1
|
Dey S, Ghosh M, Dev A. Signalling and molecular pathways, overexpressed receptors of colorectal cancer and effective therapeutic targeting using biogenic silver nanoparticles. Gene 2025; 936:149099. [PMID: 39557372 DOI: 10.1016/j.gene.2024.149099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Increasing morbidity and mortality in CRC is a potential threat to human health. The major challenges for better treatment outcomes are the heterogeneity of CRC cases, complicated molecular pathway cross-talks, the influence of gut dysbiosis in CRC, and the lack of multimodal target-specific drug delivery. The overexpression of many receptors in CRC cells may pave the path for targeting them with multiple ligands. The design of a more target-specific drug-delivery device with multiple ligand-functionalized, green-synthesized silver nanoparticles is highly promising and may also deliver other approved chemotherapeutic agents. This review presents the various aspects of colorectal cancer and over-expressed receptors that can be targeted with appropriate ligands to enhance the specific drug delivery potency of green synthesised silver nanoparticles. This review aims to broaden further research into this multi-ligand functionalised, safer and effective silver nano drug delivery system.
Collapse
Affiliation(s)
- Sandip Dey
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Manik Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India.
| |
Collapse
|
2
|
Ibeanu GC, Rowaiye AB, Okoli JC, Eze DU. Microbiome Differences in Colorectal Cancer Patients and Healthy Individuals: Implications for Vaccine Antigen Discovery. Immunotargets Ther 2024; 13:749-774. [PMID: 39698218 PMCID: PMC11652712 DOI: 10.2147/itt.s486731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Background Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with numerous risk factors contributing to its development. Recent research has illuminated the significant role of the gut microbiota in CRC pathogenesis, identifying various microbial antigens as potential targets for vaccine development. Aim This review aimed at exploring the potential sources of microbial antigens that could be harnessed to create effective CRC vaccines and understand the role of microbiome-CRC interactions in carcinogenesis. Methods A comprehensive search of original research and review articles on the pathological links between key microbial candidates, particularly those more prevalent in CRC tissues, was conducted. This involved extensive use of the PubMed and Medline databases, as well as the Google Scholar search engine, utilizing pertinent keywords. A total of one hundred and forty-three relevant articles in English, mostly published between 2018 and 2024, were selected. Results Numerous microbes, particularly bacteria and viruses, are significantly overrepresented in CRC tissues and have been shown to promote tumorigenesis by inducing inflammation and modulating the immune system. This makes them promising candidates for antigens in the development of CRC vaccines. Conclusion The selection of microbial antigens focuses on their capacity to trigger a strong immune response and their link to tumor presence and progression. Identifying and validating these antigens through preclinical testing is essential in developing a CRC vaccine.
Collapse
Affiliation(s)
- Gordon C Ibeanu
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Adekunle B Rowaiye
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
- Department of Agricultural Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Joy C Okoli
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Daniel U Eze
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| |
Collapse
|
3
|
Zou Q, Wu Y, Zhang S, Li S, Li S, Su Y, Zhang L, Li Q, Zou H, Zhang X, Wang T, Liang S, Yang J, Li C. Escherichia coli and HPV16 coinfection may contribute to the development of cervical cancer. Virulence 2024; 15:2319962. [PMID: 38380669 PMCID: PMC10883084 DOI: 10.1080/21505594.2024.2319962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Persistent human papillomavirus HPV infection is a necessary but insufficient condition for cervical cancer. Microorganisms are crucial environmental factors in cancers susceptibility and progression, recently attracting considerable attention. This study aimed to determine the infection status and relationship between high-risk HPV (HR-HPV) and lower genital tract infectious pathogens in cervical cancer and its precursors. From a retrospective and a prospective cohort analysis, Escherichia coli (E. coli) dominated the pathogens isolated from cervical discharges, and an isolation rate uptrend has been shown recently. HPV16 and E. coli's coinfection rate gradually increased with the severity of cervical intraepithelial neoplasia. The adhesion and invasion abilities of the isolated E. coli to HPV16-positive SiHa cells were evaluated in vitro. The TCGA database and cervical tissues samples analysis showed that IL-10 was upregulated in cervical cancer. IL-10 expression levels increased in tissue samples with the severity of cervical cancer and its precursors with HPV16 and E. coli coinfection. Although no significant changes in IL-10 production were observed in the co-culture supernatant, we hypothesized that Treg immune cells in the tumour microenvironment might be responsible for the local IL-10 upregulation, according to our data showing Foxp3 upregulation and an upward trend with the cervical intraepithelial neoplasia grading to cancer and tumours with E. coli and HPV16 coinfection. Our data provide insights into the possible role of E. coli in cervical cancer progression and suggest that the application of HPV and E. coli screening programs may be an effective strategy to relieve the burden of cervical cancer and its precursor lesions.
Collapse
Affiliation(s)
- Qin Zou
- Department of Clinical Laboratory, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yingying Wu
- Department of Clinical Laboratory, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - ShuaiShuai Zhang
- Department of Clinical Laboratory, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Shu Li
- Department of Clinical Laboratory, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Siyue Li
- Department of Clinical Laboratory, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yan Su
- Department of Clinical Laboratory, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Lei Zhang
- Department of Clinical Laboratory, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Qian Li
- Department of Clinical Laboratory, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Hua Zou
- Department of Clinical Laboratory, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xinyuan Zhang
- Department of Clinical Laboratory, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Teng Wang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Liang
- Department of Pathology, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jun Yang
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Chunli Li
- Department of Clinical Laboratory, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| |
Collapse
|
4
|
Dzierżyński E, Gawlik PJ, Puźniak D, Flieger W, Jóźwik K, Teresiński G, Forma A, Wdowiak P, Baj J, Flieger J. Microplastics in the Human Body: Exposure, Detection, and Risk of Carcinogenesis: A State-of-the-Art Review. Cancers (Basel) 2024; 16:3703. [PMID: 39518141 PMCID: PMC11545399 DOI: 10.3390/cancers16213703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Humans cannot avoid plastic exposure due to its ubiquitous presence in the natural environment. The waste generated is poorly biodegradable and exists in the form of MPs, which can enter the human body primarily through the digestive tract, respiratory tract, or damaged skin and accumulate in various tissues by crossing biological membrane barriers. There is an increasing amount of research on the health effects of MPs. Most literature reports focus on the impact of plastics on the respiratory, digestive, reproductive, hormonal, nervous, and immune systems, as well as the metabolic effects of MPs accumulation leading to epidemics of obesity, diabetes, hypertension, and non-alcoholic fatty liver disease. MPs, as xenobiotics, undergo ADMET processes in the body, i.e., absorption, distribution, metabolism, and excretion, which are not fully understood. Of particular concern are the carcinogenic chemicals added to plastics during manufacturing or adsorbed from the environment, such as chlorinated paraffins, phthalates, phenols, and bisphenols, which can be released when absorbed by the body. The continuous increase in NMP exposure has accelerated during the SARS-CoV-2 pandemic when there was a need to use single-use plastic products in daily life. Therefore, there is an urgent need to diagnose problems related to the health effects of MP exposure and detection. Methods: We collected eligible publications mainly from PubMed published between 2017 and 2024. Results: In this review, we summarize the current knowledge on potential sources and routes of exposure, translocation pathways, identification methods, and carcinogenic potential confirmed by in vitro and in vivo studies. Additionally, we discuss the limitations of studies such as contamination during sample preparation and instrumental limitations constraints affecting imaging quality and MPs detection sensitivity. Conclusions: The assessment of MP content in samples should be performed according to the appropriate procedure and analytical technique to ensure Quality and Control (QA/QC). It was confirmed that MPs can be absorbed and accumulated in distant tissues, leading to an inflammatory response and initiation of signaling pathways responsible for malignant transformation.
Collapse
Affiliation(s)
- Eliasz Dzierżyński
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Piotr J. Gawlik
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Damian Puźniak
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Wojciech Flieger
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
- Doctoral School, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
| | - Katarzyna Jóźwik
- Department of Neurosurgery and Paediatric Neurosurgery, ul. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Paulina Wdowiak
- Institute of Medical Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a (Collegium Pharmaceuticum), 20-093 Lublin, Poland
| |
Collapse
|
5
|
Halawa M, Newman PM, Aderibigbe T, Carabetta VJ. Conjugated therapeutic proteins as a treatment for bacteria which trigger cancer development. iScience 2024; 27:111029. [PMID: 39635133 PMCID: PMC11615139 DOI: 10.1016/j.isci.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
In recent years, an increasing amount of research has focused on the intricate and complex correlation between bacterial infections and the development of cancer. Some studies even identified specific bacterial species as potential culprits in the initiation of carcinogenesis, which generated a great deal of interest in the creation of innovative therapeutic strategies aimed at addressing both the infection and the subsequent risk of cancer. Among these strategies, there has been a recent emergence of the use of conjugated therapeutic proteins, which represent a highly promising avenue in the field of cancer therapeutics. These proteins offer a dual-targeting approach that seeks to effectively combat both the bacterial infection and the resulting malignancies that may arise because of such infections. This review delves into the landscape of conjugated therapeutic proteins that have been intricately designed with the purpose of specifically targeting bacteria that have been implicated in the induction of cancer.
