1
|
Sun W, Ma S, Meng D, Wang C, Zhang J. Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review). Mol Med Rep 2025; 31:133. [PMID: 40116116 PMCID: PMC11948985 DOI: 10.3892/mmr.2025.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
The intestinal microbiota represents a diverse population that serves a key role in colorectal cancer (CRC) and its treatment outcomes. Advancements in sequencing have revealed notable shifts in microbial composition and diversity among individuals with CRC. Concurrently, animal models have elucidated the involvement of specific microbes such as Lactobacillus fragilis, Escherichia coli and Fusobacterium nucleatum in the progression of CRC. The present review aimed to highlight contributions of intestinal microbiota to the pathogenesis of CRC, the effects of traditional treatments on intestinal microbiota and the potential for microbiota modulation as a therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Weitong Sun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Shize Ma
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Dongdong Meng
- Department of Medical Services, Xuzhou Morning Star Women's and Children's Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Jinbo Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| |
Collapse
|
2
|
Noor S, Ali S, Summer M, Riaz A, Nazakat L, Aqsa. Therapeutic Role of Probiotics Against Environmental-Induced Hepatotoxicity: Mechanisms, Clinical Perspectives, Limitations, and Future. Probiotics Antimicrob Proteins 2025; 17:516-540. [PMID: 39316257 DOI: 10.1007/s12602-024-10365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Hepatotoxicity is one of the biggest health challenges, particularly in the context of liver diseases, often aggravated by gut microbiota dysbiosis. The gut-liver axis has been regarded as a key idea in liver health. It indicates that changes in gut flora caused by various hepatotoxicants, including alcoholism, acetaminophen, carbon tetrachloride, and thioacetamide, can affect the balance of the gut's microflora, which may lead to increased dysbiosis and intestinal permeability. As a result, bacterial endotoxins would eventually enter the bloodstream and liver, causing hepatotoxicity and inducing inflammatory reactions. Many treatments, including liver transplantation and modern drugs, can be used to address these issues. However, because of the many side effects of these approaches, scientists and medical experts are still hoping for a therapeutic approach with fewer side effects and more positive results. Thus, probiotics have become well-known as an adjunctive strategy for managing, preventing, or reducing hepatotoxicity in treating liver injury. By altering the gut microbiota, probiotics offer a secure, non-invasive, and economical way to improve liver health in the treatment of hepatotoxicity. Through various mechanisms such as regulation of gut microbiota, reduction of pathogenic overgrowth, suppression of inflammatory mediators, modification of hepatic lipid metabolism, improvement in the performance of the epithelial barrier of the gut, antioxidative effects, and modulation of mucosal immunity, probiotics play their role in the treatment and prevention of hepatotoxicity. This review highlights the mechanistic effects of probiotics in environmental toxicants-induced hepatotoxicity and current findings on this therapeutic approach's experimental and clinical trials.
Collapse
Affiliation(s)
- Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
3
|
Bhatia A, Sharma D, Mehta J, Kumarasamy V, Begum MY, Siddiqua A, Sekar M, Subramaniyan V, Wong LS, Mat Rani NNI. Probiotics and Synbiotics: Applications, Benefits, and Mechanisms for the Improvement of Human and Ecological Health. J Multidiscip Healthc 2025; 18:1493-1510. [PMID: 40092220 PMCID: PMC11910042 DOI: 10.2147/jmdh.s501056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
This review explores the multifaceted roles and applications of probiotics, emphasizing their significance in maintaining and enhancing host health through microbial interactions. It includes the concept of holobionts and the symbiotic relationships between hosts and their microbiomes, illustrating how various microbiota can enhance immunity, support growth, and prevent diseases. It delves into the customization of probiotics using molecular and genomic techniques, focusing Enterococcus, Bifidobacterium, and Lactobacillus species. Furthermore, it discusses the symbiotic effects of symbiotics which aids in enhancing the survivability and beneficial effects of probiotics. The role beneficial microbes in gut is emphasized, noting its impact on preventing diseases and maintaining a stable microbial community. The potential therapeutic value of probiotics includes the ability to treat gastrointestinal diseases, as well as to strengthen the immune system and reduce the number of free radicals that are present in the body. Additionally, it explores secondary metabolites produced by bacteria in the gut, such as bacteriocins and exopolysaccharides, and their effect on the health of human, particularly in the gastrointestinal tract. The review concludes by addressing the use of probiotics in traditional medicine and their potential in novel therapeutic applications, including the treatment of endangered wildlife species and various human ailments.
Collapse
Affiliation(s)
- Ankita Bhatia
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Deeksha Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Vinoth Kumarasamy
- Department of Parasitology & Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| |
Collapse
|
4
|
Moonsamy G, Roets-Dlamini Y, Langa CN, Ramchuran SO. Advances in Yeast Probiotic Production and Formulation for Preventative Health. Microorganisms 2024; 12:2233. [PMID: 39597622 PMCID: PMC11596959 DOI: 10.3390/microorganisms12112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
The use of probiotics has been gaining popularity in terms of inclusion into human diets over recent years. Based on properties exerted by these organisms, several benefits have been elucidated and conferred to the host. Bacteria have been more commonly used in probiotic preparations compared to yeast candidates; however, yeast exhibit several beneficial properties, such as the prevention and treatment of diarrhea, the production of antimicrobial agents, the prevention of pathogen adherence to intestinal sites, the maintenance of microbial balance, the modulation of the immune system, antibiotic resistance, amongst others. Saccharomyces boulardii is by far the most studied strain; however, the potential for the use of other yeast candidates, such as Kluyveromyces lactis and Debaryomyces hansenii, amongst others, have also been evaluated in this review. Furthermore, a special focus has been made regarding the production considerations for yeast-based probiotics and their formulation into different delivery formats. When drafting this review, evidence suggests that the use of yeasts, both wild-type and genetically modified candidates, can extend beyond gut health to support skin, the respiratory system, and overall immune health. Hence, this review explores the potential of yeast probiotics as a safe, effective strategy for preventative health in humans, highlighting their mechanisms of action, clinical applications, and production considerations.
Collapse
Affiliation(s)
- Ghaneshree Moonsamy
- Council for Scientific and Industrial Research (CSIR) Future Production Chemicals, Meiring Naude Drive, Pretoria 0081, South Africa; (Y.R.-D.); (C.N.L.); (S.O.R.)
| | | | | | | |
Collapse
|
5
|
Niu MM, Li Y, Su Q, Chen SY, Li QH, Guo HX, Meng XC, Liu F. A mannose-rich exopolysaccharide-1 isolated from Bifidobacterium breve mitigates ovalbumin-induced intestinal damage in mice by modulation CD4 + T cell differentiation and inhibiting NF-κB signaling pathway. Int J Biol Macromol 2024; 280:135850. [PMID: 39326613 DOI: 10.1016/j.ijbiomac.2024.135850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Ovalbumin (OVA)-induced intestinal injury is a recurrent and potentially fatal condition. Previous studies have highlighted the roles of exopolysaccharides, particularly a mannose-rich (89.59 %) exopolysaccharide-1 (EPS-1) with a molecular weight of 39.9 kDa, isolated from Bifidobacterium breve H4-2, in repairing intestinal barriers and regulating immune responses. In this study, a mouse model of OVA-induced intestinal injury was used to investigate the effects of EPS-1 on intestinal barrier restoration. The results demonstrated that EPS-1 treatment (400 mg/kg. d) significantly reduced the allergic index (3.25 ± 0.43) in OVA-challenged mice (p < 0.05), improved the physical integrity of the intestinal barrier by increasing mucin content and goblet cell number in the ileum (p < 0.05). EPS-1 treatment (400 mg/kg. d) also maintained immune barrier integrity by restoring imbalanced CD4 + T/CD8 + T ratios from 0.86 ± 0.02 to 1.04 ± 0.06, regulating Th1/Th2 and Th17/Treg cells balance, as well as inhibited the NF-κB signaling pathway. Furthermore, EPS-1 maintained microbiota homeostasis by increasing the abundances of Ruminococcus, Butyricicoccus, and Muribaculaceae, while reducing Streptococcus and Candidatus arthromitus. This microbiota modulation enhanced the levels of metabolites such as tyrosine, methionine, tryptophan, triglycerides, and salidroside. In conclusion, EPS-1 shows promise as a functional polysaccharide for therapeutic use.
