1
|
Zou Y, Wang L, Wang X, Lan Y, Ma J, Yang J, Xu W, Shen Q, Wang D. Effect of ultrasound combined with plasma protein treatment on the structure, physicochemical and rheological properties of myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2025; 112:107151. [PMID: 39616718 PMCID: PMC11650323 DOI: 10.1016/j.ultsonch.2024.107151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 01/13/2025]
Abstract
This study aimed to investigate the effect of ultrasound combined with plasma protein (UPP) treatment on the structure, physicochemical and rheological properties of myofibrillar protein (MP). The results indicated that the UPP group caused changes in the secondary structure, increased fluorescence intensity and enhanced surface hydrophobicity of MP. Then, UPP significantly decreased the content of free and total sulfhydryl group, and high molecular weight protein contents were observed in MP. These findings implied moderate cross-linking and aggregation between plasma protein and MP in this ultrasound treatment. Furthermore, the physical characteristics, stability and rheological properties of MP were improved in UPP, as evidenced by increased storage modulus and decreased loss angle tangent. Therefore, this study suggested that the combined treatment not only had the potential to enhance the product quality in the process of ground meat, but also improved the utilization rate and added value of plasma proteins.
Collapse
Affiliation(s)
- Ye Zou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Lingjuan Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaowen Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yibo Lan
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jingjing Ma
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Yang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weimin Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Qi Shen
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
2
|
Wu M, Xu Y, Gu C, Wang J, Wang Q, Yin P, Zhu T, Yin Q, Zhao X, Jin D, Liu R, Ge Q, Yu H. Characteristics of OSA modified starch-based Pickering emulsion and its application to myofibrillar protein gel. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39737684 DOI: 10.1002/jsfa.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND Pickering emulsions prepared with octenyl succinic anhydride-modified starch (OSAS) show significant promise as replacements for animal fat. However, the underlying mechanism of incorporating an OSAS-based Pickering emulsion into a myofibrillar protein (MP) gel and its impact on the gel properties remain poorly understood. In this study, the effects of OSAS at varying concentrations (0-10.0 g kg-1) on the stability of Pickering emulsion and the resultant gel properties of MP were investigated. RESULTS Emulsion stability was assessed using a stability analyzer, revealing a significant enhancement with increasing OSAS concentration. Compared with MP gel, the incorporation of the OSAS-based Pickering emulsion markedly improved the texture of the composite gels, increasing the gel hardness from 0.28 to 0.66 N. Moreover, water-holding capacity of composite gels rose from 28.5% to 61.2%, with a notable increase in immobilized water and a decrease in mobilized water. Rheological analysis revealed that the interactions of modified starch with MP and water molecules bolstered the elastic modulus of the gels. Additionally, the presence of OSAS-stabilized emulsions led to reduced surface hydrophobicity and sulfhydryl content of proteins in the gels, while partially inhibiting protein oxidation. CONCLUSION OSAS, notably at a high concentration, improved the physical stability of Pickering emulsion and the properties of MP gel. This research provides fundamental insights for the development of high-quality emulsified meat products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Yuyu Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Chen Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jiahao Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Qingling Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Peipei Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Tianhao Zhu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Qing Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xinxin Zhao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Duxin Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Dong C, Zhao J, Wang L, Wang X, Jiang J, Bi J. Understanding the textural enhancement of low-salt myofibrillar protein gels filled with pea protein pre-emulsions through interfacial behavior: Effects of structural modification and oil phase polarity. Food Chem 2024; 460:140632. [PMID: 39126944 DOI: 10.1016/j.foodchem.2024.140632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
This study investigated the effects of pea protein pre-emulsions containing triglyceride- or diglyceride-oil on the emulsifying and gelling properties of low-salt myofibrillar protein (MP). Pea protein isolates treated with pH12-shifting (PPIpH) or ultrasonication (PPIU) demonstrated superior initial interfacial adsorption and higher final interfacial pressure than native pea protein. Within MP/PPI blends, an increased ratio of MP led to a decrease in interfacial pressure, while simultaneously enhancing film elasticity at both polar and non-polar interfaces. Polar diglyceride promoted protein adsorption and fostered interfacial interactions between modified pea proteins and MP, enhancing the cross-linking of transglutaminase (TG) in the composite emulsion gels. Combining diglyceride-type PPIU and PPIpH emulsions with TG increased gel strength to 0.58 N and 0.63 N, respectively, from an initial 0.33 N, yielding a denser protein network with uniformly dispersed oil droplets. Therefore, the utilization of diglyceride and modified PPI can serve as structural enhancers in comminuted meat products.
Collapse
Affiliation(s)
- Chunhui Dong
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jing Zhao
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, United States
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaowen Wang
- Xinjiang Zeacen Nutrition Institute, Changji Agricultural Science and Technology Park, Changji, Xinjiang 831100, People's Republic of China
| | - Jiang Jiang
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, People's Republic of China.
| |
Collapse
|
4
|
Shi H, Li Y, Zheng J, Yao X, Wang W, Tomasevic I, Sun W. Effect of NaCl replacement by other salt mixtures on myofibrillar proteins: Underlining protein structure, gel formation, and chewing properties. J Food Sci 2024; 89:9060-9072. [PMID: 39468895 DOI: 10.1111/1750-3841.17503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
The protein structure, gel changes, and chewing properties of low-sodium myofibrillar protein (MP) prepared by compound chloride salts (KCl/MgCl2, KCl/CaCl2, and KCl/MgCl2/CaCl2) and different substitution degrees (10%, 25%, and 40%) at same ionic strength (0.6 M) were investigated. The results revealed that the low-sodium MP gels containing CaCl2 manifested more liquid loss and less moisture content accompanied by obvious morphological shrinkage, while KCl/MgCl2 contributed to the gel juiciness. At high substitution degree of 40%, KCl/CaCl2 substitution rendered the gel with dense structure and highest strength, but worse water retention capacity. Using other compound chloride salts influenced the chewing efficiency, and CaCl2 substitution made the gel relatively hard to chew. The inhomogeneous structure accompanied by cluster blocks in KCl/CaCl2-substituted MP gel accelerated the overall fracture rate. During heating process, more proteins in CaCl2-substituted MP did not participate in gel formation, intervening the final gel properties. The chloride salt mixtures containing MgCl2, rather than CaCl2, avoided or alleviated the liquid loss and shrinkage of low-sodium MP gel within the substitution degree of 10%-40%, and substitution degree not exceeding 25% was more reasonable for the controlled qualities.
