 DOI: 10.1016/j.foodchem.2024.141205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
A novel approach combing a fluorescent microfluidic paper strip with a portable smartphone-based sensing platform is developed for rapid and sensitive detection of omethoate pesticide. The detection mechanism of the microfluidic paper strip is based on the fluorescence quenching of graphene oxide (GO) toward the cyanine 3 (Cy3)-labeled aptamer (Cy3-APT). Upon exposure to omethoate, the Cy3-APT detaches from the surface of GO, resulting in considerable fluorescence recovery, which can be visualized through the smartphone-based sensing platform. The images are analyzed through a self-developed app embedded with a pretrained convolutional neural network model, achieving a high regression coefficient of 0.9964 at an omethoate concentration range of 0-750 nM. The smartphone-based platform enables rapid on-site detection of omethoate pesticide in real samples within 10 min, with results comparable to those obtained using standard methods. In short, the proposed microfluidic paper-based fluorescent sensor combined with the smartphone-based sensing platform enhances the detection performance toward organophosphorus pesticides.
Collapse
Affiliation(s)
- Shuai Liu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Intelligent Manufacturing, Jiangnan University, Wuxi 214122, China
| | - Jingkai Zhao
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Junfeng Wu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China
| | - Ling Wang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China
| | - Chuanan Yao
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China
| | - Jiandong Hu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China; State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Hao Zhang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China.
| |
Collapse
|
3
|
Ouyang M, Liu T, Yuan X, Xie C, Luo K, Zhou L. Nanomaterials-based aptasensors for rapid detection and early warning of key food contaminants: A review. Food Chem 2025; 462:140990. [PMID: 39208725 DOI: 10.1016/j.foodchem.2024.140990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The frequent occurrence of food safety incidents has aroused public concern about food safety and key contaminants. Foodborne pathogen contamination, pesticide residues, heavy metal residues, and other food safety problems will significantly impact human health. Therefore, developing efficient and sensitive detection method to ensure food safety early warning is paramount. The aptamer-based sensor (aptasensor) is a novel analytical tool with strong targeting, high sensitivity, low cost, etc. It has been extensively utilized in the pharmaceutical industry, biomedicine, environmental engineering, food safety detection, and in other diverse fields. This work reviewed the latest research progress of aptasensors for food analysis and detection, mainly introducing their application in detecting various key food contaminants. Subsequently, the sensing mechanism and performance of aptasensors are discussed. Finally, the review will examine the challenges and opportunities related to aptasensors for detecting major contaminants in food, and advance implementation of aptasensors in food safety and detection.
Collapse
Affiliation(s)
- Min Ouyang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
4
|
Yurdusev E, Trahan PL, Perreault J. Adaptation of a Model Spike Aptamer for Isothermal Amplification-Based Sensing. SENSORS (BASEL, SWITZERLAND) 2024; 24:6875. [PMID: 39517771 PMCID: PMC11548252 DOI: 10.3390/s24216875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Isothermal amplification (IA) techniques like rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) have gained significant attention in recent years due to their ability to rapidly amplify DNA or RNA targets at a constant temperature without the need for complex thermal cycling equipment. Such technologies, combined with colorimetric systems rendering visual confirmation of the amplification event, are ideal for the development of point-of-need detection methods suitable for field settings where access to specialized laboratory equipment is limited. The utility of these technologies, thus far limited to DNA and RNA targets, could be broadened to a wide range of targets by using aptamers. Composed of DNA or RNA themselves, aptamers can bind to substances, including proteins, metabolites, and inorganic substances. Their nucleic acid nature can potentially allow them to serve as a bridge, extending the reach of DNA/RNA-centric technologies to the broader molecular world. Indeed, the change in aptamer conformation occurring during ligand interaction can be used to elaborate ligand-responding RCA or LAMP templates. By using an existing aptamer targeting SARS-CoV-2 Spike protein as a model, we explored the possibility of establishing ligand-responsive IA systems. Our study used aptamers with simple sequence modifications as templates in LAMP assays and hyperbranched RCA (HRCA) by exploiting the dynamic nature of the model aptamer to trigger these IA systems. Importantly, our work uniquely demonstrates that this aptamer's dynamic response to ligand binding can regulate both RCA and LAMP processes. This novel approach of using aptamer conformational changes to trigger LAMP paves the way for new aptamer-based detection assays. Our system detects 50 nM of Spike protein, with LAMP occurring within 30 min in the presence of Spike. The colorimetric readout showed clear results, allowing for the detection of Spike protein presence.
Collapse
Affiliation(s)
| | | | - Jonathan Perreault
- Armand-Frappier Santé Biotechnologie Research Centre, INRS (Institut National de la Recherche Scientifique), Laval, QC H7V 1B7, Canada; (E.Y.); (P.-L.T.)
| |
Collapse
|
5
|
Wei K, Ye Z, Dong W, Zhang L, Wang W, Li J, Eltzov E, Wang S, Mao X. Generating robust aptamers for food analysis by sequence-based configuration optimization. Talanta 2024; 275:126044. [PMID: 38626500 DOI: 10.1016/j.talanta.2024.126044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Advanced analytical techniques are emerging in the food industry. Aptamer-based biosensors achieve rapid and highly selective analysis, thus drawing particular attention. Aptamers are oligonucleotide probes screened via in vitro Systematic Evolution of Ligands by EXponential Enrichment (SELEX), which can bind with their specific targets by folding into three-dimensional configurations and accept various modifications to be incorporated into biosensors, showing great potential in food analysis. Unfortunately, aptamers obtained by SELEX may not possess satisfactory affinity. Post-SELEX strategies were proposed to optimize aptamers' configuration and enhance the binding affinity, with specificity confirmed. Sequence-based optimization strategies exhibit great advantages in simple operation, good generalization, low cost, etc. This review summarizes the latest study (2015-2023) on generating robust aptamers for food targets by sequence-based configuration optimization, as well as the generated aptamers and aptasensors, with an expectation to provide inspirations for developing aptamer and aptasensors with high performance for food analysis and to safeguard food quality and safety.