Collapse
Affiliation(s)
- Meng-Meng Niu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yan Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qian Su
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Si-Yuan Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qiao-Hui Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Huan-Xin Guo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiang-Chen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Hussein MA, Al-zaban MI, Mahmoud YA, Al-Doaiss AA, Bahshwan SM, El-Dougdoug KA, EL-Shanshory MR. How does a Saccharomyces cerevisiae extract influence the components of isolated rotavirus particles from stool samples collected in a clinical setting from children? Saudi J Biol Sci 2024; 31:104031. [PMID: 38946847 PMCID: PMC11214517 DOI: 10.1016/j.sjbs.2024.104031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 07/02/2024] Open
Abstract
Human Rotavirus (HRV) is the causative pathogen of severe acute enteric infections that cause mortality among children worldwide. This study focuses on developing a new and effective treatment for rotavirus infection using an extract from Saccharomyces cerevisiae, aiming to make this treatment easily accessible to everyone. 15 antigens and 26 antibodies were detected in serum and stool using ELISA. The titers of HRVq1, HRVq2, HRVC1, and HRVC2 on Vero cells were determined to be 1.2x106, 3.0x106, 4.2x106, and 7.5x105 (Plaque forming unit, PFU/ml) four days after infection, respectively. The HRVq1 isolate induced cytopathic effects, i.e., forming multinucleated, rounded, enlarged, and expanding gigantic cells. RT-PCR identified this isolate, and the accession number 2691714 was assigned to GeneBank. The molecular docking analysis revealed that nonstructural proteins (NSPs) NSP1, NSP2, NSP3, NSP4, NSP5, and NSP6 exhibited significant binding with RNA. NSP2 demonstrated the highest binding affinity and the lowest binding energy (-8.9 kcal/mol). This affinity was maintained via hydrophobic interactions and hydrogen bonds spanning in length from 1.12 Å to 3.11 Å. The ADMET and bioactivity predictions indicated that the yeast extract possessed ideal solubility, was nontoxic, and did not cause cancer. The inhibitory constant values predicted for the S. cerevisiae extract in the presence of HRV vital proteins varied from 5.32 to 7.45 mM, indicating its potential as a viable drug candidate. Saccharomyces cerevisiae extract could be utilized as a dietary supplement to combat HRV as an alternative dietary supplement.
Collapse
Affiliation(s)
- Mona A.M. Hussein
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mayasar I. Al-zaban
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Yahia A.G. Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Amin A. Al-Doaiss
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Safia M.A. Bahshwan
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Khalid A. El-Dougdoug
- Microbiology Department, Faculty of Agriculture, Ain Shams University, PO Box 68, Hadayek Shobra 11241, Cairo, Egypt
| | | |
Collapse
|
7
|
Ashique S, Faruk A, Ahmad FJ, Khan T, Mishra N. It Is All about Probiotics to Control Cervical Cancer. Probiotics Antimicrob Proteins 2024; 16:979-992. [PMID: 37880560 DOI: 10.1007/s12602-023-10183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Cervical cancer (CC) is the fourth most common malignancy in female patients. "Human papillomavirus" (HPV) contamination is a leading cause of all forms of cervical cancer, accounting for an expected 570,000 reported incidents in 2018. Two HPV strains (16 and 18) are responsible for 70% of CC and pre-cancerous cervical abnormalities. CC is one of the foremost reasons for the malignancy death rate in India among women ranging from 30 to 69 years of age in India, responsible for 17% of all cancer deaths. Currently approved cervical cancer treatments are associated with adverse reactions that might harm the lives of women affected by this disease. Consequently, probiotics can play a vital role in the treatment of CC. It is reflected from various studies regarding the role of probiotics in the diagnosis, prevention or treatment of cancer. In this review article, we have discussed the rationale of probiotics for treatment of CC, the role of probiotics as effective adjuvants in anti-cancer therapy and the combined effect of the anti-cancer drug along with probiotics to minimize the side effects due to chemotherapy.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, School of Pharmacy, Pandaveswar, West Bengal, 713346, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University, Gwalior, 474005, Madhya Pradesh, India
| |
Collapse
|
8
|
Wang M, Gao C, Lessing DJ, Chu W. Saccharomyces cerevisiae SC-2201 Attenuates AOM/DSS-Induced Colorectal Cancer by Modulating the Gut Microbiome and Blocking Proinflammatory Mediators. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10228-0. [PMID: 38329696 DOI: 10.1007/s12602-024-10228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Colorectal cancer is the third most common cancer in the world today, and studies have shown that the ratio of Candida to Saccharomyces cerevisiae increased, and the abundance of S. cerevisiae in the intestines of patients with colorectal cancer decreased, which suggests that there is an imbalance in the proportion of fungi in the intestines of patients with colorectal cancer. The objective of this study was to screen S. cerevisiae isolate from traditional Chinese fermentation starters and assess its ability to ameliorate dysbiosis and to alleviate the carcinogenic process of azoxymethane/dextran sodium sulfate-induced colorectal cancer in mice model. S. cerevisiae strain SC-2201 was isolated and exhibited probiotic properties, including the ability to survive in an acidic pH environment and in the presence of bile salts in the gastrointestinal tract, as well as antioxidant activities. Oral administration of S. cerevisiae SC-2201 not only alleviated weight loss but also reduced colonic shortening and histological damage in azoxymethane/dextran sodium sulfate-induced colorectal cancer in mice. Furthermore, the administration of S. cerevisiae SC-2201 suppressed the expression of proinflammatory mediators, such as interleukin-1β, interleukin-6, cyclooxygenase-2, vascular endothelial growth factor, nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3. Specifically, the analysis of gut bacteriome showed a significant decrease in Bacteroidota and Campylobacterota levels, as well as an increase in Proteobacteria level in the colorectal cancer group, which was alleviated by supplementation with S. cerevisiae SC-2201. The analysis of the mycobiome revealed a significant increase in the levels of Basidiomycota, Apiosordaria, Naganishia, and Taphrina genera in the colorectal cancer group, which were alleviated after supplementation with S. cerevisiae SC-2201. However, the levels of Xenoramularia, Entoloma, and Keissleriella were significantly increased after administration with S. cerevisiae SC-2201. Overall, the findings of this study demonstrate that S. cerevisiae SC-2201 possesses potential probiotic properties and can effectively attenuate the development of colorectal cancer, highlighting its cancer-preventive potential. This is the first report of a S. cerevisiae strain isolated from traditional Chinese fermentation starters which showed good probiotic properties, and mitigated azoxymethane/dextran sodium sulfate-induced colorectal cancer by modulating the gut microbiome and blocking proinflammatory mediators in mice.
Collapse
Affiliation(s)
- Minyu Wang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu Province, Nanjing, 210009, People's Republic of China
| | - Chongzheng Gao
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu Province, Nanjing, 210009, People's Republic of China
| | - Duncan James Lessing
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu Province, Nanjing, 210009, People's Republic of China
| | - Weihua Chu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu Province, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
9
|
Adumuah NN, Quarshie JT, Danwonno H, Aikins AR, Ametefe EN. Exploring Anti-Breast Cancer Effects of Live Pediococcus acidilactici and Its Cell-Free Supernatant Isolated from Human Breast Milk. Int J Breast Cancer 2024; 2024:1841909. [PMID: 38314029 PMCID: PMC10838206 DOI: 10.1155/2024/1841909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Current breast cancer treatment options are limited by drug resistance and adverse side effects, which calls for the need for alternatives or complementary remedies. Probiotic bacteria isolated from human breast milk have been shown to possess proapoptotic and anti-inflammatory properties against breast mastitis in breastfeeding mothers and are being studied as possible anticancer regimens. Thus, this study aimed at exploring the effect of lactic acid bacteria isolated from human breast milk on MDA-MB 231 breast cancer cells. A total of twenty-two bacteria were isolated from four human breast milk samples. The isolates were characterized and identified using biochemical tests and Sanger sequencing, respectively. For in vitro experiments, we used isolated P. acidilactici to treat MDA-MB-231 cells, and an MTT assay was used to detect proliferation. RT-qPCR and wound healing assays were performed to determine the effect of the isolated P. acidilactici on breast cancer cytokine expression and migration. Exposure of MDA-MB 231 breast cancer cells to live P. acidilactici and its cell-free supernatant (CFS) for 24 h resulted in a reduction in cancer cell viability. Also, the expression of the cytokines IL-6, IL-8, and IL-10 in the breast cancer cells increased following exposure to P. acidilactici and its CFS for 24 and 72 h. Additionally, the levels of the SLUG gene remained unchanged while the TWIST1 gene was upregulated following exposure of the cancer cells to bacteria, indicating that P. acidilactici may promote epithelial-mesenchymal transition in breast cancer. Finally, the CFS significantly inhibited cancer cell mobility. These findings serve as a foundation to further investigate the usefulness of P. acidilactici as a potential therapeutic agent in breast cancer therapy.