Collapse
Affiliation(s)
- Haibo Shi
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yongjie Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi, China
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
- German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Zhu H, Liu F, He L, Wang X, Li C. Effect of Zanthoxylum bungeanum extract on the quality and cathepsin L activity of Niuganba. Meat Sci 2024; 217:109594. [PMID: 39002357 DOI: 10.1016/j.meatsci.2024.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Niuganba (NGB) is a traditional fermented beef product. Protease activity typically significantly affects the quality of NGB. Some natural food extracts may markedly influence NGB's protease activity and performance. This study aims to investigate the effect of Zanthoxylum bungeanum extract (ZBE) on the quality and cathepsin L activity of NGB. Following ZBE treatment, the myofibril fragmentation index (MFI), the content of TCA-soluble peptides, surface hydrophobicity, disulfide bond content, and cathepsin L activity of NGB significantly decrease. The content of free thiol groups and β-sheet significantly increases. Scanning electron microscopy (SEM) reveals that the arrangement of muscle fibers in the cross-section of NGB is more compact after ZBE treatment. The research results indicate that ZBE effectively inhibits cathepsin L activity, alleviates the degradation of myofibrillar proteins, improves the physicochemical characteristics of NGB, and enhances its structural stability.
Collapse
Affiliation(s)
- Hong Zhu
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Fangrui Liu
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Laping He
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Xiao Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Cuiqin Li
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
6
|
Nie C, Xiang J, Zheng J, Yao X, Wang W, Tomasevic I, Sun W. Changes in the structural, aggregation behavior and gel properties of pork myofibrillar protein induced by theaflavins. Food Res Int 2024; 196:115135. [PMID: 39614527 DOI: 10.1016/j.foodres.2024.115135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/01/2024] [Accepted: 09/22/2024] [Indexed: 12/01/2024]
Abstract
This study explores the effect of different theaflavins (TFs) concentrations (0, 100, 300, 600 and 900 mg/L) on the structure, aggregation behavior and gelation properties of pork myofibrillar protein (MP). The protein structure and aggregation behavior were characterized by free sulfhydryl groups, surface hydrophobicity, fluorescence emission spectra, particle size and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The gel properties of samples were characterized by gel strength, cooking loss, microstructure and gel supernatant SDS-PAGE. The results showed a significant decrease in free thiol content with increasing TFs concentration, suggesting thiol-quinone covalent interaction between TFs and thiol group of MP. Intrinsic fluorescence spectroscopy confirmed a static quenching between TFs and MP. And TFs reduced the particle size of MP suspension and caused no protein aggregation bond in SDS-PAGE. For gel properties, TFs caused a decrease of gel strength from 96.77 g to 21.91 g and an increase in cooking loss from 40.34 % to 71.15 %. The bond of protein aggregates in gel supernatants SDS-PAGE revealed that some protein aggregates formed by disulfide bonding were not involve in gel formation with TFs addition. In conclusion, TFs cause thiol loss of MP and impaired MP gelling ability by interfering with disulfide bond formation during gelation.
Collapse
Affiliation(s)
- Chunlin Nie
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junyi Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Qingyuan Food Inspection Center, Qingyuan 511538, China
| | - Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi 276036, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi 276036, China
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; German Institute of Food Technologies (DIL), 49610 Quakenbrück, Germany
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
7
|
Wei S, Zhang J, Liang X, Kong B, Cao C, Liu H, Zhang H, Liu Q. Incorporation of cross-linked/acetylated tapioca starches on the gelling properties, rheological behaviour, and microstructure of low-salt myofibrillar protein gels: Perspective on phase transition. Food Chem 2024; 457:140214. [PMID: 38959683 DOI: 10.1016/j.foodchem.2024.140214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
This study investigated the gelling properties, rheological behaviour, and microstructure of heat-induced, low-salt myofibrillar protein (MP) gels containing different levels (2%, 4%, 6%, and 8%, w/w) of cross-linked (CTS) or acetylated (ATS) tapioca starch. The results indicated that either CTS or ATS significantly enhanced the gel strength and water-holding capacity of low-salt MP gels (P < 0.05), an outcome verified by the rheological behaviour test results under different modes. Furthermore, iodine-staining images indicated that the MP-dominated continuous phase gradually transited to a starch-dominated phase with increasing CTS or ATS levels, and 4% was the critical point for this phase transition. In addition, hydrophobic interactions and disulphide bonds constituted the major intermolecular forces of low-salt MP gels, effectively promoting phase transition. In brief, modified tapioca starches possess considerable potential application value in low-salt meat products.
Collapse
Affiliation(s)
- Sumeng Wei
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
8
|
Bao Y, Yan D, Xu G, Hong H, Gao R. Effects of chopping temperature on the gel quality of silver carp (Hypophthalmichthys molitrix) surimi: insight from gel-based proteomics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8212-8218. [PMID: 38860545 DOI: 10.1002/jsfa.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Morden advanced analytical tools offer valuable information into the understanding of molecular mechanism of traditional food processing. Chopping temperature is well-known to affect the surimi gel quality of silver carp, but the detailed molecular mechanism is not very clear. In this study, a gel-based proteomics was performed on the extracted surimi proteins under different chopping temperatures (0, 5, 10, and 25 °C) along with other physicochemical characterization of surimi proteins and gels. RESULTS With increased chopping temperature, protein extractability (in 3% sodium chloride) generally decreased, while the extracted protein generally exhibited larger surface hydrophobicity, reduced intrinsic fluorescence intensity, lower sulfhydryl content. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) profile of extracted protein showed a clear difference at 25 °C when compared with the other three temperatures, and more protein fragmentation occurred. Proteomic analysis of selected bands indicated that major myofibrillar proteins react differently with chopping temperatures, especially at 25 °C. The selected bands contained a variety of other proteins or their fragments, including adenosine triphosphate (ATP) synthase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate isomerase, heat shock protein, parvalbumin, collagen, and so forth. For the surimi gel, water-holding capacity and gel strength generally decreased with increased chopping temperature. CONCLUSION Our results suggested that chopping at 0-10 °C is acceptable for the production of silver carp surimi in terms of gel strength and water-holding capacity. However, a chopping temperature near 0 °C led to less protein oxidation and denaturation. The inferior gel quality at 25 °C is linked to a decreased concentration of extracted protein and degradation of major myofibrillar protein, the latter is likely crosslinked with sarcoplasmic proteins. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Dan Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guoliang Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Yan D, Xu W, Yu Q, You J, Gao R, Bao Y. Pre-rigor salting improves gel strength and water-holding of surimi gel made from snakehead fish (Channa argus): The role of protein oxidation. Food Chem 2024; 450:139269. [PMID: 38613961 DOI: 10.1016/j.foodchem.2024.139269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
The purpose of this study was to determine the effect of pre-rigor salting on the quality characteristics of surimi gels prepared from snakehead fish muscle. Pre-rigor and post-rigor muscle were mixed with 0.3% or 3% NaCl (w/w) and made into surimi gels, respectively. Results showed that pre-rigor muscle had a higher content of ATP, longer sarcomere, higher pH and greater protein solubility. Metabolic profile suggested that pre-rigor muscle had higher content (a 28-fold increase) of antioxidants such as butyryl-l-carnitine. Transmission electron microscopy showed more damage of mitochondria in post-rigor muscle. Surimi paste from pre-rigor meat chopped with 3% NaCl generally showed greater radical scavenging ability and had higher content of free sulfhydryl. Surimi gel made from pre-rigor muscle salted with 3% NaCl showed a larger gel strength (3.18 kg*mm vs. 2.22 kg*mm) and better water-holding (86% vs. 80%) than that of post-rigor group. Based on these findings, we hypothesized that: In addition to other factors such as pH, degree of denaturation, etc., less protein oxidation in pre-rigor salted surimi also contributes to the improved gel properties.