Collapse
Affiliation(s)
- Kaiyue Wei
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Ziyang Ye
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Wenhui Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Ling Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Wenjing Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Jiao Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| | - Evgeni Eltzov
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404, PR China
| |
Collapse
|
6
|
Lu X, Wang L, Li G, Wang Y, Hao G, Ding Y, Liu M, Fu S, Xu L, Ge N, Ge W. Ratiometric fluorescence platform for the ultrasensitive detection of kanamycin based on split aptamer co-recognition triggers Mg 2+-DNAzyme-driven DNA walker systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172499. [PMID: 38631645 DOI: 10.1016/j.scitotenv.2024.172499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
In this work, a novel 3D-DNA walker signal amplification strategy was designed to construct a fluorescent aptasensor for the detection of kanamycin (KAN). The aptasensor utilizes split aptamers for the synergistic recognition of KAN. The presence of KAN induces the split aptamers recombination to form the Mg2+-DNAzyme structure, which is activated by Mg2+ to drive the 3D-DNA walker process for cascading signal amplification. Employing gold nanoflowers (AuNFs) as walking substrate material increases the local DNA concentration to enhance the walker efficiency. The prepared fluorescent aptasensor achieved efficient and sensitive detection of KAN with satisfactory results in the concentration range of 1 × 10-8 - 1 × 10-3 μg/kg and the detection limit of 5.63 fg/kg. Meanwhile, the designed fluorescent aptasensor exhibited favorable specificity, anti-interference, storage stability and reproducibility, and verified the feasibility of its application in milk samples. The present work provides an effective tool for the regulation of KAN contamination in animal-derived foods with promising prospects.
Collapse
Affiliation(s)
- Xia Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Long Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Guowei Li
- Shaanxi Goat Milk Prod Qual Supervis & Inspect Ct, Qual Inspect Dept, Fuping Cty Inspect & Testing Ctr, Fuping 711700, PR China
| | - Yuxin Wang
- Shaanxi Zhongjian Test Technology Co., Ltd, Xi'an, Shaanxi 71000, PR China
| | - Guo Hao
- Shaanxi Goat Milk Prod Qual Supervis & Inspect Ct, Qual Inspect Dept, Fuping Cty Inspect & Testing Ctr, Fuping 711700, PR China
| | - Yi Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mengjia Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shangchen Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Liqing Xu
- Shandong Institute for Food and Drug Control, Jinan, Shandong 250101,PR China
| | - Na Ge
- Tieling Food Inspection and Testing Center, Tieling, Liaoning 112608, PR China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
7
|
Guo X. Research progress on the detection of foodborne pathogens based on aptamer recognition. Mikrochim Acta 2024; 191:318. [PMID: 38727855 DOI: 10.1007/s00604-024-06375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/20/2024] [Indexed: 05/15/2024]
Abstract
Foodborne diseases caused by bacterial contamination are a serious threat to food safety and human health. The classical plate culture method has the problems of long detection cycle, low sensitivity and specificity, and complicated operation, which cannot meet the growing demand for rapid quantitative detection of pathogenic bacteria. The frequent outbreak of foodborne diseases has put forward higher requirements for rapid and simple detection technology of foodborne pathogens. Aptamer is a kind of oligonucleotide fragment that can recognize targets with the advantages of high affinity and good specificity. The target can be range from proteins, small molecules, cells bacteria, and even viruses. Herein, the latest advances in sensitive and rapid detection of foodborne pathogens based on aptamer recognition was reviewed. Special attention has been paid to the obtained sequences of aptamers to various foodborne pathogens, the optimization of sequences, and the mechanism of aptamer recognition. Then, the research progress of biosensors for the detection of pathogenic bacteria based on aptamer recognition were summarized. Some challenges and prospects for the detection of foodborne pathogens based on aptamer recognition were prospected. In summary, with the further deepening of aptamer research and improvement of detection technology, aptamer-based recognition can meet the needs of rapid, sensitive, and accurate detection in practical applications.
