1
|
Emiliano JVDS, Fusieger A, Camargo AC, Rodrigues FFDC, Nero LA, Perrone ÍT, Carvalho AFD. Staphylococcus aureus in Dairy Industry: Enterotoxin Production, Biofilm Formation, and Use of Lactic Acid Bacteria for Its Biocontrol. Foodborne Pathog Dis 2024; 21:601-616. [PMID: 39021233 DOI: 10.1089/fpd.2023.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Staphylococcus aureus is a well-known pathogen capable of producing enterotoxins during bacterial growth in contaminated food, and the ingestion of such preformed toxins is one of the major causes of food poisoning around the world. Nowadays 33 staphylococcal enterotoxins (SEs) and SE-like toxins have been described, but nearly 95% of confirmed foodborne outbreaks are attributed to classical enterotoxins SEA, SEB, SEC, SED, and SEE. The natural habitat of S. aureus includes the skin and mucous membranes of both humans and animals, allowing the contamination of milk, its derivatives, and the processing facilities. S. aureus is well known for the ability to form biofilms in food processing environments, which contributes to its persistence and cross-contamination in food. The biocontrol of S. aureus in foods by lactic acid bacteria (LAB) and their bacteriocins has been studied for many years. Recently, LAB and their metabolites have also been explored for controlling S. aureus biofilms. LAB are used in fermented foods since in ancient times and nowadays characterized strains (or their purified bacteriocin) can be intentionally added to prolong food shelf-life and to control the growth of potentially pathogenic bacteria. Regarding the use of these microorganism and their metabolites (such as organic acids and bacteriocins) to prevent biofilm development or for biofilm removal, it is possible to conclude that a complex network behind the antagonistic activity remains poorly understood at the molecular level. The use of approaches that allow the characterization of these interactions is necessary to enhance our understanding of the mechanisms that govern the inhibitory activity of LAB against S. aureus biofilms in food processing environments.
Collapse
Affiliation(s)
- Jean Victor Dos Santos Emiliano
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Andressa Fusieger
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Anderson Carlos Camargo
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Fabíola Faria da Cruz Rodrigues
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ítalo Tuler Perrone
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
2
|
Yang L, Wu X, Wu G, Wu Y, Li H, Shao B. Association analysis of antibiotic and disinfectant resistome in human and foodborne E. coli in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173888. [PMID: 38866143 DOI: 10.1016/j.scitotenv.2024.173888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
The widespread use of chemical disinfectants and antibiotics poses a major threat to food safety and human health. However, the mechanisms of co-transmission of antimicrobial resistance genes (ARGs) and biocides and metal resistance genes (BMRGs) of foodborne pathogens in the food chain is still unclear. This study isolated 343 E. coli strains from animal-derived foods in Beijing and incorporated online data of human-derived E. coli strains from NCBI. Our results demonstrated a relatively uniform distribution of strains from various regions in Beijing, indicating a lack of region-specific clustering. Additionally, predominant sequence types varied between food- and human-derived strains, suggesting a preference for different hosts and environments. Phenotypic association analysis showed that the chlorine disinfectants peroxides had a significant positive correlation with tetracyclines. Many more ARGs and BMRGs were enriched in human-associated E. coli compared with those in chicken- and pork-origin. The quaternary ammonium compounds (QACs) resistance gene qacEΔ1 had a strong correlation with aminoglycoside resistance gene aadA5, folate pathway antagonist resistance gene dfrA17, sul1 and macrolide resistance gene mph(A). The correlation results indicated a significant association between the copper resistance gene cluster pco and the silver resistance gene cluster sil. Coexistence of many resistance genes was observed within the qacEΔ1 gene structure, with qacEΔ1-sul1 being the most common combination. Our findings demonstrated that the epidemiological spread of resistance is affected by a combination of heavy metals, disinfectants and antibiotic use, suggesting that the prevention and control strategies of antimicrobial resistance need to be multifaceted and comprehensive.