Collapse
Affiliation(s)
- Dan Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Wanjun Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Qingqing Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Juan You
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
10
|
Lee S, Jo K, Jeong SKC, Jeon H, Choi YS, Jung S. Characterization of peptides released from frozen-then-aged beef after digestion in an in vitro infant gastrointestinal model. Meat Sci 2024; 212:109468. [PMID: 38428150 DOI: 10.1016/j.meatsci.2024.109468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
This study investigated whether the freezing-then-aging treatment of beef affects protein digestibility and release of potentially bioactive peptides using an in vitro infant digestion model. After 28 days of storage, aged-only (AO) and frozen-then-aged (FA) beef exhibited higher α-amino group contents in the 10% trichloroacetic acid-soluble fraction compared to day 0 (P < 0.05). Following in vitro digestion in the infant model, FA showed higher contents of α-amino groups and smaller proteins (<3 and 1 kDa) than day 0 and AO (P < 0.05). Relative contributions of myofibrillar, sarcoplasmic, and stromal proteins to the bioactive peptides released from AO and FA differed from those of day 0. In addition, FA exhibited a higher proportion of potential bioactive peptide sequences. Overall, freezing-then-aging treatment can enhance the potential health benefits of beef to be used as a protein source for complementary foods.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hayeon Jeon
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
11
|
Kim YJ, Shin DM, Chun YG, Choi YS, Kim BK. Development of meat spread with omega-3 fatty acids derived from flaxseed oil for the elderly: Physicochemical, textural, and rheological properties. Meat Sci 2023; 204:109254. [PMID: 37354834 DOI: 10.1016/j.meatsci.2023.109254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
This study evaluates the characteristics of n-3-enriched meat spread that is in development for consumption by elderly individuals. Herein, flaxseed oil was used as a source of n-3 fatty acid, and macro- and nano-sized flaxseed oil emulsions (FOE) were prepared for the fabrication of meat spreads. As the level of FOE was increased in the meat spreads, significant increases in the levels of omega-3 fatty acids (α-linolenic acid) were observed. Emulsion stability and cooking loss were also improved in meat spreads formulated with FOE compared with those the control. In particular, the addition of FOE generated softer and less chewy meat, owing to its lower melting point and rheological properties. However, the high content of unsaturated fatty acids in the FOE-containing meat spreads increased their susceptibility to lipid oxidation meat. These findings indicate that FOE, particularly macro-sized FOE, has the potential for use in n-3 fatty acid enriched meat products that are intended for consumption by elderly individuals but need to be evaluated for their impacts on shelf-life and sensory quality.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dong-Min Shin
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Yong Gi Chun
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
12
|
Cao C, Zhu Z, Liang X, Kong B, Xu Z, Shi P, Li Y, Ji Y, Ren Z, Liu Q. Elucidation of interactions between myofibrillar proteins and κ-carrageenan as mediated by NaCl level: Perspectives on multiple spectroscopy and molecular docking. Int J Biol Macromol 2023; 248:125903. [PMID: 37479206 DOI: 10.1016/j.ijbiomac.2023.125903] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The present study was aimed to investigate the intermolecular interaction between myofibrillar proteins (MP) and κ-carrageenan (KC) as mediated by KC concentration (0.1, 0.2, 0.3, and 0.4 %, w/w) and NaCl levels (0.3 and 0.6 M) based on the multiple spectroscopy and molecular docking. The results showed that the incorporation of KC increased the turbidity, zeta-potential, and surface hydrophobicity of MP-KC mixed sols with a dose-dependent manner, as well as significantly decreasing the protein solubility (P < 0.05), which indicated that the interaction between KC and MP promoted the expansion of protein structure and exposed more hydrophobic groups. Fluorescence spectra result revealed that the interaction between MP and KC was a static quenching in the fluorescence quenching process, which affected the aromatic amino acids residue microenvironment of MP. Moreover, the existence of KC decreased the α-helix contents of MP (P < 0.05), contributing to the transformation from random structure to organized configuration of MP. In addition, molecular forces, the molecular docking and thermodynamic parameters indicated that hydrophobic interactions, van der Waals force, and hydrogen bonding were considered as the main interaction forces between MP and KC. Furthermore, 0.6 M NaCl level rendered higher solubility and particle size, as well as lower turbidity and the surface hydrophobicity of MP-KC mixed sols than those with 0.3 M NaCl level (P < 0.05), which promoted the unfolding of MP molecule and subsequently increased the numbers of binding sites between MP and KC, facilitating the intermolecular interactions between MP and KC in mixed sols.