Collapse
Affiliation(s)
- Xianglin Guo
- School of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
8
|
Zheng L, Li Q, Deng X, Guo Q, Liu D, Nie G. A novel electrochemiluminescence biosensor based on Ru(bpy) 32+-functionalized MOF composites and cycle amplification technology of DNAzyme walker for ultrasensitive detection of kanamycin. J Colloid Interface Sci 2024; 659:859-867. [PMID: 38218089 DOI: 10.1016/j.jcis.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
An electrochemiluminescence (ECL) sensing platform for ultrasensitive and highly selective detection of kanamycin (KANA) was developed based on the prepared Ru(bpy)32+-functionalized MOF (Ru@MOF) composites by hydrothermal synthesis and Ag+-dependent DNAzyme. In this sensor, the stem-loop DNA (HP) with the ferrocene (Fc) was used as substrate chain to quench the ECL emission generated by the Ru@MOF. Using the specific recognition effect between KANA and the KANA aptamer (Apt) and the DNAzyme dependence on Ag+, the KANA aptamer as the pendant strand of the DNAzyme was assembled on Ru@MOF/GCE with the aptamer. When both Ag+ and KANA were present simultaneously, KANA specifically was binded to KANA aptamer as a pendant chain. Subsequently, Ag+-dependent DNAzyme walker continuously cleaved the HP chain and released the modified end of Fc to restore the ECL signal of Ru@MOF composites, thus achieving selective and ultrasensitive detection of KANA. The constructed KANA biosensor exhibits a wide detection range (30 pM to 300 μM) accompanied by a low detection limit (13.7 pM). The KANA in seawater and milk samples are determined to evalute the practical application results of the sensor. This ECL detection strategy could be used for detecting other similar analytes and has broad potential application in biological analysis.
Collapse
Affiliation(s)
- Lu Zheng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qing Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xukun Deng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qingfu Guo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dandan Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Guangming Nie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
9
|
Wei L, Zhu D, Cheng Q, Gao Z, Wang H, Qiu J. Aptamer-Based fluorescent DNA biosensor in antibiotics detection. Food Res Int 2024; 179:114005. [PMID: 38342532 DOI: 10.1016/j.foodres.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
The inappropriate employment of antibiotics across diverse industries has engendered profound apprehensions concerning their cumulative presence within human bodies and food commodities. Consequently, many nations have instituted stringent measures limiting the admissible quantities of antibiotics in food items. Nonetheless, conventional techniques employed for antibiotic detection prove protracted and laborious, prompting a dire necessity for facile, expeditious, and uncomplicated detection methodologies. In this regard, aptamer-based fluorescent DNA biosensors (AFBs) have emerged as a sanguine panacea to surmount the limitations of traditional detection modalities. These ingenious biosensors harness the binding prowess of aptamers, singular strands of DNA/RNA, to selectively adhere to specific target antibiotics. Notably, the AFBs demonstrate unparalleled selectivity, affinity, and sensitivity in detecting antibiotics. This comprehensive review meticulously expounds upon the strides achieved in AFBs for antibiotic detection, particularly emphasizing the labeling modality and the innovative free-label approach. It also elucidates the design principles behind a diverse array of AFBs. Additionally, a succinct survey of signal amplification strategies deployed within these biosensors is provided. The central objective of this review is to apprise researchers from diverse disciplines of the contemporary trends in AFBs for antibiotic detection. By doing so, it aspires to instigate a concerted endeavor toward the development of heightened sensitivity and pioneering AFBs, thereby contributing to the perpetual advancement of antibiotic detection methodologies.
Collapse
Affiliation(s)
- Luke Wei
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Dingze Zhu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qiuyue Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zihan Gao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Honglei Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jieqiong Qiu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
10
|
Zheng M, Ye J, Liu H, Wu Y, Shi Y, Xie Y, Wang S. FAM Tag Size Separation-Based Capture-Systematic Evolution of Ligands by Exponential Enrichment for Sterigmatocystin-Binding Aptamers with High Specificity. Anal Chem 2024; 96:710-720. [PMID: 38175632 DOI: 10.1021/acs.analchem.3c03675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sterigmatocystin (ST) is a known toxin whose aptamer has rarely been reported because ST is a water-insoluble small-molecule target with few active sites, leading to difficulty in obtaining its aptamer using traditional target fixation screening methods. To obtain aptamer for ST, we incorporated FAM tag size separation into the capture-systematic evolution of ligands by exponential enrichment and combined it with molecular activation for aptamer screening. The screening process was monitored using a quantitative polymerase chain reaction fluorescence amplification curve and recovery of negative-, counter-, and positive-selected ssDNA. The affinity and specificity of the aptamer were verified by constructing an aptamer-affinity column, and the binding sites were predicted using molecular docking simulations. The results showed that the Kd value of the H Seq02 aptamer was 25.3 nM. The aptamer-affinity column based on 2.3 nmol of H Seq02 exhibited a capacity of about 80 ng, demonstrating better specificity than commercially available antibody affinity columns. Molecular simulation docking predicted the binding sites for H Seq02 and ST, further explaining the improved specificity. In addition, circular dichroism and isothermal titration calorimetry were used to verify the interaction between the aptamer and target ST. This study lays the foundation for the development of a new ST detection method.