Collapse
Affiliation(s)
- Lu Yang
- Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xuan Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China
| | - Guoquan Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yige Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Bing Shao
- Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Efremenko E, Stepanov N, Senko O, Maslova O, Lyagin I, Domnin M, Aslanli A. "Stop, Little Pot" as the Motto of Suppressive Management of Various Microbial Consortia. Microorganisms 2024; 12:1650. [PMID: 39203492 PMCID: PMC11356704 DOI: 10.3390/microorganisms12081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The unresolved challenges in the development of highly efficient, stable and controlled synthetic microbial consortia, as well as the use of natural consortia, are very attractive for science and technology. However, the consortia management should be done with the knowledge of how not only to accelerate but also stop the action of such "little pots". Moreover, there are a lot of microbial consortia, the activity of which should be suppressively controlled. The processes, catalyzed by various microorganisms being in complex consortia which should be slowed down or completely cancelled, are typical for the environment (biocorrosion, landfill gas accumulation, biodegradation of building materials, water sources deterioration etc.), industry (food and biotechnological production), medical practice (vaginitis, cystitis, intestinal dysbiosis, etc.). The search for ways to suppress the functioning of heterogeneous consortia in each of these areas is relevant. The purpose of this review is to summarize the general trends in these studies regarding the targets and new means of influence used. The analysis of the features of the applied approaches to solving the main problem confirms the possibility of obtaining a combined effect, as well as selective influence on individual components of the consortia. Of particular interest is the role of viruses in suppressing the functioning of microbial consortia of different compositions.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia (O.S.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Azari R, Yousefi MH, Fallah AA, Alimohammadi A, Nikjoo N, Wagemans J, Berizi E, Hosseinzadeh S, Ghasemi M, Mousavi Khaneghah A. Controlling of foodborne pathogen biofilms on stainless steel by bacteriophages: A systematic review and meta-analysis. Biofilm 2024; 7:100170. [PMID: 38234712 PMCID: PMC10793095 DOI: 10.1016/j.bioflm.2023.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024] Open
Abstract
This study investigates the potential of using bacteriophages to control foodborne pathogen biofilms on stainless steel surfaces in the food industry. Biofilm-forming bacteria can attach to stainless steel surfaces, rendering them difficult to eradicate even after a thorough cleaning and sanitizing procedures. Bacteriophages have been proposed as a possible solution, as they can penetrate biofilms and destroy bacterial cells within, reducing the number of viable bacteria and preventing the growth and spread of biofilms. This systematic review and meta-analysis evaluates the potential of bacteriophages against different biofilm-forming foodborne bacteria, including Cronobacter sakazakii, Escherichia coli, Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa and Listeria monocytogenes. Bacteriophage treatment generally causes a significant average reduction of 38 % in biofilm formation of foodborne pathogens on stainless steel. Subgroup analyses revealed that phages are more efficient in long-duration treatment. Also, applying a cocktail of phages is 1.26-fold more effective than applying individual phages. Phages at concentrations exceeding 107 PFU/ml are significantly more efficacious in eradicating bacteria within a biofilm. The antibacterial phage activity decreases substantially by 3.54-fold when applied at 4 °C compared to temperatures above 25 °C. This analysis suggests that bacteriophages can be a promising solution for controlling biofilms in the food industry.