Collapse
Affiliation(s)
- Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zicheng Zhu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihan Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Pingru Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuangang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yunlong Ji
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zixuan Ren
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
13
|
Hasegawa Y, Kawasaki T, Yamada M, Hosotani M, Maeda N, Watanabe T, Iwasaki T. Physicochemical properties of wooden breast-extracted myosin and rheological properties of its heat-induced gel. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37066700 DOI: 10.1002/jsfa.12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND It is reported that broilers with 'wooden breast' have poor processing properties, such as low binding and water-holding capacities. However, the reason for the poor functional characteristics has not been clarified. In this study, myosin was extracted from a wooden breast. Its physicochemical properties were investigated to clarify the relationship between the structure and physicochemical properties of the heating gel of myosin obtained from the wooden breast. RESULTS The turbidity of myosin solution extracted from wooden breast increased with increase in the heat treatment to a higher value than that from the normal breast meat myosin. The solubility of myosin collected from a wooden breast after heating decreased like normal breast muscle myosin. The surface hydrophobicity of myosin removed from wooden breast increased continually above 60 °C, unlike the change in surface hydrophobicity of normal breast myosin. The free thiol group of myosin extracted from the wooden breast was higher than normal breast myosin before and after heating. The apparent elasticity of heat-induced gels and chicken meat sausages was significantly lower in sausages and gel with wooden breast than normal ones (P < 0.05). The microstructure of the heated gel of normal myosin showed a fine network structure. In contrast, the heat-induced gel of wooden breast-extracted myosin showed a structure with loosely connected aggregates and many gaps. CONCLUSION The coarseness of the internal gel structure of myosin extracted from wooden breast was shown to affect the apparent elasticity of the gel and sausages made from the chicken meat. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yasuhiro Hasegawa
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Ebetsu, Japan
| | - Takeshi Kawasaki
- Research Office Concerning the Health of Humans and Birds, Abashiri, Japan
| | - Michi Yamada
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Japan
| | - Marina Hosotani
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Naoyuki Maeda
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Ebetsu, Japan
| | - Takafumi Watanabe
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Tomohito Iwasaki
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
14
|
Guan X, Yan Q, Ma Z, Zhou J. Production of mature myotubes in vitro improves the texture and protein quality of cultured pork. Food Funct 2023; 14:3576-3587. [PMID: 36946193 DOI: 10.1039/d3fo00445g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Cultured meat technology provides a promising strategy for the production of meat protein, which is an important nutrient in daily life. Currently, there is still a lack of systematic research on the basic determinants of the texture and protein quality of cultured meat. Here we first developed a chemically defined serum-free medium consisting of serum substitutes and the differentiation-promoting natural compound naringenin (NAR), which showed excellent efficacy in inducing differentiation of porcine satellite cells (PSCs) to generate mature myotubes in vitro. Then, cultured pork samples consisting of proliferating PSCs or differentiated myotubes were manufactured by culturing PSCs in different media with textured vegetable protein (TVP) scaffolds. By analyzing the appearance, texture, chemical composition, and amino acid ratio of these cultured pork samples, we found that the content and maturity of myotubes in cultured meat play an essential role in determining its quality as meat. These findings contribute to the commercial application and establishment of standards for cultured meat as a new protein food.
Collapse
Affiliation(s)
- Xin Guan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiyang Yan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhenwu Ma
- College of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Modified pea protein coupled with transglutaminase reduces phosphate usage in low salt myofibrillar gel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
16
|
Yang Y, Xiong YL, Jiang J. Interfacial properties and inter-relationship of sarcoplasmic and myofibrillar proteins in simulated muscle protein extracts: Effect of salt reduction and pea protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Zhang Y, Bai G, Jin G, Wang Y, Wang J, Puolanne E, Cao J. Role of low molecular additives in the myofibrillar protein gelation: underlying mechanisms and recent applications. Crit Rev Food Sci Nutr 2022; 64:3604-3622. [PMID: 36239320 DOI: 10.1080/10408398.2022.2133078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding mechanisms of myofibrillar protein gelation is important for development of gel-type muscle foods. The protein-protein interactions are largely responsible for the heat-induced gelation. Exogenous additives have been extensively applied to improve gelling properties of myofibrillar proteins. Research has been carried out to investigate effects of different additives on protein gelation, among which low molecular substances as one of the most abundant additives have been recently implicated in the modifications of intermolecular interactions. In this review, the processes of myosin dissociation under salt and the subsequent interaction via intermolecular forces are elaborated. The underlying mechanisms focusing on the role of low molecular additives in myofibrillar protein interactions during gelation particularly in relation to modifications of the intermolecular forces are comprehensively discussed, and six different additives i.e. metal ions, phosphates, amino acids, hydrolysates, phenols and edible oils are involved. The promoting effect of low molecular additives on protein interactions is highly attributed to the strengthened hydrophobic interactions providing explanations for improved gelation. Other intermolecular forces i.e. covalent bonds, ionic and hydrogen bonds could also be influenced depending on varieties of additives. This review can hopefully be used as a reference for the development of gel-type muscle foods in the future.
Collapse
Affiliation(s)
- Yuemei Zhang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Genpeng Bai
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Guofeng Jin
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Ying Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jinpeng Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Eero Puolanne
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jinxuan Cao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
18
|
Kumar A, Sood A, Han SS. Technological and structural aspects of scaffold manufacturing for cultured meat: recent advances, challenges, and opportunities. Crit Rev Food Sci Nutr 2022; 63:585-612. [PMID: 36239416 DOI: 10.1080/10408398.2022.2132206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro cultured meat is an emerging area of research focus with an innovative approach through tissue engineering (i.e., cellular engineering) to meet the global food demand. The manufacturing of lab-cultivated meat is an innovative business that alleviates life-threatening environmental issues concerning public health and animal well-being on the global platform. There has been a noteworthy advancement in cultivating artificial meat, but still, there are numerous challenges that impede the swift headway of lab-grown meat production at a commercially large scale. In this review, we focus on the manufacturing of edible scaffolds for cultured meat production. In brief, first an introduction to cultivating artificial meat and its current scenario in the market is provided. Further, a discussion on the understanding of composition, cellular, and molecular communications in muscle tissue is presented, which are vital to scaling up the production of lab-grown meat. In continuation, the major components (e.g., cells, biomaterial scaffolds, and their manufacturing technologies, media, and potential bioreactors) for cultured meat production are conferred followed by a comprehensive discussion on the most recent advances in lab-cultured meat. Finally, existing challenges and opportunities including future research perspectives for scaling-up cultured meat production are discussed with conclusive interpretations.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
19
|
Wang Z, Niu Y, Zhao S, Tian Y, Yu K, Yamashita T, Youling X, Yuan C. Thermal stability of actin of silver carp (
Hypophthalmichthys molitrix
) harvested in summer and winter as affected by myosin complexation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhuolin Wang
- United Graduate School of Agricultural Sciences Iwate University, Ueda 3‐18‐8, Morioka Iwate Japan
| | - Yabin Niu
- United Graduate School of Agricultural Sciences Iwate University, Ueda 3‐18‐8, Morioka Iwate Japan
| | | | - Yuanyong Tian
- College of Food Science and Technology Dalian Ocean University Dalian China
| | - Kefeng Yu
- Faculty of Agriculture Iwate University Iwate Japan
| | | | - Xiong Youling
- Department of Animal and Food Sciences University of Kentucky Lexington KY United States
| | - Chunhong Yuan
- Faculty of Agriculture Iwate University Iwate Japan
- Agri ‐ Innovation Center Iwate University Iwate Japan
| |
Collapse
|
20
|
Science and technology of meat and meat products in Japan-Pursuit of their palatability under the influence of Washoku, traditional Japanese cuisine. Meat Sci 2022; 192:108919. [PMID: 35901584 DOI: 10.1016/j.meatsci.2022.108919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
This review aimed to provide an overview of meat science and technology in Japan influenced by Washoku (traditional Japanese cuisine) from the aspect of meat palatability. The tradition of umami (savory taste) research would contribute to a better understanding of the mechanism of taste improvement by aging, processing, and feeding. Paying close attention to delicate food aroma in Washoku would facilitate finding preferable Wagyu beef aroma, as well as odor substances affecting human physiological conditions. Sticking to various food textures could potentially facilitate the research of heating gel of meat and enzymatic and nonenzymatic theories for meat tenderization. High-pressure studies of meat propose a novel approach to producing low-salt products. Raw ham, Lachs-type ham, might fascinate people due to its moist texture similar to that of raw fish. Methods to season traditional fake meat using plant materials in Washoku could give a hint for improving substituted meat flavor.