Collapse
Affiliation(s)
- Mohamed Halawa
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Precious M. Newman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Tope Aderibigbe
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
6
|
Bachelle SV, Bah SY, Addo RT, Bediako-Bowan AAA, Egyir B, Tsatsu SE, Dzudzor B, Amarh V. Genomic analysis of Enterobacteriaceae from colorectal cancer patients at a tertiary hospital in Ghana: a case-control study. Sci Rep 2024; 14:23195. [PMID: 39369124 PMCID: PMC11455924 DOI: 10.1038/s41598-024-74299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Colorectal cancer (CRC) is a severe gastrointestinal cancer and a leading cause of cancer-related deaths in Ghana. The potential role of gut Enterobacteriaceae in the increasing incidence of CRC in Ghana is yet to be thoroughly investigated. In this study, Enterobacteriaceae from CRC patients and healthy control participants were analyzed by whole genome sequencing to identify genomic features that are associated with CRC. Socio-demographic data showed a significant association between age and alcohol consumption and CRC. Escherichia coli was the most abundant Enterobacteriaceae isolated from the study participants and they were predominantly intestinal commensals. Escherichia coli isolates belonging to phylogroup D encoded the highest number of virulence genes. The agn43 and int genes were widespread in Escherichia coli isolates from the CRC patients. Multilocus sequence types of potentially pathogenic Escherichia coli from the CRC patients also encoded genes involved in aggregation, adherence and biofilm formation. The ampC2 and ampH antimicrobial resistance genes were also widespread in the genome of the Escherichia coli isolates. This study highlights the virulence tendencies of Escherichia coli from CRC patients and their ability to transfer virulence determinants to other Enterobacteriaceae residing in the gut.
Collapse
Affiliation(s)
- Sarah V Bachelle
- Department of Medical Biochemistry, University of Ghana Medical School, Korle-Bu, Accra, Ghana
| | - Saikou Y Bah
- School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Richmond T Addo
- Central Laboratory, Korle-Bu Teaching Hospital, Korle-Bu, Accra, Ghana
| | - Antoinette A A Bediako-Bowan
- Department of Surgery, University of Ghana Medical School, Korle-Bu, Accra, Ghana
- Department of Surgery, Korle-Bu Teaching Hospital, Korle-Bu, Accra, Ghana
| | - Beverly Egyir
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Sandra E Tsatsu
- Department of Surgery, University of Ghana Medical School, Korle-Bu, Accra, Ghana
- Department of Surgery, Korle-Bu Teaching Hospital, Korle-Bu, Accra, Ghana
| | - Bartholomew Dzudzor
- Department of Medical Biochemistry, University of Ghana Medical School, Korle-Bu, Accra, Ghana.
| | - Vincent Amarh
- Department of Medical Biochemistry, University of Ghana Medical School, Korle-Bu, Accra, Ghana.
| |
Collapse
|
7
|
Jian C, Yinhang W, Jing Z, Zhanbo Q, Zefeng W, Shuwen H. Escherichia coli on colorectal cancer: A two-edged sword. Microb Biotechnol 2024; 17:e70029. [PMID: 39400440 PMCID: PMC11472651 DOI: 10.1111/1751-7915.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Escherichia coli (E. coli) is a ubiquitous symbiotic bacterium in the gut, and the diversity of E. coli genes determines the diversity of its functions. In this review, the two-edged sword theory was innovatively proposed. For the question 'how can we harness the ambivalent nature of E. coli to screen and treat CRC?', in terms of CRC screening, the variations in the abundance and subtypes of E. coli across different populations present an opportunity to utilise it as a biomarker, while in terms of CRC treatment, the natural beneficial effect of E. coli on CRC may be limited, and engineered E. coli, particularly certain subtypes with probiotic potential, can indeed play a significant role in CRC treatment. It seems that the favourable role of E. coli as a genetic tool lies not in its direct impact on CRC but its potential as a research platform that can be integrated with various technologies such as nanoparticles, imaging methods, and synthetic biology modification. The relationship between gut microflora and CRC remains unclear due to the complex diversity and interaction of gut microflora. Therefore, the application of E. coli should be based on the 'One Health' view and take the interactions between E. coli and other microorganisms, host, and environmental factors, as well as its own changes into account. In this paper, the two-edged sword role of E. coli in CRC is emphasised to realise the great potential of E. coli in CRC screening and treatment.
Collapse
Affiliation(s)
- Chu Jian
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Wu Yinhang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Zhuang Jing
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Qu Zhanbo
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Wang Zefeng
- Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Han Shuwen
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
- ASIR (Institute ‐ Association of intelligent systems and robotics)Rueil‐MalmaisonFrance
| |
Collapse
|
8
|
He X, Ren E, Dong L, Yuan P, Zhu J, Liu D, Wang J. Contribution of PKS+ Escherichia coli to colon carcinogenesis through the inhibition of exosomal miR-885-5p. Heliyon 2024; 10:e37346. [PMID: 39315148 PMCID: PMC11417213 DOI: 10.1016/j.heliyon.2024.e37346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives About 90 % of all colorectal cancer (CRC) fatalities are caused by the metastatic spread of primary tumors, which is closely correlated with patient survival and spreads by circulating tumor cells (CTCs). The epithelial-mesenchymal transition (EMT) that characterizes CTCs is associated with a poor prognosis. Organotropic metastasis is dictated by the transmission of miRNAs by cancer-derived exosomes. The purpose of this research is to examine PKS + E's function. Coli in CRC metastases and exosomal miR-885-5p suppression. Methods A cohort of 100 patients (50 CRC, 50 healthy) underwent colonoscopy screenings from February 2018 to August 2021. Exosomes were isolated using ultracentrifugation, and exosomal miRNA was analyzed using sequencing and qPCR. Results Among the patients, 40 tested positive for E. coli (12 CRC, 23 healthy). Serotyping revealed that 68.57 % harbored the PKS gene. Exosomal miR-885-5p levels were significantly altered in CRC patients with PKS + E. coli. Intriguingly, our findings indicate that exosomes derived from EMT-CRC cells did not affect miR-885-5p synthesis in HUVECs. Moreover, we observed that the levels of miR-885-5p in both exosomes and the total CRC-conditioned medium were comparable upon isolation of exosomes from CRC cells. What's more, an increased expression of miR-558-5p within the tumors, and the group that received exosome treatment, as well as the EMT-HCT116 group, exhibited a higher occurrence of distant metastasis. Conclusion PKS + E. By inhibiting exosomal miR-885-5p, coli is linked to CRC metastases, offering a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Xiaoming He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Enbo Ren
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Lujia Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pengfei Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jiaxin Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Dechun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jianguang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
9
|
Ray A, Moore TF, Naik DSL, Borsch DM. Insights into the Two Most Common Cancers of Primitive Gut-Derived Structures and Their Microbial Connections. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1515. [PMID: 39336556 PMCID: PMC11434611 DOI: 10.3390/medicina60091515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
The gastrointestinal and respiratory systems are closely linked in different ways, including from the embryological, anatomical, cellular, and physiological angles. The highest number (and various types) of microorganisms live in the large intestine/colon, and constitute the normal microbiota in healthy people. Adverse alterations of the microbiota or dysbiosis can lead to chronic inflammation. If this detrimental condition persists, a sequence of pathological events can occur, such as inflammatory bowel disease, dysplasia or premalignant changes, and finally, cancer. One of the most commonly identified bacteria in both inflammatory bowel disease and colon cancer is Escherichia coli. On the other hand, patients with inflammatory bowel disease are at risk of several other diseases-both intestinal (such as malnutrition and intestinal obstruction, besides cancer) and extraintestinal (such as arthritis, bronchiectasis, and cancer risk). Cancers of the lung and colon are the two most common malignancies occurring worldwide (except for female breast cancer). Like the bacterial role in colon cancer, many studies have shown a link between chronic Chlamydia pneumoniae infection and lung cancer. However, in colon cancer, genotoxic colibactin-producing E. coli belonging to the B2 phylogroup may promote tumorigenesis. Furthermore, E. coli is believed to play an important role in the dissemination of cancer cells from the primary colonic site. Currently, seven enteric pathogenic E. coli subtypes have been described. Conversely, three Chlamydiae can cause infections in humans (C. trachomatis may increase the risk of cervical and ovarian cancers). Nonetheless, striking genomic plasticity and genetic modifications allow E. coli to constantly adjust to the surrounding environment. Consequently, E. coli becomes resistant to antibiotics and difficult to manage. To solve this problem, scientists are thinking of utilizing suitable lytic bacteriophages (viruses that infect and kill bacteria). Several bacteriophages of E. coli and Chlamydia species are being evaluated for this purpose.