Collapse
Affiliation(s)
- Rahim Azari
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946-84471, Iran
| | - Aziz A. Fallah
- Department of Food Hygiene and Quality Control, School of Veterinary Medicine, Shahrekord University, Shahrekord, 34141, Iran
| | - Arezoo Alimohammadi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Nikjoo
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Enayat Berizi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946-84471, Iran
| | - Mohammad Ghasemi
- Department of Pharmacology, School of Veterinary Medicine, Shahrekord University, P. O. Box 115, Shahrekord, Iran
| | - Amin Mousavi Khaneghah
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
5
|
Hu X, Du X, Li M, Sun J, Li X, Pang X, Lu Y. Preparation and characterization of nisin-loaded chitosan nanoparticles functionalized with DNase I for the removal of Listeria monocytogenes biofilms. J Food Sci 2024; 89:2305-2315. [PMID: 38369953 DOI: 10.1111/1750-3841.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
Listeria monocytogenes biofilms represent a continuous source of contamination, leading to serious food safety concerns and economic losses. This study aims to develop novel nisin-loaded chitosan nanoparticles (CSNPs) functionalized with DNase I and evaluate its antibiofilm activity against L. monocytogenes on food contact surfaces. Nisin-loaded CSNPs (CS-N) were first prepared by ionic cross-linking, and DNase I was covalently grafted on the surface (DNase-CS-N). The NPs were subsequently characterized by Zetasizer Nano, transmission electron microscopy, Fourier transform infrared (FT-IR), and X-ray diffraction (XRD). The antibiofilm activity of NPs was evaluated against L. monocytogenes on polyurethane (PU). The DNase-CS-N was fabricated and characterized with quality attributes (particle size-427.0 ± 15.1 nm, polydispersity [PDI]-0.114 ± 0.034, zeta potential-+52.5 ± 0.2 mV, encapsulation efficiency-46.5% ± 3.6%, DNase conjugate rate-70.4% ± 0.2). FT-IR and XRD verified the loading of nisin and binding of DNase I with chitosan. The DNase-CS-N caused a 3 log colony-forming unit (CFU)/cm2 reduction of L. monocytogenes biofilm cells, significantly higher than those in CSNPs (1.4 log), CS-N (1.8 log), and CS-N in combination with DNase I (2.2 log) treatment groups. In conclusion, nisin-loaded CSNPs functionalized with DNase I were successfully prepared and characterized with smooth surface and nearly spherical shape, high surface positive charge, and good stability, which is effective to eradicate L. monocytogenes biofilm cells on food contact surfaces, exhibiting great potential as antibiofilm agents in food industry. PRACTICAL APPLICATION: Listeria monocytogenes biofilms are a common safety hazard in food processing. In this study, novel nanoparticles were successfully constructed and are expected to be a promising antibiofilm agent in the food industry.
Collapse
Affiliation(s)
- Xin Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xueying Du
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Mingwei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
6
|
Kulišová M, Rabochová M, Lorinčík J, Brányik T, Hrudka J, Scholtz V, Jarošová Kolouchová I. Exploring Non-Thermal Plasma and UV Radiation as Biofilm Control Strategies against Foodborne Filamentous Fungal Contaminants. Foods 2024; 13:1054. [PMID: 38611358 PMCID: PMC11011738 DOI: 10.3390/foods13071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, non-thermal plasma (NTP) has emerged as a promising tool for decontamination and disinfection within the food industry. Given the increasing resistance of microbial biofilms to conventional disinfectants and their adverse environmental effects, this method has significant potential for eliminating biofilm formation or mitigating the metabolic activity of grown biofilms. A comparative study was conducted evaluating the efficacy of UV radiation and NTP in eradicating mature biofilms of four common foodborne filamentous fungal contaminants: Alternaria alternata, Aspergillus niger, Fusarium culmorum, and Fusarium graminearum. The findings reveal that while UV radiation exhibits variable efficacy depending on the duration of exposure and fungal species, NTP induces substantial morphological alterations in biofilms, disrupting hyphae, and reducing extracellular polymeric substance production, particularly in A. alternata and F. culmorum. Notably, scanning electron microscopy analysis demonstrates significant disruption of the hyphae in NTP-treated biofilms, indicating its ability to penetrate the biofilm matrix, which is a promising outcome for biofilm eradication strategies. The use of NTP could offer a more environmentally friendly and potentially more effective alternative to traditional disinfection methods.
Collapse
Affiliation(s)
- Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Michaela Rabochová
- Department of Material Analysis, Research Centre Rez, Hlavní 130, 250 68 Husinec-Řež, Czech Republic; (M.R.); (J.L.)
- Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, 272 01 Kladno, Czech Republic
| | - Jan Lorinčík
- Department of Material Analysis, Research Centre Rez, Hlavní 130, 250 68 Husinec-Řež, Czech Republic; (M.R.); (J.L.)
| | - Tomáš Brányik
- Research Institute of Brewing and Malting, Lípová 15, 120 44 Prague, Czech Republic;
| | - Jan Hrudka
- Department of Physics and Measurements, Prague, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (J.H.); (V.S.)
| | - Vladimír Scholtz
- Department of Physics and Measurements, Prague, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (J.H.); (V.S.)
| | - Irena Jarošová Kolouchová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| |
Collapse
|
7
|
György É, Unguran KA, Laslo É. Biocide Tolerance and Impact of Sanitizer Concentrations on the Antibiotic Resistance of Bacteria Originating from Cheese. Foods 2023; 12:3937. [PMID: 37959056 PMCID: PMC10648639 DOI: 10.3390/foods12213937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, we determined and identified the bacterial diversity of different types of artisanal and industrially produced cheese. The antibiotic (erythromycin, chloramphenicol, kanamycin, ampicillin, clindamycin, streptomycin, tetracycline, and gentamicin) and biocide (peracetic acid, sodium hypochlorite, and benzalkonium chloride) resistance of clinically relevant bacteria was determined as follows: Staphylococcus aureus, Macrococcus caseolyticus, Bacillus sp., Kocuria varians, Escherichia coli, Enterococcus faecalis, Citrobacter freundii, Citrobacter pasteurii, Klebsiella oxytoca, Klebsiella michiganensis, Enterobacter sp., Enterobacter cloacae, Enterobacter sichuanensis, Raoultella ornithinolytica, Shigella flexneri, and Salmonella enterica. Also, the effect of the sub-inhibitory concentration of three biocides on antibiotic resistance was determined. The microbiota of evaluated dairy products comprise diverse and heterogeneous groups of bacteria with respect to antibiotic and disinfectant tolerance. The results indicated that resistance was common in the case of ampicillin, chloramphenicol, erythromycin, and streptomycin. Bacillus sp. SCSSZT2/3, Enterococcus faecalis SRGT/1, E. coli SAT/1, Raoultella ornithinolytica MTT/5, and S. aureus SIJ/2 showed resistance to most antibiotics. The tested bacteria showed sensitivity to peracetic acid and a different level of tolerance to benzalkonium chloride and sodium hypochlorite. The inhibition zone diameter of antibiotics against Enterococcus faecalis SZT/2, S. aureus JS11, E. coli CSKO2, and Kocuria varians GRT/10 was affected only by the sub-inhibitory concentration of peracetic acid.
Collapse
Affiliation(s)
- Éva György
- Department of Food Science, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, 530104 Miercurea Ciuc, Romania; (K.A.U.); (É.L.)
| | | | | |
Collapse
|
8
|
Alonso VPP, Lemos JG, Nascimento MDSD. Yeast biofilms on abiotic surfaces: Adhesion factors and control methods. Int J Food Microbiol 2023; 400:110265. [PMID: 37267839 DOI: 10.1016/j.ijfoodmicro.2023.110265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Biofilms are highly resistant to antimicrobials and are a common problem in many industries, including pharmaceutical, food and beverage. Yeast biofilms can be formed by various yeast species, including Candida albicans, Saccharomyces cerevisiae, and Cryptococcus neoformans. Yeast biofilm formation is a complex process that involves several stages, including reversible adhesion, followed by irreversible adhesion, colonization, exopolysaccharide matrix formation, maturation and dispersion. Intercellular communication in yeast biofilms (quorum-sensing mechanism), environmental factors (pH, temperature, composition of the culture medium), and physicochemical factors (hydrophobicity, Lifshitz-van der Waals and Lewis acid-base properties, and electrostatic interactions) are essential to the adhesion process. Studies on the adhesion of yeast to abiotic surfaces such as stainless steel, wood, plastic polymers, and glass are still scarce, representing a gap in the field. The biofilm control formation can be a challenging task for food industry. However, some strategies can help to reduce biofilm formation, such as good hygiene practices, including regular cleaning and disinfection of surfaces. The use of antimicrobials and alternative methods to remove the yeast biofilms may also be helpful to ensure food safety. Furthermore, physical control measures such as biosensors and advanced identification techniques are promising for yeast biofilms control. However, there is a gap in understanding why some yeast strains are more tolerant or resistant to sanitization methods. A better understanding of tolerance and resistance mechanisms can help researchers and industry professionals to develop more effective and targeted sanitization strategies to prevent bacterial contamination and ensure product quality. This review aimed to identify the most important information about yeast biofilms in the food industry, followed by the removal of these biofilms by antimicrobial agents. In addition, the review summarizes the alternative sanitizing methods and future perspectives for controlling yeast biofilm formation by biosensors.