Collapse
|
21
|
Ahsan F, Mahmood T, Wani TA, Zargar S, Siddiqui MH, Usmani S, Shamim A, Wahajuddin M. Effectual Endeavors of Silk Protein Sericin against Isoproterenol Induced Cardiac Toxicity and Hypertrophy in Wistar Rats. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071063. [PMID: 35888151 PMCID: PMC9317748 DOI: 10.3390/life12071063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/24/2023]
Abstract
The silkworm cocoon has been used in the treatment of various ailments in different Asian countries. This research was designed to evaluate the effect of sericin on myocardial necrosis and hypertrophy in isoproterenol-challenged rats. The rats were administered with sericin (500 and 1000 mg/kg, p.o.) for 28 days, followed by administration of isoprenaline (85 mg/kg, s.c.) on the 29th and 30th days. The cardioprotective activity was assessed by various physical, enzymatic, and histopathological parameters along with apoptotic marker expression. The cardioprotective effect showed that pre-treatment of rats with sericin significantly increased the non-enzymatic antioxidants marker in serum and heart tissue (glutathione, vitamin E, and vitamin C). The results were the same in enzymatic antioxidant marker, mitochondrial enzymes, and protein. The grading of heart, heart/body weight ratio, gross morphology, cardiac markers, oxidative stress markers in serum and heart tissue, glucose, serum lipid profiling and Lysosomal hydrolases, heart apoptotic markers such as MHC expression by western blot, apoptosis by flow cytometry, total myocardial collagen content, fibrosis estimation, myocyte size were significantly decreased when compared with isoproterenol (ISG) group however histopathological studies showed normal architecture of heart in both control and treated rats. The pharmacological study reflects that sericin on both doses i.e., 500 mg/kg and 1000 mg/kg have potent cardioprotective action against the experimental model which was confirmed by various physical, biochemical, and histopathological parameters evaluated further research is required to examine the molecular mechanism of cardioprotective effect of sericin.
Collapse
Affiliation(s)
- Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
- Correspondence: ; Tel.: +91-9918681701
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia;
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Integral University, Dasauli, Kursi Road, Lucknow 226026, India;
| | - Shazia Usmani
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
| | - Arshiya Shamim
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK;
| |
Collapse
|
22
|
Yu C, Li S, Sun S, Yan H, Zou H. Modification of emulsifying properties of mussel myofibrillar proteins by high-intensity ultrasonication treatment and the stability of O/W emulsion. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Hu J, Feng C, Yu Z, Zhu Y. Effect of partial substitution of NaCl by KCl, CaCl
2
, and MgCl
2
on properties of mixed gelation from myofibrillar protein and
Flammulina velutipes
protein. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jingrong Hu
- College of Food Science and Engineering Shanxi Agricultural University Taigu 030801 China
| | - Cuiping Feng
- College of Food Science and Engineering Shanxi Agricultural University Taigu 030801 China
| | - Zhihui Yu
- College of Food Science and Engineering Shanxi Agricultural University Taigu 030801 China
| | - Yingchun Zhu
- College of Food Science and Engineering Shanxi Agricultural University Taigu 030801 China
| |
Collapse
|
24
|
An optimized approach to recovering O/W interfacial myofibrillar protein: Emphasizing on interface-induced structural changes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Elucidation of interaction mechanisms between myofibrillar proteins and ethyl octanoate by SPME-GC-MS, molecular docking and dynamics simulation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Peng Z, Zhang Y, Wang H, Gao G, Yu Z, Chong PH, Ding W, Ke L, Zhou J, Rao P, Wang Q. Effects of arginine-glucose Maillard reaction products on the physicochemical and gel properties of chicken myofibrillar protein. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Ismail MA, Chong GH, Ismail-Fitry MR. Comparison of the microstructural, physicochemical and sensorial properties of buffalo meat patties produced using bowl cutter, universal mixer and meat mixer. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4703-4710. [PMID: 34629534 PMCID: PMC8479001 DOI: 10.1007/s13197-020-04960-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/01/2020] [Accepted: 12/21/2020] [Indexed: 06/13/2023]
Abstract
This work aimed to evaluate the microstructural, physicochemical and sensorial properties of buffalo meat patties produced using different mixing equipment (bowl cutter, universal mixer, and meat mixer). Scanning electron microscopy revealed a more homogenize emulsion, cohesive structure and smaller pore size of patties produced using the bowl cutter, which significantly reduced the total fluid release, water release, fat release and cooking loss as compared to the universal mixer and meat mixer. Production of the buffalo meat patties using bowl cutter also improved the moisture retention and gel strength of the patties. The patties produced using bowl cutter had the significantly highest lightness and yellowness values, while the redness was the lowest. Lower hardness, gumminess and chewiness also were observed from the patties produced using bowl cutter. Quality of the microstructural and physicochemical properties of the patties produced using different equipment can be organized as bowl cutter > universal mixer > meat mixer. Nevertheless, the sensory evaluation demonstrated a higher preference on aroma, flavour and overall acceptability of patties produced using meat mixer due to coarser and meaty texture, while the colour, tenderness, juiciness and springiness did not differ against using bowl cutter and universal mixer.
