1
|
Mc Auley MT. The evolution of ageing: classic theories and emerging ideas. Biogerontology 2024; 26:6. [PMID: 39470884 PMCID: PMC11522123 DOI: 10.1007/s10522-024-10143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
Ageing is generally regarded as a non-adaptive by-product of evolution. Based on this premise three classic evolutionary theories of ageing have been proposed. These theories have dominated the literature for several decades. Despite their individual nuances, the common thread which unites them is that they posit that ageing results from a decline in the intensity of natural selection with chronological age. Empirical evidence has been identified which supports each theory. However, a consensus remains to be fully established as to which theory best accounts for the evolution of ageing. A consequence of this uncertainty are counter arguments which advocate for alternative theoretical frameworks, such as those which propose an adaptive origin for ageing, senescence, or death. Given this backdrop, this review has several aims. Firstly, to briefly discuss the classic evolutionary theories. Secondly, to evaluate how evolutionary forces beyond a monotonic decrease in natural selection can affect the evolution of ageing. Thirdly, to examine alternatives to the classic theories. Finally, to introduce a pluralistic interpretation of the evolution of ageing. The basis of this pluralistic theoretical framework is the recognition that certain evolutionary ideas will be more appropriate depending on the organism, its ecological context, and its life history.
Collapse
Affiliation(s)
- Mark T Mc Auley
- School of Science, Engineering and Environment, University of Salford Manchester, Salford, M5 4NT, UK.
| |
Collapse
|
2
|
Siles-Guerrero V, Romero-Márquez JM, García-Pérez RN, Novo-Rodríguez C, Guardia-Baena JM, Hayón-Ponce M, Tenorio-Jiménez C, López-de-la-Torre-Casares M, Muñoz-Garach A. Is Fasting Superior to Continuous Caloric Restriction for Weight Loss and Metabolic Outcomes in Obese Adults? A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2024; 16:3533. [PMID: 39458528 PMCID: PMC11510157 DOI: 10.3390/nu16203533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND fasting-based strategies (FBS) and continuous caloric restriction (CCR) are popular methods for weight loss and improving metabolic health. FBS alternates between eating and fasting periods, while CCR reduces daily calorie intake consistently. Both aim to create a calorie deficit, but it is still uncertain as to which is more effective for short- and long-term weight and metabolic outcomes. OBJECTIVES this systematic review and meta-analysis aimed to compare the effectiveness of FBS and CCR on these parameters in obese adults. METHODS after screening 342 articles, 10 randomized controlled trials (RCTs) with 623 participants were included. RESULTS both interventions led to weight loss, with a reduction of 5.5 to 6.5 kg observed at the six-month mark. However, the results showed that FBS led to slightly greater short-term reductions in body weight (-0.94 kg, p = 0.004) and fat mass (-1.08 kg, p = 0.0001) compared to CCR, although these differences are not clinically significant. Both interventions had similar effects on lean mass, waist and hip circumference, blood pressure, lipid profiles, and glucose metabolism. However, FBS improved insulin sensitivity, with significant reductions in fasting insulin (-7.46 pmol/L, p = 0.02) and HOMA-IR (-0.14, p = 0.02). CONCLUSIONS despite these short-term benefits, FBS did not show superior long-term outcomes compared to CCR. Both strategies are effective for weight management, but more research is needed to explore the long-term clinical relevance of FBS in obese populations.
Collapse
Affiliation(s)
- Víctor Siles-Guerrero
- Department of Endocrinology and Nutrition, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (V.S.-G.); (R.N.G.-P.); (C.N.-R.); (J.M.G.-B.); (M.H.-P.); (C.T.-J.); (M.L.-d.-l.-T.-C.)
| | - Jose M. Romero-Márquez
- Department of Endocrinology and Nutrition, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (V.S.-G.); (R.N.G.-P.); (C.N.-R.); (J.M.G.-B.); (M.H.-P.); (C.T.-J.); (M.L.-d.-l.-T.-C.)
- Foundation for Biosanitary Research of Eastern Andalusia—Alejandro Otero (FIBAO), 18012 Granada, Spain
| | - Rosa Natalia García-Pérez
- Department of Endocrinology and Nutrition, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (V.S.-G.); (R.N.G.-P.); (C.N.-R.); (J.M.G.-B.); (M.H.-P.); (C.T.-J.); (M.L.-d.-l.-T.-C.)
| | - Cristina Novo-Rodríguez
- Department of Endocrinology and Nutrition, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (V.S.-G.); (R.N.G.-P.); (C.N.-R.); (J.M.G.-B.); (M.H.-P.); (C.T.-J.); (M.L.-d.-l.-T.-C.)
- Granada Biosanitary Research Institute (Ibs. Granada), 18014 Granada, Spain
| | - Juan Manuel Guardia-Baena
- Department of Endocrinology and Nutrition, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (V.S.-G.); (R.N.G.-P.); (C.N.-R.); (J.M.G.-B.); (M.H.-P.); (C.T.-J.); (M.L.-d.-l.-T.-C.)
| | - María Hayón-Ponce
- Department of Endocrinology and Nutrition, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (V.S.-G.); (R.N.G.-P.); (C.N.-R.); (J.M.G.-B.); (M.H.-P.); (C.T.-J.); (M.L.-d.-l.-T.-C.)
| | - Carmen Tenorio-Jiménez
- Department of Endocrinology and Nutrition, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (V.S.-G.); (R.N.G.-P.); (C.N.-R.); (J.M.G.-B.); (M.H.-P.); (C.T.-J.); (M.L.-d.-l.-T.-C.)
| | - Martín López-de-la-Torre-Casares
- Department of Endocrinology and Nutrition, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (V.S.-G.); (R.N.G.-P.); (C.N.-R.); (J.M.G.-B.); (M.H.-P.); (C.T.-J.); (M.L.-d.-l.-T.-C.)