Collapse
Affiliation(s)
| | - Jéssica Gonçalves Lemos
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Rua Monteiro Lobato n° 80, Campinas, São Paulo 13083-862, Brazil
| | - Maristela da Silva do Nascimento
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Rua Monteiro Lobato n° 80, Campinas, São Paulo 13083-862, Brazil.
| |
Collapse
|
9
|
Factors That Interfere in the Action of Sanitizers against Ochratoxigenic Fungi Deteriorating Dry-Cured Meat Products. FERMENTATION 2023. [DOI: 10.3390/fermentation9020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This study verified the factors affecting the antifungal efficacy of sanitizers against ochratoxin A-producing fungi. The fungi Penicillium nordicum, Penicillium verrucosum, and Aspergillus westerdijkiae were exposed to three sanitizers at three concentrations: peracetic acid (0.3, 0.6, 1%), benzalkonium chloride (0.3, 1.2, 2%), and sodium hypochlorite (0.5, 0.75, 1%) at three exposure times (10, 15, and 20 min), three temperatures (10, 25, and 40 °C), and with the presence of organic matter simulating clean (0.3%) and dirty (3%) environments. All the tested conditions influenced the antifungal action of the tested sanitizers. Peracetic acid and benzalkonium chloride were the most effective sanitizers, and sodium hypochlorite was ineffective according to the parameters evaluated. The amount of organic matter reduced the antifungal ability of all sanitizers. The longer exposure time was more effective for inactivating fungi. The temperature acted differently for benzalkonium chloride, which tended to be favored at low temperatures, than for sodium hypochlorite and peracetic acid, which were more effective at higher temperatures. The knowledge of the parameters that influence the action of sanitizers on spoilage fungi is vital in decision-making related to sanitizing processes in the food industry.
Collapse
|
10
|
Alonso VPP, Gonçalves MPMBB, de Brito FAE, Barboza GR, Rocha LDO, Silva NCC. Dry surface biofilms in the food processing industry: An overview on surface characteristics, adhesion and biofilm formation, detection of biofilms, and dry sanitization methods. Compr Rev Food Sci Food Saf 2023; 22:688-713. [PMID: 36464983 DOI: 10.1111/1541-4337.13089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/09/2022]
Abstract
Bacterial biofilm formation in low moisture food processing (LMF) plants is related to matters of food safety, production efficiency, economic loss, and reduced consumer trust. Dry surfaces may appear dry to the naked eye, however, it is common to find a coverage of thin liquid films and microdroplets, known as microscopic surface wetness (MSW). The MSW may favor dry surface biofilm (DSB) formation. DSB formation is similar in other industries, it occurs through the processes of adhesion, production of extracellular polymeric substances, development of microcolonies and maturation, it is mediated by a quorum sensing (QS) system and is followed by dispersal, leading to disaggregation. Species that survive on dry surfaces develop tolerance to different stresses. DSB are recalcitrant and contribute to higher resistance to sanitation, becoming potential sources of contamination, related to the spoilage of processed products and foodborne disease outbreaks. In LMF industries, sanitization is performed using physical methods without the presence of water. Although alternative dry sanitizing methods can be efficiently used, additional studies are still required to develop and assess the effect of emerging technologies, and to propose possible combinations with traditional methods to enhance their effects on the sanitization process. Overall, more information about the different technologies can help to find the most appropriate method/s, contributing to the development of new sanitization protocols. Thus, this review aimed to identify the main characteristics and challenges of biofilm management in low moisture food industries, and summarizes the mechanisms of action of different dry sanitizing methods (alcohol, hot air, UV-C light, pulsed light, gaseous ozone, and cold plasma) and their effects on microbial metabolism.
Collapse
Affiliation(s)
- Vanessa Pereira Perez Alonso
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Maria Paula M B B Gonçalves
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | | - Giovana Rueda Barboza
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | |
Collapse
|