Collapse
Affiliation(s)
- Mohamad Afifi Ismail
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Gun Hean Chong
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| |
Collapse
|
28
|
Bai Y, Guo Y, Ding D, Ye K. Investigation of the effect of pork compositions on freezing points in different pork cuts by measuring thermal properties and water mobility and distribution. Anim Sci J 2021; 92:e13659. [PMID: 34779097 DOI: 10.1111/asj.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 12/01/2022]
Abstract
This work was to compare the difference of freezing point in the four pork cuts (chuck roll, picnic shoulder, loin, and topside) and evaluate the effect of pork compositions on the freezing points. Loin exhibited lower freezing points and accompanied by higher content of unfreezable water, lower relaxation times, and higher proportions of bound water, compared with other pork cuts. Low freezing points of pork may be attributed to high sarcoplasmic protein solubility, due to high sarcoplasmic protein solubility related to increase of bound water proportion and decrease of NMR T2 relaxometry. In addition, correlation analysis revealed that sarcoplasmic protein solubility and ash content were negatively related to the freezing point, which was verified by a quadratic polynomial correlation between the sarcoplasmic protein solubility and the freezing point in vitro. These results could help to better understand the freezing point of pork and provide more theories for improving superchilled storage.
Collapse
Affiliation(s)
- Yun Bai
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yiping Guo
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Daming Ding
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Keping Ye
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Lin L, Xiong YL. Competitive adsorption and dilatational rheology of pork myofibrillar and sarcoplasmic proteins at the O/W emulsion interface. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Bao P, Chen L, Wang Y, Hu Y, Wang Y, Fang H, Yang H, Zhang B, He B, Zhou C. Quality of frozen porcine Longissimus lumborum muscles injected with l-arginine and l-lysine solution. Meat Sci 2021; 179:108530. [PMID: 33946021 DOI: 10.1016/j.meatsci.2021.108530] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
This study investigated the effects of l-arginine and l-lysine on the water holding capacity, shear force, color, and protein denaturation of frozen porcine Longissimus lumborum. Four batches were prepared, each corresponding to samples of an experimental treatment: without a cryoprotective solution, injecting a 0.3% sodium tripolyphosphate and 0.5% NaCl solution, a 0.5% l-arginine solution, or a 0.5% l-lysine solution. The results showed that both l-arginine and l-lysine decreased thawing loss, cooking loss, shear force, L⁎ values, b⁎ values, and surface hydrophobicity, but they increased pH values, a⁎ values, percentages of peak areas for T21 relaxation times, and Ca2+-ATPase activity. Additionally, both histological and transmission electron microscopy images showed that l-lysine, and especially l-arginine could inhibit the formation of gaps between fiber bundles, alleviate the disruption of intracellular spaces, and maintain the structural integrity of sarcomeres. Overall, the results showed that both l-arginine and l-lysine hindered the structural damage of muscle fibers during freezing and protected myofibrillar proteins from denaturation, ultimately contributing to superior quality attributes.
Collapse
Affiliation(s)
- Pengqi Bao
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei, University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li Chen
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei, University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu Wang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei, University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yue Hu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei, University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Wang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei, University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hongmei Fang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei, University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huamei Yang
- Anhui Runbao Food Co., Ltd, Mengcheng 233500, Anhui, PR China
| | - Bao Zhang
- Anhui Runbao Food Co., Ltd, Mengcheng 233500, Anhui, PR China
| | - Bin He
- Anhui Runbao Food Co., Ltd, Mengcheng 233500, Anhui, PR China
| | - Cunliu Zhou
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei, University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
31
|
Cao Y, Li B, Fan X, Wang J, Zhu Z, Huang J, Xiong YL. Synergistic recovery and enhancement of gelling properties of oxidatively damaged myofibrillar protein by l-lysine and transglutaminase. Food Chem 2021; 358:129860. [PMID: 33933959 DOI: 10.1016/j.foodchem.2021.129860] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 11/19/2022]
Abstract
The influence of combined Lysine (Lys) and transglutaminase (TG) on the conformation and gelling properties of oxidatively damaged myofibrillar protein (MP) was investigated. The addition of Lys (5 mM) significantly increased the α-helix content (by 47.8%) and decreased the particle size of oxidatively damaged MP, and improved the cooking yield (by 16.8%) and the breaking strength of MP gels (by 65.5%). The treatment with TG (E:S = 1:500) led to a slightly reduced α-helix content but improved breaking strength (by 41.8%) and cooking loss (by 13.3%) of the gels. Their combination (Lys + TG) showed the greatest and synergistic overall improvement, with the set gel displaying a fine, smooth and compact network structure. Notably, the gelling ability of oxidatively damaged MP upon Lys + TG treatment was significantly stronger than that of non-oxidized MP far exceeding its recovery. Therefore, significantly enhanced gelling properties of oxidatively damaged MP can be attained through the combination Lys and TG.
Collapse
Affiliation(s)
- Yungang Cao
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Baoling Li
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Xin Fan
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Jiankang Wang
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Zhenbao Zhu
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Junrong Huang
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an 710021, China.
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
32
|
Zhao X, Xu X, Zhou G. Covalent chemical modification of myofibrillar proteins to improve their gelation properties: A systematic review. Compr Rev Food Sci Food Saf 2020; 20:924-959. [DOI: 10.1111/1541-4337.12684] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Xue Zhao
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Animal Products Processing, MOA; Key Lab of Meat Processing and Quality Control, MOE; College of Food Science and Technology Nanjing Agricultural University Nanjing P.R. China
| | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Animal Products Processing, MOA; Key Lab of Meat Processing and Quality Control, MOE; College of Food Science and Technology Nanjing Agricultural University Nanjing P.R. China
| | - Guanghong Zhou
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Animal Products Processing, MOA; Key Lab of Meat Processing and Quality Control, MOE; College of Food Science and Technology Nanjing Agricultural University Nanjing P.R. China
| |
Collapse
|
33
|
Xu Y, Xu X. Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 20:458-500. [DOI: 10.1111/1541-4337.12665] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Yujuan Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu P.R. China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu P.R. China
| |
Collapse
|
34
|
Sha L, Xiong YL. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Influence of amino acids on thermal stability and heat-set gelation of bovine serum albumin. Food Chem 2020; 337:127670. [PMID: 32799159 DOI: 10.1016/j.foodchem.2020.127670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/23/2022]
Abstract
This study investigated the parallels in the influence of amino acid additives on thermal denaturation temperature (Td) and heat-set gelation of bovine serum albumin (BSA). Complete denaturation of BSA occurred only when the gelation temperature (TG) was 14 °C above Td. Under these conditions, the relative effects of various amino acid additives on elevation of Td and gel strength followed a particular order. Further, while zwitterionic amino acids increased both the strength of junction zones and participation of protein in the gel network, sucrose increased the gel strength primarily by strengthening the existing junction zone. The net increase in Td of BSA was linearly correlated with the net increase in gel strength (ΔGS), indicating that the underlying molecular mechanism in both cases might be same. The results suggest that the rheological properties of protein gels can be enhanced by using amino acids, instead of polyols and sugars, as additives.