Collapse
Affiliation(s)
- Naa N. Adumuah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Jude T. Quarshie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Harry Danwonno
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Anastasia R. Aikins
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Elmer N. Ametefe
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
10
|
Nair A, Tungare K, De A, Jobby R. Probing the Potential: Exploring Probiotics as a Novel Frontier in Cancer Prevention and Therapeutics. J Environ Pathol Toxicol Oncol 2024; 43:77-90. [PMID: 38505914 DOI: 10.1615/jenvironpatholtoxicoloncol.2023049792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Cancer has emerged as one of the most prevalent diseases worldwide, with a consistent rise in the number of cases observed over the past few decades. The rising mortality rates associated with cancer have transformed it into a significant global challenge. Despite the presence of various anti-cancer drugs, the complete eradication of cancer remains an elusive goal. The numerous undesirable effects associated with cancer therapy further emphasize the importance of developing an alternative technique of cancer treatment. Recent research has established the beneficial effects of a probiotic diet or supplementation against cancer without displaying any detrimental consequences. An alteration in the gut microbiome balance in humans can result in the development of various diseases, including cancer. Probiotics play a pivotal role in restoring the balance of gut flora, potentially contributing to cancer prevention. Furthermore, they have the capacity to curb the invasion and dissemination of infections that carry the risk of triggering cancer. Probiotics can combat cancer in various ways, such as by eliciting and boosting the immune response, secreting metabolites, preventing cancer cells from metastasizing, inhibiting carcinogenic chemicals, and mitigating their toxicity, etc. The present review intends to outline the significance of probiotics and their underlying mechanisms in combating various cancer types. Additionally, this review highlights the benefits of probiotic use in pre- and post-operative cancer patients.
Collapse
Affiliation(s)
- Akhil Nair
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| | - Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Navi Mumbai, CBD Belapur-400614, Maharashtra, India
| | - Ameyota De
- D. Y. Patil School of Biotechnology and Bioinformatics
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University Maharashtra
| |
Collapse
|
11
|
Huang H, Wang Q, Yang Y, Zhong W, He F, Li J. The mycobiome as integral part of the gut microbiome: crucial role of symbiotic fungi in health and disease. Gut Microbes 2024; 16:2440111. [PMID: 39676474 PMCID: PMC11651280 DOI: 10.1080/19490976.2024.2440111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
The gut mycobiome significantly affects host health and immunity. However, most studies have focused on symbiotic bacteria in the gut microbiome, whereas less attention has been given to symbiotic fungi. Although fungi constitute only 0.01%-0.1% of the gut microbiome, their larger size and unique immunoregulatory functions make them significant. Factors like diet, antimicrobials use, and age can disrupt the fungal community, leading to dysbiosis. Fungal-bacterial-host immune interactions are critical in maintaining gut homeostasis, with fungi playing a role in mediating immune responses such as Th17 cell activation. This review highlights methods for studying gut fungi, the composition and influencing factors of the gut mycobiome, and its potential in therapeutic interventions for intestinal and hepatic diseases. We aim to provide new insights into the underexplored role of gut fungi in human health.
Collapse
Affiliation(s)
- Hui Huang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Qiurong Wang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Ying Yang
- Department of Gastroenterology, Sichuan Fifth People’s Hospital, Chengdu, China
| | - Wei Zhong
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Feng He
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Jun Li
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| |
Collapse
|
12
|
Latif A, Shehzad A, Niazi S, Zahid A, Ashraf W, Iqbal MW, Rehman A, Riaz T, Aadil RM, Khan IM, Özogul F, Rocha JM, Esatbeyoglu T, Korma SA. Probiotics: mechanism of action, health benefits and their application in food industries. Front Microbiol 2023; 14:1216674. [PMID: 37664108 PMCID: PMC10470842 DOI: 10.3389/fmicb.2023.1216674] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Probiotics, like lactic acid bacteria, are non-pathogenic microbes that exert health benefits to the host when administered in adequate quantity. Currently, research is being conducted on the molecular events and applications of probiotics. The suggested mechanisms by which probiotics exert their action include; competitive exclusion of pathogens for adhesion sites, improvement of the intestinal mucosal barrier, gut immunomodulation, and neurotransmitter synthesis. This review emphasizes the recent advances in the health benefits of probiotics and the emerging applications of probiotics in the food industry. Due to their capability to modulate gut microbiota and attenuate the immune system, probiotics could be used as an adjuvant in hypertension, hypercholesterolemia, cancer, and gastrointestinal diseases. Considering the functional properties, probiotics are being used in the dairy, beverage, and baking industries. After developing the latest techniques by researchers, probiotics can now survive within harsh processing conditions and withstand GI stresses quite effectively. Thus, the potential of probiotics can efficiently be utilized on a commercial scale in food processing industries.
Collapse
Affiliation(s)
- Anam Latif
- Department of Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Aamir Shehzad
- UniLaSalle, Univ. Artois, ULR7519 - Transformations & Agro-resources, Normandie Université, Mont-Saint-Aignan, France
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Asna Zahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Waqas Ashraf
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Muhammad Waheed Iqbal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Imran Mahmood Khan
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Türkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Türkiye
| | - João Miguel Rocha
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Summer M, Ali S, Fiaz U, Tahir HM, Ijaz M, Mumtaz S, Mushtaq R, Khan R, Shahzad H, Fiaz H. Therapeutic and immunomodulatory role of probiotics in breast cancer: A mechanistic review. Arch Microbiol 2023; 205:296. [PMID: 37486419 DOI: 10.1007/s00203-023-03632-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Breast cancer has become the most prevalent and noxious type of malignancy around the globe (Giaquinto et al., 2022). Multiple clinical strategies including chemotherapy, radiotherapy, and immunotherapy have been in practice to manage breast cancer. Besides the protective roles of conventional remedial approaches, and non-reversible and deteriorative impacts like healthy cell damage, organ failure, etc., the world scientific community is in a continuous struggle to find some alternative biocompatible and comparatively safe solutions. Among novel breast cancer management/treatment options, the role of probiotics has become immensely important. The current review encompasses the prevalence statistics of breast cancer across the globe concerning developed and undeveloped counties, intestinal microbiota linkage with breast cancer, and association of breast microbiome with breast carcinoma. Furthermore, this review also narrates the role of probiotics against breast cancer and their mode of action. In Vivo and In Vitro studies under breast cancer research regarding probiotics are mechanistically explained. The current review systematically explains the immunomodulatory role of probiotics to prevent breast cancer. Last, but not the least, current review concludes the use of probiotics in the treatment of breast cancer through various mechanisms and future recommendations for molecular basis studies.