Collapse
Affiliation(s)
- Amitabha Ray
- School of Health Professions, D’Youville University, 320 Porter Ave, Buffalo, NY 14201, USA
| | - Thomas F. Moore
- College of Health Sciences, Glenville State University, Glenville, WV 26351, USA;
| | - Dayalu S. L. Naik
- ICMR National Institute of Traditional Medicine, Belagavi 590010, India;
| | - Daniel M. Borsch
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA;
| |
Collapse
|
10
|
Liwinski T, Auer MK, Schröder J, Pieknik I, Casar C, Schwinge D, Henze L, Stalla GK, Lang UE, von Klitzing A, Briken P, Hildebrandt T, Desbuleux JC, Biedermann SV, Holterhus PM, Bang C, Schramm C, Fuss J. Gender-affirming hormonal therapy induces a gender-concordant fecal metagenome transition in transgender individuals. BMC Med 2024; 22:346. [PMID: 39218875 PMCID: PMC11367877 DOI: 10.1186/s12916-024-03548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Limited data exists regarding gender-specific microbial alterations during gender-affirming hormonal therapy (GAHT) in transgender individuals. This study aimed to investigate the nuanced impact of sex steroids on gut microbiota taxonomy and function, addressing this gap. We prospectively analyzed gut metagenome changes associated with 12 weeks of GAHT in trans women and trans men, examining both taxonomic and functional shifts. METHODS Thirty-six transgender individuals (17 trans women, 19 trans men) provided pre- and post-GAHT stool samples. Shotgun metagenomic sequencing was used to assess the changes in gut microbiota structure and potential function following GAHT. RESULTS While alpha and beta diversity remained unchanged during transition, specific species, including Parabacteroides goldsteinii and Escherichia coli, exhibited significant abundance shifts aligned with affirmed gender. Overall functional metagenome analysis showed a statistically significant effect of gender and transition (R2 = 4.1%, P = 0.0115), emphasizing transitions aligned with affirmed gender, particularly in fatty acid-related metabolism. CONCLUSIONS This study provides compelling evidence of distinct taxonomic and functional profiles in the gut microbiota between trans men and women. GAHT induces androgenization in trans men and feminization in trans women, potentially impacting physiological and health-related outcomes. TRIAL REGISTRATION Clinicaltrials.gov NCT02185274.
Collapse
Affiliation(s)
- Timur Liwinski
- Clinic for Adult Psychiatry, University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, Basel, CH-4002, Switzerland
| | - Matthias K Auer
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Johanna Schröder
- Department of Psychology, Institute for Clinical Psychology and Psychotherapy, Medical School Hamburg, Hamburg, Germany
| | - Ina Pieknik
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Christian Casar
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dorothee Schwinge
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lara Henze
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Günter K Stalla
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Medicover Neuroendocrinology, Munich, Germany
| | - Undine E Lang
- Clinic for Adult Psychiatry, University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, Basel, CH-4002, Switzerland
| | - Alina von Klitzing
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peer Briken
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Hildebrandt
- Department of Gynecology and Obstetrics, CCC Erlangen EMN, Friedrich Alexander University, Erlangen, Germany
| | - Jeanne C Desbuleux
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Sarah V Biedermann
- Department of Psychiatry and Psychotherapy, Social and Emotional Neuroscience Group, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul-Martin Holterhus
- Division of Pediatric Endocrinology and Diabetes, Department of Children and Adolescent Medicine I, University Hospital of Schleswig-Holstein, Campus Kiel/Christian-Albrechts University of Kiel, Kiel, D-24105, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Rosalind-Franklin-Str. 12, Kiel, 24105, Germany
| | - Christoph Schramm
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Centre for Translational Immunology (HCTI), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Fuss
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| |
Collapse
|
11
|
Koliarakis I, Lagkouvardos I, Vogiatzoglou K, Tsamandouras I, Intze E, Messaritakis I, Souglakos J, Tsiaoussis J. Circulating Bacterial DNA in Colorectal Cancer Patients: The Potential Role of Fusobacterium nucleatum. Int J Mol Sci 2024; 25:9025. [PMID: 39201711 PMCID: PMC11354820 DOI: 10.3390/ijms25169025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Intestinal dysbiosis is a major contributor to colorectal cancer (CRC) development, leading to bacterial translocation into the bloodstream. This study aimed to evaluate the presence of circulated bacterial DNA (cbDNA) in CRC patients (n = 75) and healthy individuals (n = 25). DNA extracted from peripheral blood was analyzed using PCR, with specific primers targeting 16S rRNA, Escherichia coli (E. coli), and Fusobacterium nucleatum (F. nucleatum). High 16S rRNA and E. coli detections were observed in all patients and controls. Only the detection of F. nucleatum was significantly higher in metastatic non-excised CRC, compared to controls (p < 0.001), non-metastatic excised CRC (p = 0.023), and metastatic excised CRC (p = 0.023). This effect was mainly attributed to the presence of the primary tumor (p = 0.006) but not the presence of distant metastases (p = 0.217). The association of cbDNA with other clinical parameters or co-morbidities was also evaluated, revealing a higher detection of E. coli in CRC patients with diabetes (p = 0.004). These results highlighted the importance of bacterial translocation in CRC patients and the potential role of F. nucleatum as an intratumoral oncomicrobe in CRC.
Collapse
Affiliation(s)
- Ioannis Koliarakis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| | - Ilias Lagkouvardos
- Department of Clinical Microbiology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (I.L.); (E.I.)
| | - Konstantinos Vogiatzoglou
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (K.V.); (I.M.); (J.S.)
| | - Ioannis Tsamandouras
- Department of Otorhinolaryngology—Head and Neck Surgery, University General Hospital of Heraklion, 71110 Heraklion, Greece;
| | - Evangelia Intze
- Department of Clinical Microbiology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (I.L.); (E.I.)
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (K.V.); (I.M.); (J.S.)
- Department of Microbiology, German Oncology Center, Yiannoukas Labs LTD, Bioiatriki Group, Limassol 4108, Cyprus
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (K.V.); (I.M.); (J.S.)
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| |
Collapse
|
12
|
Wang X, Zhang Q, Xu R, Li X, Hong Z. Research progress on the correlation between intestinal flora and colorectal cancer. Front Oncol 2024; 14:1416806. [PMID: 39087025 PMCID: PMC11288818 DOI: 10.3389/fonc.2024.1416806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies in the world. With the rapid pace of life and changes in diet structure, the incidence and mortality of CRC increase year by year posing a serious threat to human health. As the most complex and largest microecosystem in the human body, intestinal microecology is closely related to CRC. It is an important factor that affects and participates in the occurrence and development of CRC. Advances in next-generation sequencing technology and metagenomics have provided new insights into the ecology of gut microbes. It also helps to link intestinal flora with CRC, and the relationship between intestinal flora and CRC can be continuously understood from different levels. This paper summarizes the relationship between intestinal flora and CRC and its potential role in the diagnosis of CRC providing evidence for early screening and treatment of CRC.
Collapse
Affiliation(s)
- Xinyu Wang
- The Health Management Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qian Zhang
- Department of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Rongxuan Xu
- Department of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaofeng Li
- Department of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Zhijun Hong
- The Health Management Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
13
|
Sadeghi M, Mestivier D, Sobhani I. Contribution of pks+ Escherichia coli ( E. coli) to Colon Carcinogenesis. Microorganisms 2024; 12:1111. [PMID: 38930493 PMCID: PMC11205849 DOI: 10.3390/microorganisms12061111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health concern, ranking second in mortality and third in frequency among cancers worldwide. While only a small fraction of CRC cases can be attributed to inherited genetic mutations, the majority arise sporadically due to somatic mutations. Emerging evidence reveals gut microbiota dysbiosis to be a contributing factor, wherein polyketide synthase-positive Escherichia coli (pks+ E. coli) plays a pivotal role in CRC pathogenesis. pks+ bacteria produce colibactin, a genotoxic protein that causes deleterious effects on DNA within host colonocytes. In this review, we examine the role of the gut microbiota in colon carcinogenesis, elucidating how colibactin-producer bacteria induce DNA damage, promote genomic instability, disrupt the gut epithelial barrier, induce mucosal inflammation, modulate host immune responses, and influence cell cycle dynamics. Collectively, these actions foster a microenvironment conducive to tumor initiation and progression. Understanding the mechanisms underlying pks+ bacteria-mediated CRC development may pave the way for mass screening, early detection of tumors, and therapeutic strategies such as microbiota modulation, bacteria-targeted therapy, checkpoint inhibition of colibactin production and immunomodulatory pathways.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
| | - Denis Mestivier
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
| | - Iradj Sobhani
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Henri Mondor Hospital, 94010 Créteil, France
| |
Collapse
|
14
|
Yarahmadi A, Zare M, Aghayari M, Afkhami H, Jafari GA. Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future. Cell Commun Signal 2024; 22:239. [PMID: 38654309 PMCID: PMC11040964 DOI: 10.1186/s12964-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mitra Zare
- Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Gholam Ali Jafari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
15
|
Wu X, Nawaz S, Li Y, Zhang H. Environmental health hazards of untreated livestock wastewater: potential risks and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24745-24767. [PMID: 38499926 DOI: 10.1007/s11356-024-32853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Due to technological and economic limitations, waste products such as sewage and manure generated in livestock farming lack comprehensive scientific and centralized treatment. This leads to the exposure of various contaminants in livestock wastewater, posing potential risks to both the ecological environment and human health. This review evaluates the environmental and physical health risks posed by common pollutants in livestock wastewater and outlines future treatment methods to mitigate these risks. Residual wastes in livestock wastewater, including pathogenic bacteria and parasites surviving after epidemics or diseases on various farms, along with antibiotics, organic wastes, and heavy metals from farming activities, contribute to environmental damage and pose risks to human health. As the livestock industry's development increasingly impacts society's future negatively, addressing the issue of residual wastes in livestock wastewater discharge becomes imperative. Ongoing advancements in wastewater treatment systems are consistently updating and refining practices to effectively minimize waste exposure at the discharge source, mitigating risks to environmental ecology and human health. This review not only summarizes the "potential risks of livestock wastewater" but also explores "the prospects for the development of wastewater treatment technologies" based on current reports. It offers valuable insights to support the long-term and healthy development of the livestock industry and contribute to the sustainable development of the ecological environment.