Collapse
|
36
|
Tuell JR, Park JY, Wang W, Cheng HW, Kim YHB. Functional/physicochemical properties and oxidative stability of ground meat from broilers reared under different photoperiods. Poult Sci 2020; 99:3761-3768. [PMID: 32616272 PMCID: PMC7597906 DOI: 10.1016/j.psj.2020.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022] Open
Abstract
Long photoperiods are used in the broiler industry to maximize animal performance, though the impact on meat quality remains poorly understood. The current study evaluated the impact of photoperiod on functional/physicochemical properties and oxidative stability of meat through broiler processing. Ross 308 broilers (n = 432) were randomly assigned to 4 photoperiod treatments (hours in L = light, D = dark): 20L:4D, 18L:6D, 16L:8D, or 12L:12D with 6 pens per treatment. At 42 D of age, 2 broilers per pen (n = 12 per treatment) were harvested under standard conditions. Broiler tenderloin (M. Pectoralis minor) and leg muscles were removed at 1 D postmortem and frozen/stored at -40°C. After 24 h thawing at 2°C, the samples were deboned, ground, and formed into patties in 3 independent batches. Photoperiod had no impact on pH, water-holding capacity, textural profile, meat emulsion activity index, and thiol content (P > 0.05). The patties from 12L:12D and 16L:8D had lower CIE b∗ (yellowness) values than 18L:6D and 20L:4D (P < 0.05), whereas 12L:12D had lower chroma (color intensity) values than other treatments (P < 0.05). The meat from 20L:4D exhibited lower sarcoplasmic protein solubility than other treatments (P < 0.05), whereas both 20L:4D and 18L:6D exhibited lower total protein solubility than 12L:12D (P < 0.05). Higher transmission values (indication of protein denaturation) were observed in 20L:4D than in other treatments (P < 0.05), whereas 12L:12D also maintained lower values than both 18L:6D and 16L:8D (P < 0.05). There was an interaction (P < 0.05) between photoperiod and display storage on 2-thiobarbituric acid reactive substances values, where the patties from 12L:12D maintained less lipid oxidation compared with the patties from other treatments. Results of this study suggest photoperiod has limited impact on meat quality attributes, though rearing broilers with a 12L:12D lighting schedule may be beneficial in reducing protein denaturation and improving lipid stability.
Collapse
Affiliation(s)
- Jacob R Tuell
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jun-Young Park
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Division of Applied Life Sciences (BK 21 Plus), Gyeongsang National University, Jinju-si 52828, Republic of Korea
| | - Weichao Wang
- Livestock Behavior Research Unit, USDA-Agricultural Research Service, West Lafayette, IN 47907, USA
| | - Heng-Wei Cheng
- Livestock Behavior Research Unit, USDA-Agricultural Research Service, West Lafayette, IN 47907, USA
| | - Yuan H Brad Kim
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
37
|
Cao Y, Ma W, Huang J, Xiong YL. Effects of sodium pyrophosphate coupled with catechin on the oxidative stability and gelling properties of myofibrillar protein. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105722] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Lee SH, Choe J, Kim JC, Kim HY. Effect of Seawater on the Technological Properties of Chicken Emulsion Sausage in a Model System. Food Sci Anim Resour 2020; 40:377-387. [PMID: 32426717 PMCID: PMC7207091 DOI: 10.5851/kosfa.2020.e18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to compare the effect of seawater to that of
conventional salt (NaCl) on the technological properties of chicken emulsion
sausages in a model system. Chicken sausages were prepared with seawater at
three levels (10%, 15%, and 20%) in iced water (10%,
5%, and 0%, respectively) or with iced water (20%) and salt
(1.2%). There was no difference in pH values and fat loss from emulsion
stability between the two treatments. In general, with an increase in the amount
of seawater, the water holding capacity (cooking yield and water loss), protein
solubility (total and myofibrillar protein), and viscosity were increased. The
addition of 20% seawater induced greater (p<0.05) water holding
capacity, protein solubility, and viscosity compared to the control sample
treated with salt, which was accompanied by an increase in the level of myosin
heavy chain protein of samples with 10% and 20% seawater.
Furthermore, addition of at least 15% seawater increased all of the main
textural properties except for cohesiveness along with the moisture of sausage,
whereas the fat and protein contents were decreased. Based on these results, the
addition of ≥15% seawater to chicken breast sausage can induce
equivalent or enhanced technological properties to those induced with salt,
including water holding capacity, protein solubility, viscosity, and textural
properties.
Collapse
Affiliation(s)
- Sol Hee Lee
- Department of Animal Resources Sciences and Resource Science Institute, Kongju National University, Yesan 32439, Korea
| | - Juhui Choe
- Department of Animal Resources Sciences and Resource Science Institute, Kongju National University, Yesan 32439, Korea
| | - Jong-Chan Kim
- Food Standard Research Center, Korea Food Research Institute, Wanju 55365, Korea
| | - Hack Youn Kim
- Department of Animal Resources Sciences and Resource Science Institute, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
39
|
Effects of dielectric barrier discharge cold plasma treatment on the structure and binding capacity of aroma compounds of myofibrillar proteins from dry-cured bacon. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Li K, Liu JY, Bai YH, Zhao YY, Zhang YY, Li JG, Zhang H, Zhao DB. Effect of bamboo shoot dietary fiber on gel quality, thermal stability and secondary structure changes of pork salt-soluble proteins. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1641161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, P.R. China
| | - Jun-Ya Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, P.R. China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, P.R. China
| | - Ying-Ying Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, P.R. China
| | - Yan-Yan Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, P.R. China
| | - Jun-Guang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, P.R. China
| | - Hua Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, P.R. China
| | - Diao-Bo Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, P.R. China
| |
Collapse
|
41
|
Murthy LN, Phadke GG, Siddaiah V, Boraiah RK. Rheological properties of washed and unwashed tilapia ( Oreochromis mossambicus) fish meat: effect of sucrose and sorbitol. Food Sci Biotechnol 2018; 26:1177-1183. [PMID: 30263650 DOI: 10.1007/s10068-017-0162-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/22/2017] [Accepted: 05/03/2017] [Indexed: 11/26/2022] Open
Abstract
In the present study, the dynamic viscoelastic behavior (DVB) and flow behavior of fresh tilapia (Oreochromis mossambicus) meat containing cryoprotectants were evaluated with and without water washing. The DVB profile of washed meat with 4% sucrose and sorbitol indicated the maximum structure buildup reaction up to 56.8 °C; thereafter, hydrophobic interactions leading to decreased gelation were suppressed. In both the samples, there was no clear indication of the sol-gel transition temperature. In flow-profile measurements, the presence of cryoprotectants gave rise to the minimum thixotropic area, indicating a low level of impairment in structure. The shear-stress sweep of water-washed tilapia proteins added with cryoprotectants did not reveal significant changes at 28 and 40 °C. In texture-profile analysis, the hardness values were lower in fresh meat than cooked meat. The findings of this study will be helpful in the formulation and design of various mince-based products and in determining the appropriate use of cryoprotectants and water washing in the processing of minced meat.