- Granada Biosanitary Research Institute (Ibs. Granada), 18014 Granada, Spain
| | - Araceli Muñoz-Garach
- Department of Endocrinology and Nutrition, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (V.S.-G.); (R.N.G.-P.); (C.N.-R.); (J.M.G.-B.); (M.H.-P.); (C.T.-J.); (M.L.-d.-l.-T.-C.)
- Granada Biosanitary Research Institute (Ibs. Granada), 18014 Granada, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CiberOBN), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
3
|
Huang F, Cao Y, Liang J, Tang R, Wu S, Zhang P, Chen R. The influence of the gut microbiome on ovarian aging. Gut Microbes 2024; 16:2295394. [PMID: 38170622 PMCID: PMC10766396 DOI: 10.1080/19490976.2023.2295394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Ovarian aging occurs prior to the aging of other organ systems and acts as the pacemaker of the aging process of multiple organs. As life expectancy has increased, preventing ovarian aging has become an essential goal for promoting extended reproductive function and improving bone and genitourinary conditions related to ovarian aging in women. An improved understanding of ovarian aging may ultimately provide tools for the prediction and mitigation of this process. Recent studies have suggested a connection between ovarian aging and the gut microbiota, and alterations in the composition and functional profile of the gut microbiota have profound consequences on ovarian function. The interaction between the gut microbiota and the ovaries is bidirectional. In this review, we examine current knowledge on ovary-gut microbiota crosstalk and further discuss the potential role of gut microbiota in anti-aging interventions. Microbiota-based manipulation is an appealing approach that may offer new therapeutic strategies to delay or reverse ovarian aging.
Collapse
Affiliation(s)
- Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ying Cao
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Si Wu
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
4
|
Duan H, Li J, Fan L. Agaricus bisporus Polysaccharides Ameliorates Behavioural Deficits in D-Galactose-Induced Aging Mice: Mediated by Gut Microbiota. Foods 2023; 12:424. [PMID: 36673515 PMCID: PMC9857696 DOI: 10.3390/foods12020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
White button mushroom polysaccharide (WMP) has various health-promoting functions. However, whether these functions are mediated by gut microbiota has not been well explored. Therefore, this study evaluated the anti-aging capacity of WMP and its effects on the diversity and composition of gut microbiota in D-galactose-induced aging mice. WMP significantly improved locomotor activity and the spatial and recognition memory of the aging mice. It also alleviated oxidative stress and decreased the pro-inflammatory cytokine levels in the brain. Moreover, WMP increased α-diversity, the short-chain fatty acid (SCFA) level and the abundance of beneficial genera, such as Bacteroides and Parabacteroides. Moreover, its effect on Bacteroides at the species level was further determined, and the enrichments of B. acidifaciens, B. sartorii and B. stercorirosoris were found. A PICRUSt analysis revealed that WMP had a greater impact on the metabolism of carbon, fatty acid and amino acid, as well as the MAPK and PPAR signaling pathway. In addition, there was a strong correlation between the behavioral improvements and changes in SCFA levels and the abundance of Bacteroides, Parabacteroides, Mucispirillum and Desulfovibrio and Helicobacter. Therefore, WMP might be suitable as a functional foods to prevent or delay aging via the directed enrichment of specific species in Bacteroides.
Collapse
Affiliation(s)
- Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Zhao C, Liu D, Feng L, Cui J, Du H, Wang Y, Xiao H, Zheng J. Research advances of in vivo biological fate of food bioactives delivered by colloidal systems. Crit Rev Food Sci Nutr 2022; 64:5414-5432. [PMID: 36576258 DOI: 10.1080/10408398.2022.2154741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food bioactives exhibit various health-promoting effects and are widely used in functional foods to maintain human health. After oral intake, bioactives undergo complex biological processes before reaching the target organs to exert their biological effects. However, several factors may reduce their bioavailability. Colloidal systems have attracted special attention due to their great potential to improve bioavailability and bioefficiency. Herein, we focus on the importance of in vivo studies of the biological fates of bioactives delivered by colloidal systems. Increasing evidence demonstrates that the construction, composition, and physicochemical properties of the delivery systems significantly influence the in vivo biological fates of bioactives. These results demonstrate the great potential to control the in vivo behavior of food bioactives by designing specific delivery systems. We also compare in vivo and in vitro models used for biological studies of the fate of food bioactives delivered by colloidal systems. Meanwhile, the significance of the gut microbiota, targeted delivery, and personalized nutrition should be carefully considered. This review provides new insight for further studies of food bioactives delivered by colloidal systems, as well as scientific guidance for the reasonable design of personalized nutrition.
Collapse
Affiliation(s)
- Chengying Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Jinkai Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|