Collapse
Affiliation(s)
- Mengyao Zheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Jin Ye
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Yu Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yakun Shi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Yanli Xie
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Songxue Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| |
Collapse
|
11
|
Mansouri S, Alharbi Y, Alqahtani A. Nanomaterials Connected to Bioreceptors to Introduce Efficient Biosensing Strategy for Diagnosis of the TORCH Infections: A Critical Review. Crit Rev Anal Chem 2024:1-18. [PMID: 38193140 DOI: 10.1080/10408347.2023.2301649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
TORCH infection is a significant risk factor for severe fetal damage, especially congenital malformations. Screening pregnant women for TORCH pathogens could reduce the incidence of adverse pregnancy outcomes and prevent birth defects. Hence, timely identification and inhibition of TORCH infections are effective ways to successfully prevent them in pregnant women. Recently, the superiority of biosensors in TORCH pathogen sensing has been emphasized due to their intrinsic benefits, such as rapid response time, portability, cost-effectiveness, much friendlier preparation and determination steps. With the introduction of advanced nanomaterials into biosensing, the diagnostic properties of biosensors have significantly improved. This study core presents and debates the current progress in biosensing systems for TORCH pathogens using various artificial and natural receptors. The incorporation of nanomaterials into various transduction systems can enhance diagnostic performance. The key performance characteristics of optical and electrochemical biosensors, such as response time, limit of detection (LOD), and linear detection range, are systematically discussed, along with the current TORCH pathogens used for constructing biosensors. Finally, the major problems that exist for converting scientific investigation into product development are also outlined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Laboratory of Biophysics and Medical Technologies, University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Tunis, Tunisia
| | - Yousef Alharbi
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulrahman Alqahtani
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City, Saudi Arabia
| |
Collapse
|
12
|
Ma P, Guo H, Li K, Zhang Y, Guo H, Wang Z. Simultaneous detection of patulin and ochratoxin A based on enhanced dual-color AuNCs modified aptamers in apple juice. Talanta 2024; 266:124949. [PMID: 37494770 DOI: 10.1016/j.talanta.2023.124949] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Patulin (PAT) and ochratoxin A (OTA) are the two main mycotoxins present in apples. Herein, a sensitive aptasensor for simultaneous detection of PAT and ochratoxin OTA was developed. Dual-color gold nanoclusters (AuNCs) with enhanced fluorescence properties were synthesized and employed as fluorescence amplifiers. Two separated fluorescence peaks at 650 nm and 530 nm were monitored simultaneously by employing single excitation (405 nm), corresponding to the aptamer probes of Cys@BSA-AuNCs-AptPAT and Arg@ATT-AuNCs-AptOTA, respectively. The fluorescent aptasensor demonstrated satisfying specificity, storage ability and accuracy. Under the optimal experimental conditions, the linear detection range for PAT and OTA was 0.10-50 ng/mL, with the limit of detection of 0.09 ng/mL and 0.06 ng/mL, respectively. Most importantly, practicability of the constructed aptasensor were confirmed by conducting the determination of PAT and OTA in apple juice sample, indicating the great potential of the aptasensor in practical detection applications.
Collapse
Affiliation(s)
- Pengfei Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Hualin Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Ke Li
- Technical Center, Zhengzhou Customs District P.R. China, Zhengzhou, 450003, PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, PR China
| | - Huiqing Guo
- Technical Center, Zhengzhou Customs District P.R. China, Zhengzhou, 450003, PR China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
13
|
Duan Y, Liu F, Zhang C, Wang Y, Chen G. Screen and Optimization of an Aptamer for Alexandrium tamarense-A Common Toxin-Producing Harmful Alga. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:935-950. [PMID: 37743437 DOI: 10.1007/s10126-023-10251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Among all the paralytic shellfish toxins (PSTs)-producing algae, Alexandrium tamarense is one of the most widespread harmful species posing a serious threat to marine resources and human health. Therefore, it is extremely important to establish a rapid and accurate monitoring method for A. tamarense that can provide early warnings of harmful algal blooms (HABs) caused by this alga and limit the contamination due to PSTs. In this study, an ssDNA library was first obtained by whole cell systematic evolution of ligands by exponential enrichment after 18 consecutive rounds of iterative screening. After sequencing in combination with subsequent multiple alignment of sequences and secondary structure simulation, the library could be classified into 2 families, namely, Family1 and Family2, according to sequence similarity. Flow cytometry was used to test the affinity and cross-reactivity of Ata19, Ata6, Ata25 and Ata29 belonging to Family2. Ata19 was selected to be modified by truncation, through which a new resultant aptamer named as Ata19-1-1 was obtained. Ata19-1-1 with a KD of 75.16 ± 11.10 nM displayed a much higher affinity than Ata19. The specificity test showed that Ata19-1-1 has the same discrimination ability as Ata19 and can at least distinguish the target microalga from other microalgae. The observation under a fluorescence microscopy showed that the A. tamarense cells labeled with Ata19-1-1 are exhibiting bright green fluorescence and could be easily identified, factually confirming the binding of the aptamer with target cells. In summary, the aptamer Ata19-1-1 produced in this study may serve as an ideal molecular recognition element for A. tamarense, which has the potential to be developed into a novel detection method for this harmful alga in the future.
Collapse
Affiliation(s)
- Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China.
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China.