Collapse
Affiliation(s)
- Lakshmi Narasimha Murthy
- ICAR-Mumbai Research Centre of Central Institute of Fisheries Technology, CIDCO, Admin Bldg, Sector-1, Vashi, Navi Mumbai, Maharashtra 400703 India
| | - Girija Gajanan Phadke
- ICAR-Mumbai Research Centre of Central Institute of Fisheries Technology, CIDCO, Admin Bldg, Sector-1, Vashi, Navi Mumbai, Maharashtra 400703 India
| | - Vijayakumar Siddaiah
- Fisheries Research and Information Centre, Bhutanal, Vijayapura, Karnataka 586103 India
| | - Rajanna Karani Boraiah
- Fisheries Research and Information Centre (Inland), 10th Cross, Mayura Street, Papanna Layout, Hebbal Outer Ring Road, Bangalore, Karnataka 560094 India
| |
Collapse
|
42
|
Xia W, Ma L, Chen X, Li X, Zhang Y. Physicochemical and structural properties of composite gels prepared with myofibrillar protein and lecithin at various ionic strengths. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Zhou Y, Ma Y, Yao G, Li J, Wang S. Changes of protein composition and its relevance with textural properties during processing of fermented solid beef. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yajun Zhou
- Department of Food Science and Engineering; Jilin University; Changchun 130062 China
| | - Yongqiang Ma
- Department of Food Science and Engineering; Jilin University; Changchun 130062 China
| | - Guangming Yao
- Department of Food Science and Engineering; Jilin University; Changchun 130062 China
| | - Junxia Li
- Department of Food Science and Engineering; Jilin University; Changchun 130062 China
| | - Shujie Wang
- College of Biological and Agricultural Engineering; Jilin University; Changchun 130025 China
| |
Collapse
|
44
|
Chen X, Tume RK, Xiong Y, Xu X, Zhou G, Chen C, Nishiumi T. Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods. Crit Rev Food Sci Nutr 2017; 58:2981-3003. [DOI: 10.1080/10408398.2017.1347557] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xing Chen
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Ronald Keith Tume
- Honorary Visiting Professor, Nanjing Agricultural University, Jiangsu, China
| | - Youling Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guanghong Zhou
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Conggui Chen
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Tadayuki Nishiumi
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
45
|
Xue S, Yang H, Wang H, Tendu AA, Bai Y, Xu X, Ma H, Zhou G. High-pressure effects on the molecular aggregation and physicochemical properties of myosin in relation to heat gelation. Food Res Int 2017; 99:413-418. [DOI: 10.1016/j.foodres.2017.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 11/25/2022]
|
46
|
Guo M, Liu S, Ismail M, Farid MM, Ji H, Mao W, Gao J, Li C. Changes in the myosin secondary structure and shrimp surimi gel strength induced by dense phase carbon dioxide. Food Chem 2017; 227:219-226. [DOI: 10.1016/j.foodchem.2017.01.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/14/2016] [Accepted: 01/11/2017] [Indexed: 12/16/2022]
|
47
|
Hasnain AU, Saleem R, Ahmad R. Biochemical Variations in Salt Soluble Fractions of Ultrasonicated Actomyosin Isolated from Broiler Breast-Muscle. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1130722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Absar-ul Hasnain
- Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Rashid Saleem
- Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Riaz Ahmad
- Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
48
|
Cando D, Moreno HM, Borderías AJ, Skåra T. Combined Effect of High Hydrostatic Pressure and Lysine or Cystine Addition in Low-Grade Surimi Gelation with Low Salt Content. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1728-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Shen QW, Swartz DR, Wang Z, Liu Y, Gao Y, Zhang D. Different actions of salt and pyrophosphate on protein extraction from myofibrils reveal the mechanism controlling myosin dissociation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2033-2039. [PMID: 26085314 DOI: 10.1002/jsfa.7314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/11/2015] [Accepted: 06/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Myosin is the major functional protein in muscle foods for water retention, protein binding/gelation and fat holding/emulsification. To maximize its functionality, myosin needs to be released from thick filaments. Understanding of the mechanism controlling myosin extraction will help improve quality traits of meat products. RESULTS The data obtained show that actomyosin binding is the rate-limiting constraint for myosin release in rigor condition. Magnesium pyrophosphate (MgPPi) increased myosin extraction by weakening actomyosin interaction and maximized myosin extraction at 0.4 mol L(-1) NaCl, which was not attained at 1.0 mol L(-1) NaCl in the absence of PPi. Interaction between myosin rod domains is another critical constraint for myosin extraction, which is, rather than PPi, salt dependent. Further, our data suggest that MyBP-C (myosin binding protein C) and M-line might not be of significance in the process of NaCl-induced myosin extraction, though further study was needed. CONCLUSION Our study provides new insight into the mechanism that controls myosin extraction from intact sarcomere, which could be applied to maximize myosin function and to improve meat quality in practice.
Collapse
Affiliation(s)
- Qingwu W Shen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
- College of Food Science and Technology, Hunan Agricultural University, Hunan, China
| | | | - Zhenyu Wang
- College of Food Science and Technology, Hunan Agricultural University, Hunan, China
| | - Yue Liu
- College of Food Science and Technology, Hunan Agricultural University, Hunan, China
| | - Yuan Gao
- College of Food Science and Technology, Hunan Agricultural University, Hunan, China
| | - Dequan Zhang
- College of Food Science and Technology, Hunan Agricultural University, Hunan, China
| |
Collapse
|
50
|
Capillarity proposed as the predominant mechanism of water and fat stabilization in cooked comminuted meat batters. Meat Sci 2016; 111:67-77. [DOI: 10.1016/j.meatsci.2015.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
|