Collapse
Affiliation(s)
- Xiaomei Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Kang F, Chen Z, Liao C, Wu Y, Li G, Xie C, Lin H, Huang L, Tian Y, Wang Z, Chen S. Escherichia coli-Induced cGLIS3-Mediated Stress Granules Activate the NF-κB Pathway to Promote Intrahepatic Cholangiocarcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306174. [PMID: 38368261 PMCID: PMC11040339 DOI: 10.1002/advs.202306174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Patients with concurrent intrahepatic cholangiocarcinoma (ICC) and hepatolithiasis generally have poor prognoses. Hepatolithiasis is once considered the primary cause of ICC, although recent insights indicate that bacteria in the occurrence of hepatolithiasis can promote the progression of ICC. By constructing in vitro and in vivo ICC models and patient-derived organoids (PDOs), it is shown that Escherichia coli induces the production of a novel RNA, circGLIS3 (cGLIS3), which promotes tumor growth. cGLIS3 binds to hnRNPA1 and G3BP1, resulting in the assembly of stress granules (SGs) and suppression of hnRNPA1 and G3BP1 ubiquitination. Consequently, the IKKα mRNA is blocked in SGs, decreasing the production of IKKα and activating the NF-κB pathway, which finally results in chemoresistance and produces metastatic phenotypes of ICC. This study shows that a combination of Icaritin (ICA) and gemcitabine plus cisplatin (GP) chemotherapy can be a promising treatment strategy for ICC.
Collapse
Affiliation(s)
- Feng‐Ping Kang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Zhi‐Wen Chen
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Cheng‐Yu Liao
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatobiliary Pancreatic SurgeryFujian Provincial HospitalFuzhou350001China
| | - Yong‐Ding Wu
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Ge Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary SurgeryFujian Medical University Union HospitalFuzhou350001China
| | - Cheng‐Ke Xie
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Hong‐Yi Lin
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Long Huang
- Department of Hepatobiliary Pancreatic SurgeryFujian Provincial HospitalFuzhou350001China
| | - Yi‐Feng Tian
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatobiliary Pancreatic SurgeryFujian Provincial HospitalFuzhou350001China
| | - Zu‐Wei Wang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatobiliary Pancreatic SurgeryFujian Provincial HospitalFuzhou350001China
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatobiliary Pancreatic SurgeryFujian Provincial HospitalFuzhou350001China
- Fujian Key Laboratory of GeriatricsFujian Provincial HospitalFuzhou350001China
| |
Collapse
|
17
|
Baldelli G, De Santi M, Ateba CN, Cifola G, Amagliani G, Tchatchouang CDK, Montso PK, Brandi G, Schiavano GF. The potential role of Listeria monocytogenes in promoting colorectal adenocarcinoma tumorigenic process. BMC Microbiol 2024; 24:87. [PMID: 38491424 PMCID: PMC10941472 DOI: 10.1186/s12866-024-03240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Listeria monocytogenes is a foodborne pathogen, which can cause a severe illness, especially in people with a weakened immune system or comorbidities. The interactions between host and pathogens and between pathogens and tumor cells have been debated in recent years. However, it is still unclear how bacteria can interact with tumor cells, and if this interaction can affect tumor progression and therapy. METHODS In this study, we evaluated the involvement of L. monocytogenes in pre-neoplastic and colorectal cancer cell proliferation and tumorigenic potential. RESULTS Our findings showed that the interaction between heat-killed L. monocytogenes and pre-neoplastic or colorectal cancer cells led to a proliferative induction; furthermore, by using a three-dimensional cell culture model, the obtained data indicated that L. monocytogenes was able to increase the tumorigenic potential of both pre-neoplastic and colorectal cancer cells. The observed effects were then confirmed as L. monocytogenes-specific, using Listeria innocua as negative control. Lastly, data suggested the Insulin Growth Factor 1 Receptor (IGF1R) cascade as one of the possible mechanisms involved in the effects induced by L. monocytogenes in the human colorectal adenocarcinoma cell line. CONCLUSIONS These findings, although preliminary, suggest that the presence of pathogenic bacterial cells in the tumor niches may directly induce, increase, and stimulate tumor progression.
Collapse
Affiliation(s)
- Giulia Baldelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Urbino, Italy
| | - Mauro De Santi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Urbino, Italy
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Giorgia Cifola
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Urbino, Italy
| | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Urbino, Italy
| | | | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Urbino, Italy
| | | |
Collapse
|
18
|
Van Dingenen L, Segers C, Wouters S, Mysara M, Leys N, Kumar-Singh S, Malhotra-Kumar S, Van Houdt R. Dissecting the role of the gut microbiome and fecal microbiota transplantation in radio- and immunotherapy treatment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1298264. [PMID: 38035338 PMCID: PMC10687483 DOI: 10.3389/fcimb.2023.1298264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and poses a major burden on the human health worldwide. At the moment, treatment of CRC consists of surgery in combination with (neo)adjuvant chemotherapy and/or radiotherapy. More recently, immune checkpoint blockers (ICBs) have also been approved for CRC treatment. In addition, recent studies have shown that radiotherapy and ICBs act synergistically, with radiotherapy stimulating the immune system that is activated by ICBs. However, both treatments are also associated with severe toxicity and efficacy issues, which can lead to temporary or permanent discontinuation of these treatment programs. There's growing evidence pointing to the gut microbiome playing a role in these issues. Some microorganisms seem to contribute to radiotherapy-associated toxicity and hinder ICB efficacy, while others seem to reduce radiotherapy-associated toxicity or enhance ICB efficacy. Consequently, fecal microbiota transplantation (FMT) has been applied to reduce radio- and immunotherapy-related toxicity and enhance their efficacies. Here, we have reviewed the currently available preclinical and clinical data in CRC treatment, with a focus on how the gut microbiome influences radio- and immunotherapy toxicity and efficacy and if these treatments could benefit from FMT.
Collapse
Affiliation(s)
- Lena Van Dingenen
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shari Wouters
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Bioinformatics Group, Center for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Rob Van Houdt
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| |
Collapse
|
19
|
Shakhpazyan N, Mikhaleva L, Bedzhanyan A, Gioeva Z, Sadykhov N, Mikhalev A, Atiakshin D, Buchwalow I, Tiemann M, Orekhov A. Cellular and Molecular Mechanisms of the Tumor Stroma in Colorectal Cancer: Insights into Disease Progression and Therapeutic Targets. Biomedicines 2023; 11:2361. [PMID: 37760801 PMCID: PMC10525158 DOI: 10.3390/biomedicines11092361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide and is the third most common type of cancer. The early detection and diagnosis of CRC is critical to improve patient outcomes. This review explores the intricate interplay between the tumor microenvironment, stromal interactions, and the progression and metastasis of colorectal cancer. The review begins by assessing the gut microbiome's influence on CRC development, emphasizing its association with gut-associated lymphoid tissue (GALT). The role of the Wnt signaling pathway in CRC tumor stroma is scrutinized, elucidating its impact on disease progression. Tumor budding, its effect on tumor stroma, and the implications for patient prognosis are investigated. The review also identifies conserved oncogenic signatures (COS) within CRC stroma and explores their potential as therapeutic targets. Lastly, the seed and soil hypothesis is employed to contextualize metastasis, accentuating the significance of both tumor cells and the surrounding stroma in metastatic propensity. This review highlights the intricate interdependence between CRC cells and their microenvironment, providing valuable insights into prospective therapeutic approaches targeting tumor-stroma interactions.