- School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
14
|
Li X, Yang Z, Waniss M, Liu X, Wang X, Xu Z, Lei H, Liu J. Multiplexed SELEX for Sulfonamide Antibiotics Yielding a Group-Specific DNA Aptamer for Biosensors. Anal Chem 2023; 95:16366-16373. [PMID: 37882488 DOI: 10.1021/acs.analchem.3c03787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The widespread use of sulfonamide (SA) antibiotics in animal husbandry has led to residues of SAs in the environment, causing adverse effects to the ecosystem and a risk of bacterial resistance, which is a potential threat to public health. Therefore, it is highly desirable to develop simple, high-throughput methods that can detect multiple SAs simultaneously. In this study, we isolated aptamers with different specificities based on a multi-SA systematic evolution of ligands by the exponential enrichment (SELEX) strategy using a mixture of sulfadimethoxine (SDM), sulfaquinoxaline (SQX), and sulfamethoxazole (SMZ). Three aptamers were obtained, and one of them showed a similar binding to all tested SAs, with dissociation constant (Kd) ranging from 0.22 to 0.63 μM. For the other two aptamers, one is specific for SQX, and the other is specific for SDM and sulfaclozine. A label-free detection method based on the broad-specificity aptamer was developed for the simultaneous detection of six SAs, with detection of limits ranging from 0.14 to 0.71 μM in a lake water sample. The aptasensor has no binding for other broad-spectrum antibiotics such as β-lactam antibiotics, quinolones, tetracyclines, and chloramphenicol. This work provides a promising biosensor for rapid, multiresidue, and high-throughput detection of SAs, as well as a shortcut for the preparation of different specific recognition elements required for the detection of broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zehao Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Michelle Waniss
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xiaohua Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqin Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
15
|
Zhao Y, Patel N, Sun P, Faulds K, Graham D, Liu J. Light-up split aptamers: binding thermodynamics and kinetics for sensing. Analyst 2023; 148:5612-5618. [PMID: 37819248 DOI: 10.1039/d3an01368e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Due to their programmable structures, many aptamers can be readily split into two halves while still retaining their target binding function. While split aptamers are prevalent in the biosensor field, fundamental studies of their binding are still lacking. In this work, we took advantage of the fluorescence enhancement property of a new aptamer named OTC5 that can bind to tetracycline antibiotics to compare various split aptamers with the full-length aptamer. The split aptamers were designed to have different stem lengths. Longer stem length aptamers showed similar dissociation constants (Kd) to the full-length aptamer, while a shorter stem construct showed an 85-fold increase in Kd. Temperature-dependent fluorescence measurements confirmed the lower thermostability of split aptamers. Isothermal titration calorimetry indicated that split aptamer binding can release more heat but have an even larger entropy loss. Finally, a colorimetric biosensor using gold nanoparticles was designed by pre-assembling two thiolated aptamer halves, which can then link gold nanoparticles to give a red-to-blue color change.
Collapse
Affiliation(s)
- Yichen Zhao
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario, N2L 3G1, Canada.
| | - Nikesh Patel
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario, N2L 3G1, Canada.
- Department of Pure and Applied Chemistry, Technology and Innovation Center, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK.
| | - Peihuan Sun
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario, N2L 3G1, Canada.
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Center, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK.
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Center, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
16
|
Lv Y, Qi S, Khan IM, Dong X, Qin M, Yue L, Zhang Y, Wang Z. Concatenated dynamic DNA network modulated SERS aptasensor based on gold-magnetic nanochains and Au@Ag nanoparticles for enzyme-free amplification analysis of tetracycline. Anal Chim Acta 2023; 1270:341238. [PMID: 37311605 DOI: 10.1016/j.aca.2023.341238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 06/15/2023]
Abstract
Tetracycline (TC) poses a great threat to food and environmental safety due to its misuse in animal husbandry and aquaculture. Therefore, an efficient analytical method is needed for the detection of TC to prevent possible hazards. Herein, a cascade amplification SERS aptasensor for sensitive determination of TC was constructed based on aptamer, enzyme-free DNA circuits, and SERS technology. The capture probe and signal probe were obtained by binding DNA hairpins H1 and H2 to the prepared Fe3O4@hollow-TiO2/Au nanochains (Fe3O4@h-TiO2/Au NCs) and Au@4-MBA@Ag nanoparticles, respectively. The dual amplification of EDC-CHA circuits significantly facilitated the sensitivity of the aptasensor. Additionally, the introduction of Fe3O4 simplified the operation of the sensing platform due to its superb magnetic capability. Under optimal conditions, the developed aptasensor exhibited a distinct linear response to TC with a low limit of detection of 15.91 pg mL-1. Furthermore, the proposed cascaded amplification sensing strategy exhibited excellent specificity and storage stability, and its practicability and reliability were verified by TC detection of real samples. This study provides a promising idea for the development of specific and sensitive signal amplification analysis platforms in the field of food safety.
Collapse
Affiliation(s)
- Yan Lv
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mingwei Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
17
|
Ye H, Wang M, Yu X, Ma P, Zhu P, Zhong J, He K, Guo Y. Molecular Docking Insight into the Label-Free Fluorescence Aptasensor for Ochratoxin A Detection. Molecules 2023; 28:4841. [PMID: 37375396 PMCID: PMC10304070 DOI: 10.3390/molecules28124841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Ochratoxin A (OTA) is the most common mycotoxin and can be found in wheat, corn and other grain products. As OTA pollution in these grain products is gaining prominence as a global issue, the demand to develop OTA detection technology has attracted increasing attention. Recently, a variety of label-free fluorescence biosensors based on aptamer have been established. However, the binding mechanisms of some aptasensors are still unclear. Herein, a label-free fluorescent aptasensor employing Thioflavin T (ThT) as donor for OTA detection was constructed based on the G-quadruplex aptamer of the OTA aptamer itself. The key binding region of aptamer was revealed by using molecular docking technology. In the absence of the OTA target, ThT fluorescent dye binds with the OTA aptamer to form an aptamer/ThT complex, and results in the fluorescence intensity being obviously enhanced. In the presence of OTA, the OTA aptamer binds to OTA because of its high affinity and specificity to form an aptamer/OTA complex, and the ThT fluorescent dye is released from the OTA aptamer into the solution. Therefore, the fluorescence intensity is significantly decreased. Molecular docking results revealed that OTA is binding to the pocket-like structure and surrounded by the A29-T3 base pair and C4, T30, G6 and G7 of the aptamer. Meanwhile, this aptasensor shows good selectivity, sensitivity and an excellent recovery rate of the wheat flour spiked experiment.