Collapse
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Umaima Fiaz
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hafiz Muhammad Tahir
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Rabia Mushtaq
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Rida Khan
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hafsa Shahzad
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hashim Fiaz
- Department of Medicine and Surgery, Ammer-ul-din Medical College Lahore, Lahore, Pakistan
| |
Collapse
|
14
|
Salek F, Mirzaei H, Khandaghi J, Javadi A, Nami Y. Apoptosis induction in cancer cell lines and anti-inflammatory and anti-pathogenic properties of proteinaceous metabolites secreted from potential probiotic Enterococcus faecalis KUMS-T48. Sci Rep 2023; 13:7813. [PMID: 37188770 DOI: 10.1038/s41598-023-34894-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023] Open
Abstract
Potential probiotic Enterococcus faecalis KUMS-T48, isolated from a kind of Iranian traditional dairy product (Tarkhineh), was assessed for its anti-pathogenic, anti-inflammatory and anti-proliferative properties against HT-29 and AGS cancer cell lines. This strain showed strong effects on Bacillus subtilis and Listeria monocytogenes and moderate effect on Yersinia enterocolitica, while indicated weak effect on Klebsiella pneumoniae and Escherichia coli. Also, neutralizing the cell-free supernatant and treating it with catalase and proteinase K enzymes reduced the antibacterial effects. Similar to Taxol, the cell-free supernatant of E. faecalis KUMS-T48 inhibited the in vitro proliferation of both cancer cells in a dose-dependent manner, but unlike Taxol, they had no activity against normal cell line (FHs-74). Pronase-treatment of the CFS of E. faecalis KUMS-T48 abrogated its anti-proliferative capacity, thereby showing the proteinaceous nature of the cell-free supernatant. Further, induction of apoptosis-based cytotoxic mechanism by E. faecalis KUMS-T48 cell-free supernatant is related to anti-apoptotic genes ErbB-2 and ErbB-3, which is different from Taxol's apoptosis induction (intrinsic mitochondria apoptosis pathway). Also, as evidenced by a decline in interleukin 1β inflammation-promoting gene expression and a rise in the anti-inflammatory interleukin-10 gene expression in the HT-29 cell line, probiotic E. faecalis KUMS-T48 cell-free supernatant demonstrated a significant anti-inflammatory impact.
Collapse
Affiliation(s)
- Faezeh Salek
- Department of Food Hygiene, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Hamid Mirzaei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
- Department of Food Biotechnology, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Jalil Khandaghi
- Department of Food Biotechnology, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Food Science and Technology, Sarab Branch, Islamic Azad University, Sarab, Iran
| | - Afshin Javadi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
- Department of Food Biotechnology, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
15
|
Zhang Q, Zhao Q, Li T, Lu L, Wang F, Zhang H, Liu Z, Ma H, Zhu Q, Wang J, Zhang X, Pei Y, Liu Q, Xu Y, Qie J, Luan X, Hu Z, Liu X. Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8 + T cell immunity. Cell Metab 2023:S1550-4131(23)00141-9. [PMID: 37192617 DOI: 10.1016/j.cmet.2023.04.015] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/10/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023]
Abstract
Previous studies have shown that Lactobacillus species play a role in ameliorating colorectal cancer (CRC) in a mouse model. However, the underlying mechanisms remain largely unknown. Here, we found that administration of a probiotic strain, Lactobacillus plantarumL168 and its metabolite, indole-3-lactic acid, ameliorated intestinal inflammation, tumor growth, and gut dysbiosis. Mechanistically, we indicated that indole-3-lactic acid accelerated IL12a production in dendritic cells by enhancing H3K27ac binding at the enhancer regions of IL12a that contributed to priming CD8+ T cell immunity against tumor growth. Furthermore, indole-3-lactic acid was found to transcriptionally inhibit Saa3 expression related to cholesterol metabolism of CD8+ T cells through changing chromatin accessibility and subsequent enhancing function of tumor-infiltrating CD8+ T cells. Together, our findings provide new insights into the epigenetic regulation of probiotics-mediated anti-tumor immunity and suggest the potential of L. plantarumL168 and indole-3-lactic acid to develop therapeutic strategies for patients with CRC.
Collapse
Affiliation(s)
- Qingqing Zhang
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Qing Zhao
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Tao Li
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Longya Lu
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Fei Wang
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Hong Zhang
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Zhi Liu
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Huihui Ma
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Qihui Zhu
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Jingjing Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuemei Zhang
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Yang Pei
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Qisha Liu
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Yuyu Xu
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Jinlong Qie
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoting Luan
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China; Department of Microbiota Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
dos Santos DC, da Oliveira Filho JG, Andretta JR, Silva FG, Egea MB. Challenges in maintaining the probiotic potential in alcoholic beverage development. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
17
|
Noor S, Ali S, Riaz S, Sardar I, Farooq MA, Sajjad A. Chemopreventive role of probiotics against cancer: a comprehensive mechanistic review. Mol Biol Rep 2023; 50:799-814. [PMID: 36324027 DOI: 10.1007/s11033-022-08023-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Probiotics use different mechanisms such as intestinal barrier improvement, bacterial translocation and maintaining gut microbiota homeostasis to treat cancer. Probiotics' ability to induce apoptosis against tumor cells makes them more effective to treat cancer. Moreover, probiotics stimulate immune function through an immunomodulation mechanism that induces an anti-tumor effect. There are different strains of probiotics, but the most important ones are lactic acid bacteria (LAB) having antagonistic and anti-mutagenic activities. Live and dead probiotics have anti-inflammatory, anti-proliferative, anti-oxidant and anti-metastatic properties which are useful to fight against different diseases, especially cancer. The main focus of this article is to review the anti-cancerous properties of probiotics and their role in the reduction of different types of cancer. However, further investigations are in progress to improve the efficiency of probiotics in cancer treatment.
Collapse
Affiliation(s)
- Shehzeen Noor
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan.
| | - Shumaila Riaz
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Iqra Sardar
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Adeel Farooq
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ayesha Sajjad
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
18
|
Sadeghi A, Ebrahimi M, Shahryari S, Kharazmi MS, Jafari SM. Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Pi X, Yu Z, Yang X, Du Z, Liu W. Effects of Zymosan on Short-Chain Fatty Acid and Gas Production in in vitro Fermentation Models of the Human Intestinal Microbiota. Front Nutr 2022; 9:921137. [PMID: 35859755 PMCID: PMC9291218 DOI: 10.3389/fnut.2022.921137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/06/2022] [Indexed: 11/27/2022] Open
Abstract
In this study, the effects of zymosan (HG, hydrolyzed glucan) on the structure and metabolism of fecal microbiota in Chinese healthy people was investigated by an in vitro simulated intestinal microecology fermentation model. We found that HG significantly regulated fecal microbiota composition, including the increase of Bifidobacterium, Faecalibacterium, Prevotella and the decrease of Escherichia-Shigella. Moreover, HG significantly increased the total production of short chain fatty acids (SCFAs) and gases, in which the production of Acetic acid, Propionic acid, CO2, and H2 significantly increased while the production of Isovaleric acid and NH3 significantly decreased. Additionally, the supplement of HG showed certain differences in the regulation of microbiota from four groups. HG significantly increased the relative abundance of Bifidobacterium and significantly decreased the relative abundance of Escherichia-Shigella excluding the older men group. Meanwhile, and the relative abundance of Lactobacillus was significantly increased in young populations. And the relative abundance of Bacteroides was significantly decreased only in the young women. Furthermore, HG significantly increased H2 concentration only in older men. These findings suggest that HG, as a new generation of prebiotics, could regulate the structure of fecal microbiota and its metabolites in a better direction, but when HG participates in precision nutrition formula, it may be necessary to consider the differences in the utilization of different populations.
Collapse
Affiliation(s)
- Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zaichun Yu
- College of Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoxia Yang
- College of Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi Du
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Wei Liu
| |
Collapse
|
20
|
Alkalbani NS, Osaili TM, Al-Nabulsi AA, Olaimat AN, Liu SQ, Shah NP, Apostolopoulos V, Ayyash MM. Assessment of Yeasts as Potential Probiotics: A Review of Gastrointestinal Tract Conditions and Investigation Methods. J Fungi (Basel) 2022; 8:jof8040365. [PMID: 35448596 PMCID: PMC9027893 DOI: 10.3390/jof8040365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
Probiotics are microorganisms (including bacteria, yeasts and moulds) that confer various health benefits to the host, when consumed in sufficient amounts. Food products containing probiotics, called functional foods, have several health-promoting and therapeutic benefits. The significant role of yeasts in producing functional foods with promoted health benefits is well documented. Hence, there is considerable interest in isolating new yeasts as potential probiotics. Survival in the gastrointestinal tract (GIT), salt tolerance and adherence to epithelial cells are preconditions to classify such microorganisms as probiotics. Clear understanding of how yeasts can overcome GIT and salt stresses and the conditions that support yeasts to grow under such conditions is paramount for identifying, characterising and selecting probiotic yeast strains. This study elaborated the adaptations and mechanisms underlying the survival of probiotic yeasts under GIT and salt stresses. This study also discussed the capability of yeasts to adhere to epithelial cells (hydrophobicity and autoaggregation) and shed light on in vitro methods used to assess the probiotic characteristics of newly isolated yeasts.