Collapse
Affiliation(s)
- Nikolay Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Liudmila Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Arkady Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Zarina Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Nikolay Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Alexander Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | | - Alexander Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
20
|
Nissen L, Casciano F, Di Nunzio M, Galaverna G, Bordoni A, Gianotti A. Effects of the replacement of nitrates/nitrites in salami by plant extracts on colon microbiota. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
21
|
Motamedi H, Ari MM, Shahlaei M, Moradi S, Farhadikia P, Alvandi A, Abiri R. Designing multi-epitope vaccine against important colorectal cancer (CRC) associated pathogens based on immunoinformatics approach. BMC Bioinformatics 2023; 24:65. [PMID: 36829112 PMCID: PMC9951438 DOI: 10.1186/s12859-023-05197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND It seems that several members of intestinal gut microbiota like Streptococcus bovis, Bacteroides fragilis, Helicobacter pylori, Fusobacterium nucleatum, Enterococcus faecalis, Escherichia coli, Peptostreptococcus anaerobius may be considered as the causative agents of Colorectal Cancer (CRC). The present study used bioinformatics and immunoinformatics approaches to design a potential epitope-based multi-epitope vaccine to prevent CRC with optimal population coverage. METHODS In this study, ten amino acid sequences of CRC-related pathogens were retrieved from the NCBI database. Three ABCpred, BCPREDS and LBtope online servers were considered for B cells prediction and the IEDB server for T cells (CD4+ and CD8+) prediction. Then, validation, allergenicity, toxicity and physicochemical analysis of all sequences were performed using web servers. A total of three linkers, AAY, GPGPG, and KK were used to bind CTL, HTL and BCL epitopes, respectively. In addition, the final construct was subjected to disulfide engineering, molecular docking, immune simulation and codon adaptation to design an effective vaccine production strategy. RESULTS A total of 19 sequences of different lengths for linear B-cell epitopes, 19 and 18 sequences were considered as epitopes of CD4+ T and CD8+ cells, respectively. The predicted epitopes were joined by appropriate linkers because they play an important role in producing an extended conformation and protein folding. The final multi-epitope construct and Toll-like receptor 4 (TLR4) were evaluated by molecular docking, which revealed stable and strong binding interactions. Immunity simulation of the vaccine showed significantly high levels of immunoglobulins, helper T cells, cytotoxic T cells and INF-γ. CONCLUSION Finally, the results showed that the designed multi-epitope vaccine could serve as an excellent prophylactic candidate against CRC-associated pathogens, but in vitro and animal studies are needed to justify our findings for its use as a possible preventive measure.
Collapse
Affiliation(s)
- Hamid Motamedi
- grid.412112.50000 0001 2012 5829Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran ,grid.412112.50000 0001 2012 5829Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- grid.411746.10000 0004 4911 7066Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran ,grid.411746.10000 0004 4911 7066Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahlaei
- grid.412112.50000 0001 2012 5829Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- grid.412112.50000 0001 2012 5829Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Farhadikia
- grid.412112.50000 0001 2012 5829Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhoushang Alvandi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Medical Technology Research Center, Health Technology Institute,, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Fertility and Infertility Research Center, Health Technology Institute,, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
22
|
Yusuf K, Sampath V, Umar S. Bacterial Infections and Cancer: Exploring This Association And Its Implications for Cancer Patients. Int J Mol Sci 2023; 24:3110. [PMID: 36834525 PMCID: PMC9958598 DOI: 10.3390/ijms24043110] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Bacterial infections are common in the etiology of human diseases owing to the ubiquity of bacteria. Such infections promote the development of periodontal disease, bacterial pneumonia, typhoid, acute gastroenteritis, and diarrhea in susceptible hosts. These diseases may be resolved using antibiotics/antimicrobial therapy in some hosts. However, other hosts may be unable to eliminate the bacteria, allowing them to persist for long durations and significantly increasing the carrier's risk of developing cancer over time. Indeed, infectious pathogens are modifiable cancer risk factors, and through this comprehensive review, we highlight the complex relationship between bacterial infections and the development of several cancer types. For this review, searches were performed on the PubMed, Embase, and Web of Science databases encompassing the entirety of 2022. Based on our investigation, we found several critical associations, of which some are causative: Porphyromonas gingivalis and Fusobacterium nucleatum are associated with periodontal disease, Salmonella spp., Clostridium perfringens, Escherichia coli, Campylobacter spp., and Shigella are associated with gastroenteritis. Helicobacter pylori infection is implicated in the etiology of gastric cancer, and persistent Chlamydia infections present a risk factor for the development of cervical carcinoma, especially in patients with the human papillomavirus (HPV) coinfection. Salmonella typhi infections are linked with gallbladder cancer, and Chlamydia pneumoniae infection is implicated in lung cancer, etc. This knowledge helps identify the adaptation strategies used by bacteria to evade antibiotic/antimicrobial therapy. The article also sheds light on the role of antibiotics in cancer treatment, the consequences of their use, and strategies for limiting antibiotic resistance. Finally, the dual role of bacteria in cancer development as well as in cancer therapy is briefly discussed, as this is an area that may help to facilitate the development of novel microbe-based therapeutics as a means of securing improved outcomes.
Collapse
Affiliation(s)
- Kafayat Yusuf
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Venkatesh Sampath
- Department of Pediatrics and Gastroenterology, Children’s Mercy Hospital, Kansas City, KS 66160, USA
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
23
|
Cao Y, Zheng X, Hu Y, Li J, Huang B, Zhao N, Liu T, Cai K, Tian S. Levels of systemic inflammation response index are correlated with tumor-associated bacteria in colorectal cancer. Cell Death Dis 2023; 14:69. [PMID: 36717544 PMCID: PMC9886998 DOI: 10.1038/s41419-023-05602-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
The relationship between systemic inflammation and tumor-associated bacteria is largely unknown in colorectal cancer (CRC). The primary aim of this study was to investigate the prognostic effects of the systemic inflammation response index (SIRI) on the survival outcomes of CRC patients who experienced surgical therapy, and the second aim was to reveal the potential association between SIRI levels and tumor-associated bacteria in CRC. We recruited a cohort of 298 CRC patients who experienced surgical resection in Wuhan Union Hospital. These patients were assigned to the low and high groups based on the cut-off value of SIRI. We utilized 1:1 propensity score matching (PSM) to reduce the potential confounding factors between the low SIRI group (N = 83) and the high SIRI group (N = 83). The total DNA of 166 paraffin-embedded tumor tissues and 24 frozen tumor tissues was extracted and amplified, and 16 S rRNA sequencing was employed to uncover the composition of microbiota between low and high SIRI groups. Survival analysis uncovered that the high SIRI cohort exhibited significantly shorter overall and disease-free survival time than low SIRI companions after PSM. The ROC analyses showed that the prediction abilities of SIRI were much higher than other serum inflammatory biomarkers for survival outcomes. The microbial richness and diversity in the low SIRI group were remarkably higher than those in the high SIRI group. At the phylum level, we found that Proteobacteria, Synergistetes, WPS-2, Thermil, Fusobacteria were enriched in the high SIRI group. Cupriavidus, Thermus, Ochrobactrum, Cupriavidus, Acidovorax were enriched in the high SIRI group at the genus level. 16 S rRNA based on frozen samples also obtained similar results. SIRI is a promising and novel prognostic biomarker among CRC sufferers who underwent surgical removal. There existed significant differences in the diversity and compositions of tumor-associated bacteria between the low and high SIRI groups.
Collapse
Affiliation(s)
- Yinghao Cao
- Department of Digestive Surgical Oncology, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Zheng
- Department of infectious disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yugang Hu
- Department of Ultrasonography, Renmin Hospital of Wuhan University, Wuhan, Hubei province, 430060, China
| | - Jiahuan Li
- Department of infectious disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Binglu Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ning Zhao
- Department of Surgical Oncology, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, 710061, China
| | - Tao Liu
- Department of Digestive Surgical Oncology, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shan Tian
- Department of infectious disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
24
|
Di Tommaso N, Santopaolo F, Gasbarrini A, Ponziani FR. The Gut-Vascular Barrier as a New Protagonist in Intestinal and Extraintestinal Diseases. Int J Mol Sci 2023; 24:ijms24021470. [PMID: 36674986 PMCID: PMC9864173 DOI: 10.3390/ijms24021470] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The intestinal barrier, with its multiple layers, is the first line of defense between the outside world and the intestine. Its disruption, resulting in increased intestinal permeability, is a recognized pathogenic factor of intestinal and extra-intestinal diseases. The identification of a gut-vascular barrier (GVB), consisting of a structured endothelium below the epithelial layer, has led to new evidence on the etiology and management of diseases of the gut-liver axis and the gut-brain axis, with recent implications in oncology as well. The gut-brain axis is involved in several neuroinflammatory processes. In particular, the recent description of a choroid plexus vascular barrier regulating brain permeability under conditions of gut inflammation identifies the endothelium as a key regulator in maintaining tissue homeostasis and health.