Collapse
Affiliation(s)
- Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Mengyuan Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xi Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Pengfei Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ping Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jianjun Zhong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Kuo He
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou 075000, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
18
|
Liang G, Song L, Gao Y, Wu K, Guo R, Chen R, Zhen J, Pan L. Aptamer Sensors for the Detection of Antibiotic Residues- A Mini-Review. TOXICS 2023; 11:513. [PMID: 37368613 DOI: 10.3390/toxics11060513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Food security is a global issue, since it is closely related to human health. Antibiotics play a significant role in animal husbandry owing to their desirable broad-spectrum antibacterial activity. However, irrational use of antibiotics has caused serious environmental pollution and food safety problems; thus, the on-site detection of antibiotics is in high demand in environmental analysis and food safety assessment. Aptamer-based sensors are simple to use, accurate, inexpensive, selective, and are suitable for detecting antibiotics for environmental and food safety analysis. This review summarizes the recent advances in aptamer-based electrochemical, fluorescent, and colorimetric sensors for antibiotics detection. The review focuses on the detection principles of different aptamer sensors and recent achievements in developing electrochemical, fluorescent, and colorimetric aptamer sensors. The advantages and disadvantages of different sensors, current challenges, and future trends of aptamer-based sensors are also discussed.
Collapse
Affiliation(s)
- Gang Liang
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Le Song
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Yufei Gao
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050024, China
| | - Kailong Wu
- Ulanqab Agricultural and Livestock Product Quality Safety Center, Ulanqab 012406, China
| | - Rui Guo
- Datong Comprehensive Inspection and Testing Center, Datong 037000, China
| | - Ruichun Chen
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Jianhui Zhen
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Ligang Pan
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| |
Collapse
|
19
|
Naseri M, Niazi A, Bagherzadeh K, Konoz E, Samadikhah HR. Modified electrochemical aptasensor for ultrasensitive detection of tetracycline: In silico and in vitro studies. Food Chem 2023; 421:136195. [PMID: 37119689 DOI: 10.1016/j.foodchem.2023.136195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
An ultrasensitive electrochemical aptasensor based on a glassy carbon electrode, modified by carbon nanofibers and carboxylated multi-walled carbon nanotubes was fabricated to detect tetracycline in food samples. The affinity of antibiotics, including kanamycin, tetracycline, ampicillin, and sulfadimethoxine toward desired sequences of aptamers and the stability of antibiotic-aptamer complexes were studied using molecular docking and molecular dynamic simulations. Moreover, the highest affinity and most stable complex were observed for tetracycline in complex with kanamycin-specific aptamer (KAP). Finally, KAP was used to develop an aptasensor. The central composite design (CCD) was used to optimize effective parameters. The biosensor achieved a wide dynamic linear range (1.0 × 10-17-1.0 × 10-5 M) and a low limit of detection (2.28 × 10-18 M) under optimized conditions using differential pulse voltammetry. Using the developed aptasensor, tetracycline residues in milk samples were determined.
Collapse
Affiliation(s)
- Masoomeh Naseri
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Niazi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Kowsar Bagherzadeh
- Eye Research Center, Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Konoz
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Reza Samadikhah
- Department of Fundamental, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Lv Y, Sun Y, Zhou Y, Khan IM, Niazi S, Yue L, Zhang Y, Wang Z. Cascade DNA Circuits Mediated CRISPR-Cas12a Fluorescent Aptasensor based on Multifunctional Fe 3 O 4 @hollow-TiO 2 @MoS 2 Nanochains for Tetracycline Determination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206105. [PMID: 36683240 DOI: 10.1002/smll.202206105] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Herein, for the first time, the CRISPR-Cas12a system is combined with aptamer, cascaded dynamic DNA network circuits, and Fe3 O4 @hollow-TiO2 @MoS2 nanochains (Fe3 O4 @h-TiO2 @MoS2 NCs) to construct an efficient sensing platform for tetracycline (TC) analysis. In this strategy, specific recognition of the target is transduced and amplified into H1-H2 duplexes containing the specific sequence of Cas12a-crRNA through an aptamer recognition module and the dual amplification dynamic DNA network. Subsequently, the obtained activated Cas12a protein non-specifically cleaves the adjacent reporter gene ssDNA-FAM to dissociate the FAM molecule from the quencher Fe3 O4 @h-TiO2 @MoS2 NCs, resulting in the recovery of the fluorescence signal and further signal amplification. Particularly, the synthesized multifunctional Fe3 O4 @h-TiO2 @MoS2 NCs composites also exhibit superb magnetic separability and photocatalytic degradation ability. Under optimal conditions, the aptasensor displays a distinct linear relationship with the logarithm of TC concentration, and the limit of detection is as low as 0.384 pg mL-1 . Furthermore, the results of spiked recovery confirm the viability of the proposed aptasensor for TC quantification in real samples. This study extends the application of the CRISPR-Cas12a system in the field of analytical sensing and contributes new insights into the exploration of reliable tools for monitoring and treating hazards in food and environment.