Collapse
Affiliation(s)
- Nadia S. Alkalbani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan;
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore;
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Correspondence:
| |
Collapse
|
21
|
Nag D, Goel A, Padwad Y, Singh D. In Vitro Characterisation Revealed Himalayan Dairy Kluyveromyces marxianus PCH397 as Potential Probiotic with Therapeutic Properties. Probiotics Antimicrob Proteins 2022; 15:761-773. [PMID: 35040023 DOI: 10.1007/s12602-021-09874-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/27/2022]
Abstract
Recently, probiotics have gained much attention for their roles against various clinical conditions. Obesity is a worldwide health problem that triggers various other major complications like type 2 diabetes (T2D) and cancers, including colorectal cancer (CRC). Earlier, Kluyveromyces marxianus PCH397 isolated from yak (Bos grunniens) milk has been characterised by us for its efficient β-galactosidase-producing ability, an important probiotic property. In the present study, yeast PCH397 has been evaluated for various parameters for its probiotic use. PCH397 exhibited tolerance to GI tract conditions (low pH, pancreatin, pepsin, and bile salts) with 78 to 99% survivability, possessed around 81% cell surface hydrophobicity, and 96% autoaggregation ability. The cell-free extract (CFE) and cell-free supernatant (CFS) from PCH397 improved insulin sensitisation by enhancing 2-NBDG (a glucose analogue) uptake in 3T3-L1 adipocytes, an approach useful in T2D treatment. They also exhibited lower intracellular lipid accumulation, triglyceride storage, and reactive oxygen species in differentiated adipocytes, indicating their anti-adipogenic ability. Also, CFE and intact cells (ICs) exhibited 73.33 ± 1.11% and 34.88 ± 2.80% DPPH radical scavenging activity, respectively. Furthermore, CFS showed a cytotoxic effect on SW-480 colorectal cancer (CRC) cells and induced the cell cycle phase arrest after 24 h of treatment. In conclusion, these results demonstrate that K. marxianus PCH397 could be used as a potential probiotic yeast and presents a therapeutic potential against obesity, T2D, and colon cancer.
Collapse
Affiliation(s)
- Deepika Nag
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India
| | - Abhishek Goel
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Yogendra Padwad
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
22
|
Lu Y, Liu H, Yang K, Mao Y, Meng L, Yang L, Ouyang G, Liu W. A comprehensive update: gastrointestinal microflora, gastric cancer and gastric premalignant condition, and intervention by traditional Chinese medicine. J Zhejiang Univ Sci B 2022; 23:1-18. [PMID: 35029085 DOI: 10.1631/jzus.b2100182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the recent upsurge of studies in the field of microbiology, we have learned more about the complexity of the gastrointestinal microecosystem. More than 30 genera and 1000 species of gastrointestinal microflora have been found. The structure of the normal microflora is relatively stable, and is in an interdependent and restricted dynamic equilibrium with the body. In recent years, studies have shown that there is a potential relationship between gastrointestinal microflora imbalance and gastric cancer (GC) and precancerous lesions. So, restoring the balance of gastrointestinal microflora is of great significance. Moreover, intervention in gastric premalignant condition (GPC), also known as precancerous lesion of gastric cancer (PLGC), has been the focus of current clinical studies. The holistic view of traditional Chinese medicine (TCM) is consistent with the microecology concept, and oral TCM can play a two-way regulatory role directly with the microflora in the digestive tract, restoring the homeostasis of gastrointestinal microflora to prevent canceration. However, large gaps in knowledge remain to be addressed. This review aims to provide new ideas and a reference for clinical practice.
Collapse
Affiliation(s)
- Yuting Lu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Huayi Liu
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China.
| | - Kuo Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Yijia Mao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Lingkai Meng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Liu Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Guangze Ouyang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Wenjie Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| |
Collapse
|
23
|
Chen QW, Qiao JY, Liu XH, Zhang C, Zhang XZ. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev 2021; 50:12576-12615. [PMID: 34605834 DOI: 10.1039/d0cs01571g] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms have been extensively applied as active biotherapeutic agents or drug delivery vehicles for antitumor treatment because of their unparalleled bio-functionalities. Taking advantage of the living attributes of microorganisms, a new avenue has been opened in anticancer research. The integration of customized functional materials with living microorganisms has demonstrated unprecedented potential in solving existing questions and even conferring microorganisms with updated antitumor abilities and has also provided an innovative train of thought for enhancing the efficacy of microorganism-based tumor therapy. In this review, we have summarized the emerging development of customized materials-assisted microorganisms (MAMO) (including bacteria, viruses, fungi, microalgae, as well as their components) in tumor therapeutics with an emphasis on the rational utilization of chosen microorganisms and tailored materials, the ingenious design of biohybrid systems, and the efficacious antitumor mechanisms. The future perspectives and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
24
|
Wahid M, Dar SA, Jawed A, Mandal RK, Akhter N, Khan S, Khan F, Jogiah S, Rai AK, Rattan R. Microbes in gynecologic cancers: Causes or consequences and therapeutic potential. Semin Cancer Biol 2021; 86:1179-1189. [PMID: 34302959 DOI: 10.1016/j.semcancer.2021.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022]
Abstract
Gynecologic cancers, starting in the reproductive organs of females, include cancer of cervix, endometrium, ovary commonly and vagina and vulva rarely. The changes in the composition of microbiome in gut and vagina affect immune and metabolic signaling of the host cells resulting in chronic inflammation, angiogenesis, cellular proliferation, genome instability, epithelial barrier breach and metabolic dysregulation that may lead to the onset or aggravated progression of gynecologic cancers. While microbiome in gynecologic cancers is just at horizon, certain significant microbiome signature associations have been found. Cervical cancer is accompanied with high loads of human papillomavirus, Fusobacteria and Sneathia species; endometrial cancer is reported to have presence of Atopobium vaginae and Porphyromonas species and significantly elevated levels of Proteobacteria and Firmicutes phylum bacteria, with Chlamydia trachomatis, Lactobacillus and Mycobacterium reported in ovarian cancer. Balancing microbiome composition in gynecologic cancers has the potential to be used as a therapeutic target. For example, the Lactobacillus species may play an important role in blocking adhesions of incursive pathogens to vaginal epithelium by lowering the pH, producing bacteriocins and employing competitive exclusions. The optimum or personalized balance of the microbiota can be maintained using pre- and probiotics, and fecal microbiota transplantations loaded with specific bacteria. Current evidence strongly suggest that a healthy microbiome can train and trigger the body's immune response to attack various gynecologic cancers. Furthermore, microbiome modulations can potentially contribute to improvements in immuno-oncology therapies.