Collapse
Affiliation(s)
- Natalia Di Tommaso
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
25
|
Bosák J, Kohoutová D, Hrala M, Křenová J, Morávková P, Rejchrt S, Bureš J, Šmajs D. Escherichia coli from biopsies differ in virulence genes between patients with colorectal neoplasia and healthy controls. Front Microbiol 2023; 14:1141619. [PMID: 37125208 PMCID: PMC10133476 DOI: 10.3389/fmicb.2023.1141619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Pathogenic strains of Escherichia coli have been clearly identified as the causative agents of extraintestinal and diarrheal infections; however, the etiopathogenic role of E. coli in other conditions, including colorectal cancer, remains unclear. Methods This study aimed to characterize mucosal E. coli isolates (n = 246) from 61 neoplasia patients and 20 healthy controls for the presence of 35 genetic determinants encoding known virulence factors. Results Virulence determinants encoding invasin (ibeA), siderophore receptor (iroN), S-fimbriae (sfa), and genotoxin (usp) were more prevalent among E. coli isolated from patients with neoplasia compared to the control group (p < 0.05). In addition, the prevalence of these virulence determinants was increased in more advanced neoplasia stages (p adj < 0.0125). Compared to patients with advanced colorectal adenoma and carcinoma, the ibeA gene was rarely found in the control group and among patients with non-advanced adenoma (p < 0.05), indicating its potential as the advanced-neoplasia biomarker. Patients with neoplasia frequently had E. coli strains with at least one of the abovementioned virulence factors, whereby specific combinations of these virulence factors were found. Discussion These findings suggest that E. coli strains isolated from patients with colorectal neoplasia possess several virulence factors, which could contribute to the development of neoplastic processes in the large intestine.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Darina Kohoutová
- Center of Biomedical Research, University Hospital Hradec Králové, Hradec Králové, Czechia
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jitka Křenová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Paula Morávková
- Second Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Hradec Králové, Czechia
| | - Stanislav Rejchrt
- Center of Biomedical Research, University Hospital Hradec Králové, Hradec Králové, Czechia
| | - Jan Bureš
- Center of Biomedical Research, University Hospital Hradec Králové, Hradec Králové, Czechia
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- *Correspondence: David Šmajs,
| |
Collapse
|
26
|
Setthawongsin C, Khunbutsri D, Pisamai S, Raksajit W, Ngamkala S, Jarudecha T, Meekhanon N, Rungsipipat A. Isolation of Oral Bacteria, Measurement of the C-Reactive Protein, and Blood Clinical Parameters in Dogs with Oral Tumor. Vet Med Int 2023; 2023:2582774. [PMID: 37009523 PMCID: PMC10060073 DOI: 10.1155/2023/2582774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 04/04/2023] Open
Abstract
Canine oral cancers have a poor prognosis and are related to chronic inflammation. This may pose a risk of secondary bacterial infection. This study aimed to compare the bacteria isolated from oral swab samples, values of C-reactive proteins (CRPs), and clinical blood profiles of dogs with and without oral mass. A total of 36 dogs were divided in three groups: no oral mass (n = 21), oral mass (n = 8), and metastasis groups (n = 7). Significantly, both the clinical groups (the oral mass group and metastasis group) showed anemia, a decrease in the albumin-to-globulin ratio (AGR), and an increase in the neutrophil-to-lymphocyte ratio (NLR), globulin-to-albumin ratio (GAR), CRP, and CRP-to-albumin ratio (CAR) compared to the normal group. CAR showed an increasing trend in the oral mass and metastasis groups (10 times and 100 times, respectively) compared to the no oral mass group (P < 0.001). Neisseria spp. (20.78%) was the main isolated bacteria in all groups. The main genera in the no oral mass group were Neisseria spp. (28.26%), Pasteurella spp. (19.57%), and Staphylococcus spp. (19.57%). Neisseria spp., Staphylococcus spp., Klebsiella spp., and Escherichia spp. were found equally (12.5%) in the oral mass group. Escherichia spp. (26.67%), Pseudomonas spp. (13.33%), and Staphylococcus spp. (13.33%) were the main genera in the metastasis group. Interestingly, Neisseria spp. decreased in the clinical groups (Fisher's exact = 6.39, P=0.048), and Escherichia spp. increased in the metastasis group (Fisher's exact = 14.00, P=0.002). The difference of oral bacteria in clinical dogs compared to healthy dogs may be related to microbiome alterations, and both the clinical groups showed the increment of inflammatory biomarkers. This suggested that further studies should be conducted on the correlation between the specific bacteria, CRP, blood clinical parameters, and type of canine oral mass.
Collapse
Affiliation(s)
- Chanokchon Setthawongsin
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok10900, Thailand
| | - Duangdaow Khunbutsri
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen40002, Thailand
| | - Sirinun Pisamai
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Wuttinun Raksajit
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok10900, Thailand
| | - Suchanit Ngamkala
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok10900, Thailand
| | - Thitichai Jarudecha
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok10900, Thailand
| | - Nattakan Meekhanon
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok10900, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok10330, Thailand
| |
Collapse
|
27
|
Feng N, Wang S, Liu C, Xu Z, Song Z, Li K, Yu Z. A network meta-analysis to evaluate the efficacy of traditional Chinese medicine on intestinal flora in patients with gastrointestinal cancer. Front Genet 2022; 13:1069780. [DOI: 10.3389/fgene.2022.1069780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose: Traditional Chinese medicine (TCM) can regulate intestinal flora so as to affect the occurrence, progression, and prognosis of gastrointestinal cancer. According to clinical studies, TCM oral administration, TCM external treatment, and TCM injections, can adjust intestinal flora disorders in patients with gastrointestinal cancer. This network meta-analysis aims to evaluate the effect of three treatments on the intestinal flora in gastrointestinal cancer patients.Methods: This meta-analysis was registered in PROSPERO (CRD42022332553). Six electronic databases, namely CNKI, Wanfang, CSTJ, PubMed, Cochrane Library, and EMBASE, were searched from their inception to 1 April 2022. We identified randomized controlled trials (RCT) used to compare the efficacy of three TCM treatment methods—oral administration, external therapy and injections—on the intestinal flora in gastrointestinal cancer patients. The main outcome indicators were Bifidobacteria, Lactobacilli, Escherichia coli, and Enterococci. Stata (15.1) and the Cochrane risk of bias assessment tool were employed.Results: We identified 20 eligible RCTs with a total of 1,774 patients. According to network meta-analysis results, TCM injection plus common treatment (CT) or oral administration of TCM plus CT was superior to CT alone for supporting Bifidobacterium. In supporting Lactobacillus, TCM injection plus CT demonstrated more obvious effect relative to oral administration of TCM plus CT; TCM injection plus CT was more effective than CT only; and oral administration of TCM plus CT was superior to CT only.The inhibitory effect of TCM injection plus CT on Escherichia coli was better compared with CT only. In terms of inhibiting Enterococci, oral administration of TCM plus CT was superior to CT only.The difference in efficacy among the above treatments was statistically significant. In the SUCRA probability ranking, TCM injection plus CT had the best ranking curve among the three treatments and was the most effective in supporting Bifidobacteria (Sucra = 90.08%), Lactobacilli (Sucra = 96.4%), and regulating Escherichia coli (Sucra = 86.1%) and Enterococci (Sucra = 87.1%).Conclusion: TCM injections plus CT is the most effective therapy in balancing the intestinal flora of gastrointestinal cancer patients. However, the current results deserve further validation through high-quality research.Systematic Review Registration: http://www.prisma-statement.org/, identifier 10.1136/bmj.n71.
Collapse
|
28
|
Surur AK, Momesso VM, Lopes PM, Ferrisse TM, Fontana CR. Assessment of synergism between enzyme inhibition of Cu/Zn-SOD and antimicrobial photodynamic therapy in suspension and E. coli biofilm. Photodiagnosis Photodyn Ther 2022; 41:103185. [PMID: 36414152 DOI: 10.1016/j.pdpdt.2022.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Antimicrobial Photodynamic Therapy (aPDT) is a treatment based on the interaction between a photosensitizer (PS), oxygen and a light source, resulting in the production of reactive oxygen species (ROS). There are two main types of reactions that can be triggered by this interaction: type I reaction, which can result in the production of hydrogen peroxide, superoxide anion and hydroxyl radical, and type II reaction, which is the Photodynamic Reaction, which results in singlet oxygen production. Antioxidant enzymes (e.g., catalase and superoxide dismutase) are agents that help prevent the damage caused by ROS and, consequently, reduce the effectiveness of aPDT. The aim of this study was to evaluate a possible synergism of the combined inhibition therapy of the enzyme Cu/Zn-Superoxide dismutase (SOD) and the methylene blue- and curcumin-mediated aPDT against Escherichia coli ATCC 25922, in suspension and biofilm. METHODS Kinetic assay of antimicrobial activity of diethydithiocarbamate (DDC) and Minimum Bactericidal Concentration (MIC) of DDC were performed to evaluate the behavior of the compound on bacterial suspension. Inhibition times of Cu/Zn-SOD, as well as DDC concentration, were evaluated via bacterial susceptibility to combined therapy in suspension and biofilm. RESULTS DDC did not present MIC at the evaluated concentrations. The inhibition time and Cu/Zn-SOD concentration with the highest bacterial reductions were 30 minutes and 1.2 μg/mL, respectively. Synergism occurred between DDC and MB-mediated aPDT, but not with CUR-mediated aPDT. CONCLUSIONS The synergism between Cu/Zn-SOD inhibition and aPDT has been confirmed, opening up a new field of study full of possibilities.