Collapse
Affiliation(s)
- Yan Lv
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yuhan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - You Zhou
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
21
|
Zhang X, Du Y, Liu X, Feng R, Jia Y, Ren X, Zhang N, Liu L, Wei Q, Ju H. Enhanced anode electrochemiluminescence in split aptamer sensor for kanamycin trace monitoring. Food Chem 2023; 420:136083. [PMID: 37059023 DOI: 10.1016/j.foodchem.2023.136083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
Covalently modifying electrochemiluminescence (ECL) luminophores to alter their energy levels or generate energy/electron transfer processes for improved performance is hindered by the complex design and fabrication processes. In this study, non-covalent bond self-assembly was employed to enhance the ECL property of gold nanoclusters with tryptophan (Try) and mercaptopropionic acid (MPA) as ligands (Try-MPA-gold nanoclusters). Specifically, through the molecular recognition of Try by cucurbit[7]uril, some non-radiative transition channels of the charge carriers on the surface of the Try-MPA-gold nanoclusters were restricted, resulting in a significant enhancement of the ECL intensity of the nanoclusters. Furthermore, rigid macrocyclic molecules acted on the surface of the nanoclusters through self-assembly, forming a passive barrier that improved the physical stability of the nanoclusters in the water-phase and indirectly improved their luminescent stability. As an application, cucurbit[7]uril-treated Try-MPA-gold nanoclusters (cucurbit[7]uril@Try-MPA-gold nanoclusters) were used as signal probes, and Zn-doped SnO2 nanoflowers (Zn-SnO2 NFs) with high electron mobility were used as electrode modification material to establish an ECL sensor for kanamycin (KANA) detection, utilizing split aptamers as capture probes. The advanced split aptamer sensor demonstrated excellent sensitivity analysis for KANA in complex food substrates with a recovery rate of 96.2 to 106.0%.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yu Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Rui Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Lei Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. Optimization of an aptamer against Prorocentrum minimum - A common harmful algae by truncation and G-quadruplex-forming mutation. ENVIRONMENTAL RESEARCH 2023; 220:115099. [PMID: 36563978 DOI: 10.1016/j.envres.2022.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Harmful algal blooms (HABs) caused by Prorocentrum minimum have seriously posed economic losses and ecological disasters. To reduce these losses, aptamers are used as a new molecular probe to establish rapid methods. Herein, to improve the affinity and application of aptamers in the detection of harmful algae, the optimization was performed on the previously reported aptamers against P. minimum. First, a total of seven candidate aptamers, including three truncated aptamers (TA1, TA2 and TA3) and four mutant aptamers (MA1, MA2, MA3 and MA4), were obtained by truncation and G-quadruplex (GQ)-forming mutation. Next, the specificity and affinity test by flow cytometry revealed that except for TA1 and TA2, all of the candidate aptamers are specific with the equilibrium dissociation constant of (40.4 ± 5.5) nM for TA3, (63.3 ± 24.0) nM for MA1, (71.7 ± 14.6) nM for MA2, (365.9 ± 74.4) nM for MA3, and (21.1 ± 0.5) nM for MA4, respectively. The circular dichroism analysis of the mutant aptamers demonstrated that the GQ structures formed by MA1/MA2, MA3 and MA4 were antiparallel, mixed parallel and parallel, respectively. The affinity of aptamers with various GQ is in the order of parallel structure > antiparallel structure > mixed parallel structure. In addition, to further improve binding ability, the binding conditions of MA4 were optimized as follows: binding time, 60 min; binding temperature, 37 °C; pH of the binding buffer, 7.5; and Na+/Mg2+ concentration in the binding buffer, 100 mM/0.5 mM. The binding examination by fluorescence microscopy showed that MA4 had a stronger binding ability to P. minimum than the original aptamer. Taken together, this study not only obtained an aptamer with higher affinity than the original aptamer, which laid a good foundation for subsequent application, but also may provide a feasible reference method for aptamer optimization.
Collapse
Affiliation(s)
- Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China
| | - Yu Duan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jinju Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China.
| |
Collapse
|
23
|
Ma P, Guo H, Ye H, Zhang Y, Wang Z. Structural insights into the AFB 1 aptamer coupled with a rationally designed CRISPR/Cas12a-Exo III aptasensor for AFB 1 detection. Int J Biol Macromol 2023; 225:1164-1171. [PMID: 36414074 DOI: 10.1016/j.ijbiomac.2022.11.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Aflatoxin B1 (AFB1) is a typical food contaminant. A truncated DNA aptamer of AFB1 was reported by our team in previous work. However, the recognition mechanism between aptamer and AFB1 was lacking, which was crucial for the design of related aptasensor. Herein, the binding of aptamer to AFB1 was systematically studied and found that it was an exothermic process and the conformation of aptamer changed during the recognition process. Loop bases in the secondary structure of aptamer formed a special binding pocket to recognize AFB1. Van der Waals and electrostatic interaction were the main driving forces. By blocking the stem bases guided by the structural investigation, a rationally designed CRISPR/Cas12a-Exo III aptasensor for AFB1 detection was constructed, and the sensitivity was improved by target recycling. Under optimal conditions, the linear detection range for AFB1 was 0.01-20 ng/mL, and AFB1 was accurately determined in corn and wheat samples. This work laid a theoretical foundation for the design of AFB1 aptasensor, and the developed detection model came up with new ideas for the development of CRISPR/Cas12a-based aptasensor.