Collapse
Affiliation(s)
- Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Raju Kumar Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha'il, Ha'il, Saudi Arabia
| | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sudhisa Jogiah
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ramandeep Rattan
- Division of Gynecology Oncology, Women's Health Services, Henry Ford Hospital, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
25
|
Kyrila G, Katsoulas A, Schoretsaniti V, Rigopoulos A, Rizou E, Doulgeridou S, Sarli V, Samanidou V, Touraki M. Bisphenol A removal and degradation pathways in microorganisms with probiotic properties. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125363. [PMID: 33592490 DOI: 10.1016/j.jhazmat.2021.125363] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol-A (BPA) is a constituent of polycarbonate plastics and epoxy resins, widely applied on food packaging materials. As BPA exposure results in health hazards, its efficient removal is of crucial importance. In our study five potentially probiotic microorganisms, namely Lactococcus lactis, Bacillus subtilis, Lactobacillus plantarum, Enterococcus faecalis, and Saccharomyces cerevisiae, were tested for their toxicity tolerance to BPA and their BPA removal ability. Although BPA toxicity, evident on all microorganisms, presented a correlation to both BPA addition time and its concentration, all strains exhibited BPA-removal ability with increased removal rate between 0 and 24 h of incubation. BPA degradation resulted in the formation of two dimer products in cells while the compounds Hydroquinone (HQ), 4-Hydroxyacetophenone (HAP), 4-Hydroxybenzoic acid (HBA) and 4-Isopropenylphenol (PP) were identified in the culture medium. In the proposed BPA degradation pathways BPA adducts formation appears as a common pattern, while BPA decomposition as well as the formation, and the levels of its end products present differences among microorganisms. The BPA degradation ability of the tested beneficial microorganisms demonstrates their potential application in the bioremediation of BPA contaminated foods and feeds and provides a means to suppress the adverse effects of BPA on human and animal health.
Collapse
Affiliation(s)
- Gloria Kyrila
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonis Katsoulas
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasiliki Schoretsaniti
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Angelos Rigopoulos
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftheria Rizou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Savvoula Doulgeridou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasiliki Sarli
- Organic Chemistry Laboratory, Department of Organic Chemistry and Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Physical, Analytical and Environmental Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece
| | - Maria Touraki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
26
|
Preventive effects of microvesicles isolated from Bifidobacterium bifidum on 4T1-induced breast cancer in BALB/c mice. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Effect of cell free supernatant of Bifidobacterium bifidum combined with chitosan biodegradable film on full thickness wound healing in rats. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Shamekhi S, Abdolalizadeh J, Ostadrahimi A, Mohammadi SA, Barzegari A, Lotfi H, Bonabi E, Zarghami N. Apoptotic Effect of Saccharomyces cerevisiae on Human Colon Cancer SW480 Cells by Regulation of Akt/NF-ĸB Signaling Pathway. Probiotics Antimicrob Proteins 2021; 12:311-319. [PMID: 30788662 DOI: 10.1007/s12602-019-09528-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug resistance is one of the major problems, which causes recurrence of cancers. Therefore, complementary treatments are needed to improve the impacts of chemotherapy agents. The effect of probiotics as cancer-preventing agents through involvement in the activation of apoptotic pathways has been established. The present study sought to investigate how the heat-killed form of Saccharomyces cerevisiae (as a probiotic) could affect the Akt/NF-kB-induced apoptosis in colon cancer cells, the SW480 cell line. The cytotoxic effects of heat-killed yeast (HKY) and 5-fluorouracil (5-FU, as a positive control drug) were assayed using the MTT method. Morphological changes followed by apoptosis were examined using DAPI staining. The transcription and translation level of apoptosis genes were explored with qRT-PCR and western blotting. The data were analyzed using GraphPad Prism V6.0 Software. The results showed that HKY could induce apoptosis in colon cancer cell line through downregulation of p-Akt1, Rel A, Bcl-XL, pro-caspase 3, and pro-caspase 9 expressions, and upregulation of BAX, cleaved caspase-3, and cleaved caspase-9. Besides, Akt protein expression was not affected. It is noticeable that HKY had a better modulating effect on BAX expression compared with 5-FU. It was able to modulate Akt/NF-kB signaling pathway followed by the apoptotic cascade.
Collapse
Affiliation(s)
- Sara Shamekhi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Abolghasem Mohammadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esat Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Nosratollah Zarghami
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Mousavi Jam SA, Talebi M, Alipour B, Khosroushahi AY. The therapeutic effect of potentially probiotic Lactobacillus paracasei on dimethylhydrazine induced colorectal cancer in rats. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Faghfoori Z, Faghfoori MH, Saber A, Izadi A, Yari Khosroushahi A. Anticancer effects of bifidobacteria on colon cancer cell lines. Cancer Cell Int 2021; 21:258. [PMID: 33980239 PMCID: PMC8114702 DOI: 10.1186/s12935-021-01971-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/05/2021] [Indexed: 11/28/2022] Open
Abstract
Background Colorectal cancer (CRC), with a growing incidence trend worldwide, is resistant to apoptosis and has uncontrolled proliferation. It is recently reported that probiotic microorganisms exert anticancer effects. The genus Bifidobacterium, one of the dominant bacterial populations in the gastrointestinal tract, has received increasing attention because of widespread interest in using it as health-promoting microorganisms. Therefore, the present study aimed to assess the apoptotic effects of some bifidobacteria species on colon cancer cell lines. Methods
The cytotoxicity evaluations performed using MTT assay and FACS-flow cytometry tests. Also, the effects of five species of bifidobacteria secretion metabolites on the expression level of anti- or pro-apoptotic genes including BAD, Bcl-2, Caspase-3, Caspase-8, Caspase-9, and Fas-R studied by real-time polymerase chain reaction (RT-PCR) method. Results The cell-free supernatant of all studied bifidobacteria significantly decreased the survival rates of colon cancer cells compared with control groups. Flow cytometric and RT-PCR results indicated that apoptosis is induced by bifidobacteria secretion metabolites and the mechanism for the action of bifidobacteria species in CRC prevention could be down-regulation and up-regulation of anti-apoptotic and, pro-apoptotic genes. Conclusions In the present study, different bifidobacteria species showed anticancer activity on colorectal cancer cells through down-regulation and up-regulation of anti-apoptotic and pro-apoptotic genes. However, further studies are required to clarify the exact mechanism of apoptosis induction by bifidobacteria species.
Collapse
Affiliation(s)
- Zeinab Faghfoori
- Food (Salt) Safety Research Center, School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Hasan Faghfoori
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Saber
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Department of Nutritional Sciences, School of Nutritional Sciences and Food Technologies, Kermanshah University of Medical Sciences, Isar Sq., next to Farabi Hospital, P.O. Box 6719851351, Kermanshah, Iran.
| | - Azimeh Izadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Abbasi A, Rad AH, Ghasempour Z, Sabahi S, Kafil HS, Hasannezhad P, Rahbar Saadat Y, Shahbazi N. The biological activities of postbiotics in gastrointestinal disorders. Crit Rev Food Sci Nutr 2021; 62:5983-6004. [PMID: 33715539 DOI: 10.1080/10408398.2021.1895061] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
According to outcomes from clinical studies, an intricate relationship occurs between the beneficial microbiota, gut homeostasis, and the host's health status. Numerous studies have confirmed the health-promoting effects of probiotics, particularly in gastrointestinal diseases. On the other hand, the safety issues regarding the consumption of some probiotics are still a matter of debate, thus to overcome the problems related to the application of live probiotic cells in terms of clinical, technological, and economic aspects, microbial-derived biomolecules (postbiotics) were introducing as a potential alternative agent. Presently scientific literature confirms that the postbiotic components can be used as promising tools for both prevention and treatment strategies in gastrointestinal disorders with less undesirable side-effects, particularly in infants and children. Future head-to-head trials are required to distinguish appropriate strains of parent cells, optimal dosages of postbiotics, and assessment of the cost-effectiveness of postbiotics compared to alternative drugs. This review provides an overview of the concept and safety issues regarding postbiotics, with emphasis on their biological role in the treatment of some important gastrointestinal disorders.
Collapse
Affiliation(s)
- Amin Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Sabahi
- Department of Nutritional Sciences, School of Paramedical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paniz Hasannezhad
- Department of Medical Engineering Science, University College of Rouzbahan, Sari, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nayyer Shahbazi
- Faculty of Agriculture Engineering, Department of Food Science, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
32
|
Tasdemir SS, Sanlier N. An insight into the anticancer effects of fermented foods: A review. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Abstract
Probiotics and prebiotics are microbiota-management instruments for improving human health once they may be beneficial for maintaining a healthy community of gut microbiota and bowel function. Probiotic’s main target is the gut, via the gastrointestinal tract, although direct application to other body zones such as the vaginal tract, the oral cavity, and skin have been studied. The major source of probiotics is fermented dairy products, however, currently, there is a need for novel and non-dairy probiotics, due to the increasing number of lactose-intolerant persons in the world population, tied with the adverse effect of cholesterol contained in fermented dairy foods as well as the increasing number of strict vegetarians. In this review, we describe gut-derived effects in humans of possible microorganisms isolated from wine, such as Saccharomyces and non-Saccharomyces yeasts and bacteria, and other non-dairy fermented beverages. Those microorganisms can be grown and consumed as recommended probiotics, moreover, wine, and other beverages may also be a source of prebiotics such as polyphenols.