Collapse
Affiliation(s)
- Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Vinícius Medeiros Momesso
- São Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Pedro Monteiro Lopes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry - Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
29
|
Magneto-Fluorescent Mesoporous Nanocarriers for the Dual-Delivery of Ofloxacin and Doxorubicin to Tackle Opportunistic Bacterial Infections in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms232012287. [PMID: 36293142 PMCID: PMC9603674 DOI: 10.3390/ijms232012287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer-related opportunistic bacterial infections are one major barrier for successful clinical therapies, often correlated to the production of genotoxic factors and higher cancer incidence. Although dual anticancer and antimicrobial therapies are a growing therapeutic fashion, they still fall short when it comes to specific delivery and local action in in vivo systems. Nanoparticles are seen as potential therapeutic vectors, be it by means of their intrinsic antibacterial properties and effective delivery capacity, or by means of their repeatedly reported modulation and maneuverability. Herein we report on the production of a biocompatible, antimicrobial magneto-fluorescent nanosystem (NANO3) for the delivery of a dual doxorubicin-ofloxacin formulation against cancer-related bacterial infections. The drug delivery capacity, rendered by its mesoporous silica matrix, is confirmed by the high loading capacity and stimuli-driven release of both drugs, with preference for tumor-like acidic media. The pH-dependent emission of its surface fluorescent SiQDs, provides an insight into NANO3 surface behavior and pore availability, with the SiQDs working as pore gates. Hyperthermia induces heat generation to febrile temperatures, doubling drug release. NANO3-loaded systems demonstrate significant antimicrobial activity, specifically after the application of hyperthermia conditions. NANO3 structure and antimicrobial properties confirm their potential use in a future dual anticancer and antimicrobial therapeutical vector, due to their drug loading capacity and their surface availability for further modification with bioactive, targeting species.
Collapse
|
30
|
Khayami R, Goltzman D, Rabbani SA, Kerachian MA. Epigenomic effects of vitamin D in colorectal cancer. Epigenomics 2022; 14:1213-1228. [PMID: 36325830 DOI: 10.2217/epi-2022-0288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.
Collapse
Affiliation(s)
- Reza Khayami
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - David Goltzman
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, On, H3A 1A4, Canada
| |
Collapse
|
31
|
The OmpA of commensal Escherichia coli of CRC patients affects apoptosis of the HCT116 colon cancer cell line. BMC Microbiol 2022; 22:139. [PMID: 35590263 PMCID: PMC9118694 DOI: 10.1186/s12866-022-02540-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colorectal cancer ranks third globally among all types of cancers. Dysbiosis of the gut microbiota of people with CRC is one of the effective agents in the tumorigenesis and metastasis in this type of cancer. The population of Escherichia coli strains, a component of gut microbiota, is increased in the gut of people with CRC compared with healthy people. So, E.coli strains isolated from these patients may have a role in tumorigenesis. Because the most isolated strains belong to the B2 phylogenuetic group, there seems to be a linkage between the bacterium components and malignancy. MATERIAL AND METHODS In this study, the proteomic comparison between isolated Ecoli from CRC patients and healthy people was assayed. The isolated spot was studied by Two-dimensional gel electrophoresis (2DE) and Liquid chromatography-mass spectrometry (LC-MS). The results showed that the expression of Outer membrane protein A (OmpA) protein increased in the commensal E.coli B2 phylogenetic group isolated from CRC patients. Additionally, we analyzed the effect of the OmpA protein on the expression of the four genes related to apoptosis in the HCT116 colon cancer cell line. RESULTS This study identified that OmpA protein was overexpressed in the commensal E.coli B2 phylogenetic group isolated from CRC patients compared to the E.coli from the control group. This protein significantly decreased the expression of Bax and Bak, pro-apoptotic genes, as well as the expression of P53 in the HCT116 Cell Line, P < 0.0001. LC-MS and protein bioinformatics results confirmed that this protein is outer membrane protein A, which can bind to nucleic acid and some of the organelle proteins on the eukaryotic cell surface. CONCLUSIONS According to our invitro and insilico investigations, OmpA of gut E.coli strains that belong to the B2 phylogenetic group can affect the eukaryotic cell cycle.
Collapse
|
32
|
Wu N, Feng YQ, Lyu N, Wang D, Yu WD, Hu YF. Fusobacterium nucleatum promotes colon cancer progression by changing the mucosal microbiota and colon transcriptome in a mouse model. World J Gastroenterol 2022; 28:1981-1995. [PMID: 35664967 PMCID: PMC9150058 DOI: 10.3748/wjg.v28.i18.1981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) has long been known to cause opportunistic infections and has recently been implicated in colorectal cancer (CRC), which has attracted broad attention. However, the mechanism by which it is involved in CRC development is not fully understood.
AIM To explore its potential causative role in CRC development, we evaluated the colon pathology, mucosa barrier, colon microbiota and host transcriptome profile after F. nucleatum infection in an azoxymethane/dextran sulfate sodium salt (AOM/DSS) mouse model.
METHODS Three groups of mice were compared to reveal the differences, i.e., the control, AOM/DSS-induced CRC and AOM/DSS-FUSO infection groups.
RESULTS Both the AOM/DSS and AOM/DSS-FUSO groups exhibited a significantly reduced body weight and increased tumor numbers than the control group, and AOM/DSS mice with F. nucleatum infection showed the highest tumor formation ratio among the three groups. Moreover, the colon pathology was the most serious in the AOM/DSS-FUSO group. We found that the structure of the colon microbiota changed considerably after F. nucleatum infection; striking differences in mucosal microbial population patterns were observed between the AOM/DSS-FUSO and AOM/DSS groups, and inflammation-inducing bacteria were enriched in the mucosal microbiota in the AOM/DSS-FUSO group. By comparing intestinal transcriptomics data from AOM vs AOM/DSS-FUSO mice, we showed that transcriptional activity was strongly affected by dysbiosis of the gut microbiota. The most microbiota-sensitive genes were oncogenes in the intestine, and the cyclic adenosine monophosphate signaling pathway, neuroactive ligand–receptor interaction, PPAR signaling pathway, retinol metabolism, mineral absorption and drug metabolism were highly enriched in the AOM/DSS-FUSO group. Additionally, we showed that microbial dysbiosis driven by F. nucleatum infection enriched eight taxa belonging to Proteobacteria, which correlates with increased expression of oncogenic genes.
CONCLUSION Our study demonstrated that F. nucleatum infection altered the colon mucosal microbiota by enriching pathogens related to the development of CRC, providing new insights into the role of F. nucleatum in the oncogenic microbial environment of the colon.
Collapse
Affiliation(s)
- Na Wu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing 100044, China
| | - Yu-Qing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Na Lyu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing 100044, China
| | - Wei-Dong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing 100044, China
| | - Yong-Fei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
33
|
López-Siles M, Camprubí-Font C, Gómez Del Pulgar EM, Sabat Mir M, Busquets D, Sanz Y, Martinez-Medina M. Prevalence, Abundance, and Virulence of Adherent-Invasive Escherichia coli in Ulcerative Colitis, Colorectal Cancer, and Coeliac Disease. Front Immunol 2022; 13:748839. [PMID: 35359974 PMCID: PMC8960851 DOI: 10.3389/fimmu.2022.748839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
Abstract
Background & Aims Adherent-invasive E. coli (AIEC) has largely been implicated in the pathogenesis of Crohn’s disease (CD). E. coli strains with similar genetic backgrounds and virulence genes profiles have been associated with other intestinal disorders, such as ulcerative colitis (UC), colorectal cancer (CRC), and coeliac disease (CeD), but the role of AIEC in these diseases remains unexplored. We aimed to assess the distribution, abundance, and pathogenic features of AIEC in UC, CRC, and CeD. Methods The AIEC phenotype was investigated in 4,233 E. coli isolated from the ileum and colon of 14 UC and 15 CRC patients and in 38 fecal E. coli strains obtained from 17 CeD and 10 healthy (H) children. AIEC prevalence and abundance were compared with previous data from CD patients and H controls. Clonality, virulence gene carriage, and phylogenetic origin were determined for the AIEC identified. Results In UC, AIEC prevalence was intermediate between CD and H subjects (UC: 35.7%, CD: 55.0%, H: 21.4%), and similar to CD patients with colonic disease (C-CD: 40.0%). In CRC, the prevalence was lower (6.7%) than these groups. In patients with AIEC, the estimated abundance was similar across all intestinal conditions. All AIEC strains isolated from UC and CRC belonged to the B1 phylogroup, except for a strain of the A phylogroup, and the majority (75% of clonally distinct AIEC) harbored the Afa/Dr operon and the cdt gene. None of the E. coli isolated from the CeD cohort were AIEC. Nonetheless, E. coli strains isolated from active CeD patients showed higher invasion indices than those isolated from H and inactive CeD pediatric patients. Conclusion We support the hypothesis that AIEC-like strains can be involved not only in CD but also in UC. Further works are needed to study the virulence particularities of these groups of strains and to determine if there is a causative link between AIEC and UC. In contrast, we rule out the possible association of AIEC with CRC. In addition, to further study the E. coli strains in CeD for their possible pathogenic role would be of interest.