Collapse
Affiliation(s)
- Pengfei Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hualin Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China.
| |
Collapse
|
24
|
Ye H, Wan T, Li X, Li C, He K, Guo Y. Rapid detection of kanamycin using cooperative recognition split aptamer and graphene oxide nanosheets. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
A Dual-Mode Method Based on Aptamer Recognition and Time-Resolved Fluorescence Resonance Energy Transfer for Histamine Detection in Fish. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248711. [PMID: 36557845 PMCID: PMC9785670 DOI: 10.3390/molecules27248711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Histamine produced via the secretion of histidine decarboxylase by the bacteria in fish muscles is a toxic biogenic amine and of significant concern in food hygiene, since a high intake can cause poisoning in humans. This study proposed a fluorometric and colorimetric dual-mode specific method for the detection of histamine in fish, based on the fluorescence labeling of a histamine specific aptamer via the quenching and optical properties of gold nanoparticles (AuNPs). Due to the fluorescence resonance energy transfer phenomenon caused by the proximity of AuNPs and NaYF4:Ce/Tb, resulting in the quenching of the fluorescence signal in the detection system, the presence of histamine will compete with AuNPs to capture the aptamer and release it from the AuNP surface, inducing fluorescence recovery. Meanwhile, the combined detection of the two modes showed good linearity with histamine concentration, the linear detection range of the dual-mode synthesis was 0.2-1.0 μmol/L, with a detection limit of 4.57 nmol/L. Thus, this method has good selectivity and was successfully applied to the detection of histamine in fish foodstuffs with the recoveries of 83.39~102.027% and 82.19~105.94% for Trichiurus haumela and Thamnaconus septentrionalis, respectively. In addition, this method was shown to be simple, rapid, and easy to conduct. Through the mutual verification and combined use of the two modes, a highly sensitive, rapid, and accurate dual-mode detection method for the analysis of histamine content in food was established, thereby providing a reference for the monitoring of food freshness.
Collapse
|
26
|
Qi S, Dong X, Sun Y, Zhang Y, Duan N, Wang Z. Split aptamer remodeling-initiated target-self-service 3D-DNA walker for ultrasensitive detection of 17β-estradiol. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129590. [PMID: 35872451 DOI: 10.1016/j.jhazmat.2022.129590] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
DNA walker machines, as one of the dynamic DNA nanodevices, have attracted extensive interest in the field of analysis due to their inherent superiority. Herein, we reported a split aptamer remodeling-initiated target-self-service 3D-DNA walker for ultrasensitive, specific, and high-signal-background ratio determination of 17β-estradiol (E2) in food samples. Two split probes (STWS-a and STWS-b) were rationally designed that can undergo structural reassembled to serve as walking strands (STWS) under the induction of the target. Meanwhile, an intact E6-DNAzyme region was formed and activated at the tail of STWS. The activated E6-DNAzyme then continuously drives the 3D-DNA walker for signal amplification and specific detection of E2. Under optimal conditions, the proposed DNA walker-based biosensor exhibited excellent linearity in the range of 1 pM to 50 nM with a low limit of detection (LOD) of 0.28 pM, and good precision (2.7%) for 11 replicate determinations of 1 nM of E2. Furthermore, the developed DNA walker-based biosensor achieved excellent sensitive analysis of E2 in the complex food matrix with recoveries of 95.6-106.5%. This newly proposed split aptamer-based strategy has the advantages of ultrasensitive, high signal-to-background ratio, and high stability. Noteworthy, the successful operation of the DNA walker initiated by the split aptamer expands the principles of DNA walker design and provides a universal signal amplification platform for trace analysis.
Collapse
Affiliation(s)
- Shuo Qi
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuhan Sun
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
27
|
Wang S, Zhao Y, Ma R, Wang W, Zhang L, Li J, Sun J, Mao nvestigation X. Aptasensing a class of small molecules based on split aptamers and hybridization chain reaction-assisted AuNPs nanozyme. Food Chem 2022; 401:134053. [DOI: 10.1016/j.foodchem.2022.134053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
|
28
|
A Simple and Rapid “Signal On” Fluorescent Sensor for Detecting Mercury (II) Based on the Molecular Beacon Aptamer. Foods 2022; 11:foods11131847. [PMID: 35804661 PMCID: PMC9266287 DOI: 10.3390/foods11131847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Biosensors for mercury (II) (Hg2+) with high sensitivity are urgently required for food safety, ecosystem protection and disease prevention. In this study, a simple and fast detection method of Hg2+ based on the molecular beacon aptamer was established, according to the principle that Hg2+ could change the structure of the molecular beacon aptamer, resulting in the changed fluorescence intensity. All of the detection conditions were optimized. It was found that an optimal molecular beacon aptamer MB3 showed the optimal response signal in the optimized reaction environment, which was 0.08 μmol/L MB3, 50 mmol/L tris buffer (40 mmol/L NaCl, 10 mmol/L MgCl2, pH 8.1), and a 10 min reaction. Under the optimal detection conditions, the molecular beacon aptamer sensor showed a linear response to Hg2+ concentration within a range from 0.4 to 10 μmol/L and with a detection limit of 0.2254 μmol/L and a precision of 4.9%. The recovery rates of Hg2+ in water samples ranged from 95.00% to 99.25%. The method was convenient and rapid, which could realize the rapid detection of mercury ions in water samples.
Collapse
|