Collapse
|
34
|
Legesse Bedada T, Feto TK, Awoke KS, Garedew AD, Yifat FT, Birri DJ. Probiotics for cancer alternative prevention and treatment. Biomed Pharmacother 2020; 129:110409. [PMID: 32563987 DOI: 10.1016/j.biopha.2020.110409] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/03/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a fatal malignancy with high clinical significance and remains one of the major causes of illness and death. It has no suitable cure existing till now. The safety and stability of the standard chemotherapeutics drugs and synthetic agents used to manage cancer are doubtful. These agents are affecting the quality of life or contributing for development of drug resistance and are not affordable to the majority of the patients. Therefore, scientists are looking into clinical management of the cancer with high efficiency. This review focuses on the role of probiotics as alternative prevention and treatment of cancer. In this regard, we discuss the alternative cancer biotherapeutic drugs including live or dead probiotics and their metabolites, such as short chain fatty acids, inhibitory compounds of protein, polysaccharide, nucleic acid and ferrichrome in in vitro, in vivo and clinical studies. We also discuss the effectiveness of these biotherapeutics in prevention and treatment of various types of cancer linked with probiotic bacterial or fungal strains, probiotic dose, and time of exposure. More in vivo mainly clinical trials are necessary to further reveal and approve the significant role of live and dead probiotics as well as their metabolic products in cancer prevention and treatment. Finally, the majority of the positive results provided by probiotic treatments are limited to experimental settings. To minimize side effects associated with probiotics, short and long term effect studies in the direction of methodology standardization are required.
Collapse
Affiliation(s)
- Tesfaye Legesse Bedada
- Public Health Microbiology Research Team, Ethiopian Public Health Institute, P. O. Box: 1242, Addis Ababa, Ethiopia.
| | - Tatek Kasim Feto
- Public Health Microbiology Research Team, Ethiopian Public Health Institute, P. O. Box: 1242, Addis Ababa, Ethiopia.
| | - Kaleab Sebsibe Awoke
- Public Health Microbiology Research Team, Ethiopian Public Health Institute, P. O. Box: 1242, Addis Ababa, Ethiopia.
| | - Asnake Desalegn Garedew
- Division of Microbiology and Infectious Diseases, Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, P. O. Box: 1176, Ethiopia.
| | - Fitsum Tigu Yifat
- Division of Microbiology and Infectious Diseases, Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, P. O. Box: 1176, Ethiopia.
| | - Dagim Jirata Birri
- Division of Microbiology and Infectious Diseases, Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, P. O. Box: 1176, Ethiopia.
| |
Collapse
|
35
|
Jahanshahi M, Maleki Dana P, Badehnoosh B, Asemi Z, Hallajzadeh J, Mansournia MA, Yousefi B, Moazzami B, Chaichian S. Anti-tumor activities of probiotics in cervical cancer. J Ovarian Res 2020; 13:68. [PMID: 32527332 PMCID: PMC7291573 DOI: 10.1186/s13048-020-00668-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is considered as an important malignancy among women worldwide. Currently-used treatments of cervical cancer are reported to be cytotoxic for patients. Moreover, these therapies have shown some side effects which can negatively affect the lives of women suffering from this cancer. Therefore, there is need for anti-tumor agents that are less toxic than common therapeutic drugs. Besides, applying agents for preventing or reducing the side effects of cervical cancer therapies can be effective in improving the life quality of cervical cancer patients. Studies have shown that probiotics have several effects on biological processes. One of the most prominent aspects in which probiotics play a role is in the field of cancer. There are multiple studies which have focused on the functions of probiotics in diagnosis, prevention, or treatment of cancer. Besides their direct anti-tumor activities, probiotics can be used as an additional agent for enhancing or modulating other diagnostic and therapeutic methods. Herein, the effects of probiotics on cervical cancer cells are discussed, which may be useful in the prevention and treatment of this cancer. We review the studies concerned with the roles of probiotics in modulating and reducing the gastrointestinal adverse effects caused by cervical cancer therapies. Furthermore, we cover the investigations focusing on the combination of probiotics with other drugs for diagnosis or treatment of cervical cancer.
Collapse
Affiliation(s)
- Moghaddaseh Jahanshahi
- Clinical Research Development Center (CRDC), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahram Moazzami
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Chaichian
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Panebianco C, Latiano T, Pazienza V. Microbiota Manipulation by Probiotics Administration as Emerging Tool in Cancer Prevention and Therapy. Front Oncol 2020; 10:679. [PMID: 32523887 PMCID: PMC7261958 DOI: 10.3389/fonc.2020.00679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
A growing body of literature indicates that microbiota plays a significant role in the development and curability of cancer, essentially due to the microbial ability to modulate immune and inflammatory responses to cancer and therapeutic treatments. Probiotics consumption, either in the form of food or supplements, is an easy and feasible way to manipulate microbiota composition and a number of recent researches have shown that it may represent a valid approach to prevent cancer onset and progression, to improve the clinical efficacy of the current anticancer treatments, and to mitigate the harmful adverse events of chemo- and radiotherapy, which often lead to scale drug doses, to delay or interrupt treatments. In this review, we gather the main in vivo studies on the current topic, focusing on the beneficial effects and underlying mechanisms provided by bacterial and yeast probiotics and their combination, in the setting of various types of cancers and different therapeutic protocols. These findings will likely open the way to consider, in future, regular probiotics intake as an adjuvant strategy in cancer prevention and management.
Collapse
Affiliation(s)
- Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tiziana Latiano
- Oncology Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
37
|
Fu J, Zhang Y, Hu Y, Zhao G, Tang Y, Zou L. Concise review: Coarse cereals exert multiple beneficial effects on human health. Food Chem 2020; 325:126761. [PMID: 32387947 DOI: 10.1016/j.foodchem.2020.126761] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/23/2020] [Accepted: 04/05/2020] [Indexed: 02/08/2023]
Abstract
Coarse cereals (CC) refer to cereal grains except for rice and wheat which are highly-valued as functional foods with nutritional and pharmacological properties. Owing to their diverse positive effect on chronic diseases, coarse cereals exert a vital role in food industry. CC and the main contents prevent tumor pathogenesis through promoting apoptosis, inducing cell cycle arrest as well as modulating metastasis initiation. Meanwhile, CC ameliorates cardiovascular diseases through affecting multiple pathways, such as CaMKII/p-BFAF-3, NF-κB, MAPK, PI3K/Akt, etc. Besides, CC and the main contents have potential as prebiotics which facilitating the activities and growth of probiotics such as Bifidobacteria and Lactobacillus. However, there's a lack of report on CC' beneficial properties and the underlying mechanisms are not fully understood. Here this article explains in detail, the effect and mechanism of CC on chronic diseases like tumor, inflammation and cardiovascular diseases.
Collapse
Affiliation(s)
- Jia Fu
- School of Medicine, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Yan Zhang
- School of Medicine, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China.
| | - Liang Zou
- School of Medicine, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China.
| |
Collapse
|
38
|
Shamekhi S, Lotfi H, Abdolalizadeh J, Bonabi E, Zarghami N. An overview of yeast probiotics as cancer biotherapeutics: possible clinical application in colorectal cancer. Clin Transl Oncol 2020; 22:1227-1239. [PMID: 31919760 DOI: 10.1007/s12094-019-02270-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
The previous reports have established a strong link between diet, lifestyle, and gut microbiota population with the onset of the colorectal cancer (CRC). Administration of probiotics has become a particular interest in prevention and treatment of CRC. As potential dietary complements, probiotics might be able to lower the risk of CRC and manage the safety of traditional cancer therapies such as surgery, radiation therapy, and chemotherapy. This review investigates the promising effects of probiotics as biotherapeutics, with due attention to possible clinical application of yeast probiotics in prevention and treatment of CRC. In addition, various underlying anti-cancer mechanisms are covered here based on scientific evidence and findings from numerous experimental studies. Application of probiotics as biotherapeutics in CRC, however, needs to be approved by human clinical trials. It is of prime concern, to find potential probiotic strains, effective doses for administrations and regimes, and molecular mechanisms involved in prevention and treatment.
Collapse
Affiliation(s)
- S Shamekhi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - J Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - E Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - N Zarghami
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Schwartz DJ, Rebeck ON, Dantas G. Complex interactions between the microbiome and cancer immune therapy. Crit Rev Clin Lab Sci 2019; 56:567-585. [PMID: 31526274 DOI: 10.1080/10408363.2019.1660303] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immuno-oncology has rapidly grown in the last thirty years, and immunotherapeutic agents are now approved to treat many disparate cancers. Immune checkpoint inhibitors (ICIs) are employed to augment cytotoxic anti-cancer activity by inhibiting negative regulatory elements of the immune system. Modulating the immune system to target neoplasms has improved survivability of numerous cancers in many individuals, but forecasting outcomes post therapy is difficult due to insufficient predictive biomarkers. Recently, the tumor and gastrointestinal microbiome and immune milieu have been investigated as predictors and influencers of cancer immune therapy. In this review, we discuss: (1) ways to measure the microbiome including relevant bioinformatic analyses, (2) recent developments in animal studies and human clinical trials utilizing gut microbial composition and function as biomarkers of cancer immune therapy response and toxicity, and (3) using prebiotics, probiotics, postbiotics, antibiotics, and fecal microbiota transplant (FMT) to modulate immune therapy. We discuss the respective benefits of 16S ribosomal RNA (rRNA) gene and shotgun metagenomic sequencing including important considerations in obtaining samples and in designing and interpreting human and animal microbiome studies. We then focus on studies discussing the differences in response to ICIs in relation to the microbiome and inflammatory mediators. ICIs cause colitis in up to 25% of individuals, and colitis is often refractory to common immunosuppressive medications. Researchers have measured microbiota composition prior to ICI therapy and correlated baseline microbiota composition with efficacy and colitis. Certain bacterial taxa that appear to enhance therapeutic benefit are also implicated in increased susceptibility to colitis, alluding to a delicate balance between pro-inflammatory tumor killing and anti-inflammatory protection from colitis. Pre-clinical and clinical models have trialed probiotic administration, e.g. Bifidobacterium spp. or FMT, to treat colitis when immune suppressive agents fail. We are excited about the future of modulating the microbiome to predict and influence cancer outcomes. Furthermore, novel therapies employed for other illnesses including bacteriophage and genetically-engineered microbes can be adapted in the future to promote increased advancements in cancer treatment and side effect management.
Collapse
Affiliation(s)
- Drew J Schwartz
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine , St. Louis , MO , USA.,The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine , St. Louis , MO , USA
| | - Olivia N Rebeck
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine , St. Louis , MO , USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine , St. Louis , MO , USA.,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis , MO , USA.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis , MO , USA.,Department of Biomedical Engineering, Washington University in St. Louis , St. Louis , MO , USA
| |
Collapse
|
40
|
A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr Polym 2019; 217:79-89. [DOI: 10.1016/j.carbpol.2019.04.025] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 01/16/2023]
|
41
|
Ghosh T, Beniwal A, Semwal A, Navani NK. Mechanistic Insights Into Probiotic Properties of Lactic Acid Bacteria Associated With Ethnic Fermented Dairy Products. Front Microbiol 2019; 10:502. [PMID: 30972037 PMCID: PMC6444180 DOI: 10.3389/fmicb.2019.00502] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbes and their metabolites maintain the health and homeostasis of the host by communicating with the host via various biochemical and physical factors. Changing lifestyle, chronic intake of foods rich in refined carbohydrates and fats have caused intestinal dysbiosis and other lifestyle-based diseases. Thus, supplementation with probiotics has gained popularity as biotherapies for improving gut health and treating disorders. Research shows that probiotic organisms enhance gastrointestinal health, immunomodulation, generation of essential micronutrients, and prevention of cancer. Ethnically fermented milk and dairy products are hotspots for novel probiotic organisms and bioactive compounds. These ethnic fermented foods have been traditionally prepared by indigenous populations, and have preserved unique microflora for ages. To apply these unique microflora for amelioration of human health, it is important that probiotic properties of the bacterial species are well studied. Majority of the published research and reviews focus on the probiotic organisms and their properties, fermented food products, isolation techniques, and animal studies with their health pathologies. As a consequence, there is a dearth of information about the underlying molecular mechanism behind probiotics associated with ethnically prepared dairy foods. This review is targeted at stimulating research on understanding these mechanisms of bacterial species and beneficial attributes of ethnically fermented dairy products.
Collapse
Affiliation(s)
| | | | | | - Naveen Kumar Navani
- Chemical Biology Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
42
|
Taherian M, Mahin Samadi P, Rastegar H, Faramarzi MA, Rostami-Nejad M, Yazdi MH, Rezaei-Tavirani M, Yazdi Z. An Overview on Probiotics as an Alternative Strategy for Prevention and Treatment of Human Diseases. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:31-50. [PMID: 32802088 PMCID: PMC7393061 DOI: 10.22037/ijpr.2020.112232.13620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Probiotics are viable and useful microorganisms, which are beneficial factors for human and animal health by altering their microbial flora. Most of the probiotics belong to a large group of bacteria in the human gastrointestinal tract. There are several clinical shreds of evidence that show anti-carcinogenic effects of probiotics through altering digestive enzymes, inhibition of carcinogenic agents, and modulating the immune responses in experimental animals. Many studies have been performed to evaluate the potential effectiveness of probiotics in treating or preventing neurological diseases such as MS and novel treatment modality for T1D. The purpose of this study is to have an overview on probiotic microorganisms and to review the previous researches on the effects of probiotics on health through currently available literatures. The study was performed using following keywords; Probiotics, Cancer, Immune system, Multiple Sclerosis (MS) and Diabetes mellitus. PubMed/Medline, Clinicaltrials.gov, Ovid, Google Scholar, and Reaxcys databases used to find the full text of related articles. According to the current available data on probiotics and related health-promoting benefits, it seems that, consumption of probiotics can lead to the prevention and reduction the risk of cancer, diabetes, and multiple sclerosis. Although for the better and more decisive conclusion, there is a need to larger sample size clinical studies with more focus on the safety of these biological agents and their possible beneficial effects on different population.
Collapse
Affiliation(s)
- Mahdi Taherian
- Food and Drug Laboratory Research Center, Iran Food and Drug Organization (FDO), Ministry of Health and Medical Education (MOH), Tehran, Iran.
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pariya Mahin Samadi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Rastegar
- Food and Drug Cosmetic Research Center, Iran Food and Drug Organization (FDO), Ministry of Health and Medical Education (MOH), Tehran, Iran.
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Yazdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Evidence-based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zeinab Yazdi
- Department of Medicine and epidemiology, School of veterinary Medicine, University of California, Davis, USA.
| |
Collapse
|
43
|
Saccharomyces cerevisiae inhibits growth and metastasis and stimulates apoptosis in HT-29 colorectal cancer cell line. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2855-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
44
|
Abstract
Fungi are increasingly being recognized as common members of the microbiomes found on nearly all mucosal surfaces, and interest is growing in understanding how these organisms may contribute to health and disease. In this review, we investigate recent developments in our understanding of the fungal microbiota or "mycobiota" including challenges faced in characterizing it, where these organisms are found, their diversity, and how they interact with host immunity. Growing evidence indicates that, like the bacterial microbiota, the fungal microbiota is often altered in disease states, and increasingly studies are being designed to probe the functional consequences of such fungal dysbiosis on health and disease.
Collapse
Affiliation(s)
- Jose J Limon
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Joseph H Skalski
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - David M Underhill
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|