Collapse
Affiliation(s)
- Mireia López-Siles
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, Girona, Spain
| | - Carla Camprubí-Font
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, Girona, Spain
| | - Eva M Gómez Del Pulgar
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Paterna, Spain
| | - Miriam Sabat Mir
- Department of Gastroenterology, Hospital Santa Caterina, Salt, Spain
| | - David Busquets
- Department of Gastroenterology, Hospital Universitari Doctor Josep Trueta, Girona, Spain
| | - Yolanda Sanz
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Paterna, Spain
| | | |
Collapse
|
34
|
Chen J, Byun H, Liu R, Jung IJ, Pu Q, Zhu CY, Tanchoco E, Alavi S, Degnan PH, Ma AT, Roggiani M, Beld J, Goulian M, Hsiao A, Zhu J. A commensal-encoded genotoxin drives restriction of Vibrio cholerae colonization and host gut microbiome remodeling. Proc Natl Acad Sci U S A 2022; 119:e2121180119. [PMID: 35254905 PMCID: PMC8931321 DOI: 10.1073/pnas.2121180119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
Abstract
SignificanceIn a polymicrobial battlefield where different species compete for nutrients and colonization niches, antimicrobial compounds are the sword and shield of commensal microbes in competition with invading pathogens and each other. The identification of an Escherichia coli-produced genotoxin, colibactin, and its specific targeted killing of enteric pathogens and commensals, including Vibrio cholerae and Bacteroides fragilis, sheds light on our understanding of intermicrobial interactions in the mammalian gut. Our findings elucidate the mechanisms through which genotoxins shape microbial communities and provide a platform for probing the larger role of enteric multibacterial interactions regarding infection and disease outcomes.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Hyuntae Byun
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Rui Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - I-Ji Jung
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Qinqin Pu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | | | - Ethan Tanchoco
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Salma Alavi
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Patrick H. Degnan
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Amy T. Ma
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Jun Zhu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
35
|
Nouri R, Hasani A, Asgharzadeh M, Sefidan FY, Hemmati F, Rezaee MA. Roles of gut microbiota in colorectal carcinogenesis providing a perspective for early diagnosis and treatment. Curr Pharm Biotechnol 2022; 23:1569-1580. [PMID: 35255786 DOI: 10.2174/1389201023666220307112413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/02/2022]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignant neoplasm in the world. CRC is influenced by both environmental and genetic factors. Through toxin-mediated DNA damage and promotion of persistent dysregulated inflammation, the gut microbiota plays a crucial role in the development of CRC. In this review, we discussed the correlation between the bacterial microbiota and CRC carcinogenesis as well as the mechanism by which Streptococcus bovis/gallolyticus, Fusobacterium nucleatum, Bacteroides fragilis, and Escherichia coli can cause CRC.
Collapse
Affiliation(s)
- Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Yeganeh Sefidan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hemmati
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit of Children Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Doocey CM, Finn K, Murphy C, Guinane CM. The impact of the human microbiome in tumorigenesis, cancer progression, and biotherapeutic development. BMC Microbiol 2022; 22:53. [PMID: 35151278 PMCID: PMC8840051 DOI: 10.1186/s12866-022-02465-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Cancer impacts millions of lives globally each year, with approximately 10 million cancer-related deaths recorded worldwide in 2020. Mounting research has recognised the human microbiome as a key area of interest in the pathophysiology of various human diseases including cancer tumorigenesis, progression and in disease outcome. It is suggested that approximately 20% of human cancers may be linked to microbes. Certain residents of the human microbiome have been identified as potentially playing a role, including: Helicobacter pylori, Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis and Porphyromonas gingivalis.
Main body
In this review, we explore the current evidence that indicate a link between the human microbiome and cancer. Microbiome compositional changes have been well documented in cancer patients. Furthermore, pathogenic microbes harbouring specific virulence factors have been implicated in driving the carcinogenic activity of various malignancies including colorectal, gastric and pancreatic cancer. The associated genetic mechanisms with possible roles in cancer will be outlined. It will be indicated which microbes have a potential direct link with cancer cell proliferation, tumorigenesis and disease progression. Recent studies have also linked certain microbial cytotoxins and probiotic strains to cancer cell death, suggesting their potential to target the tumour microenvironment given that cancer cells are integral to its composition. Studies pertaining to such cytotoxic activity have suggested the benefit of microbial therapies in oncological treatment regimes. It is also apparent that bacterial pathogenic protein products encoded for by certain loci may have potential as oncogenic therapeutic targets given their possible role in tumorigenesis.
Conclusion
Research investigating the impact of the human microbiome in cancer has recently gathered pace. Vast amounts of evidence indicate the human microbiome as a potential player in tumorigenesis and progression. Promise in the development of cancer biomarkers and in targeted oncological therapies has also been demonstrated, although more studies are needed. Despite extensive in vitro and in vivo research, clinical studies involving large cohorts of human patients are lacking. The current literature suggests that further intensive research is necessary to validate both the role of the human microbiome in cancer, and the use of microbiome modification in cancer therapy.
Collapse
|
37
|
Chen Q, Deng Y, Chen J, Zhao J, Bi X, Zhou J, Li Z, Huang Z, Zhang Y, Chen X, Zhao H, Cai J. Impact of Postoperative Infectious Complications on Long-Term Outcomes for Patients Undergoing Simultaneous Resection for Colorectal Cancer Liver Metastases: A Propensity Score Matching Analysis. Front Oncol 2022; 11:793653. [PMID: 35071001 PMCID: PMC8776635 DOI: 10.3389/fonc.2021.793653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/15/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To investigate the impact of postoperative infectious complications (POI) on the long-term outcomes of patients with colorectal cancer liver metastasis (CRLM) after simultaneous resection of colorectal cancer and liver metastases. METHODS Four hundred seventy-nine CRLM patients receiving simultaneous resection between February 2010 and February 2018 at our hospital were enrolled. A 1:3 propensity score matching analysis (PSM) analysis was performed to balance covariates and avoid selection bias. After PSM, 90 patients were distributed to the POI group, and 233 patients were distributed to the no POI group. A log-rank test was performed to compare the progression-free survival (PFS) and overall survival (OS) data. A multivariate Cox regression model was employed to identify prognostic factors influencing OS and PFS. A value of two-sided P<0.05 was considered statistically significant. RESULTS Compared to patients in the no POI group, patients in the POI group were more likely to have hepatic portal occlusion (78.9% vs. 66.3%, P=0.021), operation time ≥325 min (61.1% vs. 48.1%, P=0.026), and intraoperative blood loss ≥200 ml (81.1% vs. 67.6%, P=0.012). In multivariate analysis, intraoperative blood loss ≥200 ml (OR = 2.057, 95% CI: 1.165-3.634, P=0.013) was identified as the only independent risk factor for POI. Patients with POI had a worse PFS (P<0.001, median PFS: 7.5 vs. 12.7 months) and a worse OS (P=0.010, median OS: 38.8 vs. 59.0 months) than those without POI. After 1:3 PSM analysis, no differences in clinicopathologic parameters were detected between the POI group and the no POI group. Patients with POI had a worse PFS (P=0.013, median PFS: 7.5 vs. 11.1 months) and a worse OS (P=0.020, median OS: 38.8 vs. 59.0 months) than those without POI. Multivariate analysis showed that POI was an independent predictor for worse PFS (HR=1.410, 95% CI: 1.065-1.869, P=0.017) and worse OS (HR=1.682, 95% CI: 1.113-2.544, P=0.014). CONCLUSIONS POI can significantly worsen the long-term outcomes of CRLM patients receiving simultaneous resection of colorectal cancer and liver metastases and should be considered to improve postoperative management and make better treatment decisions for these patients.
Collapse
Affiliation(s)
- Qichen Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiqiao Deng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghua Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianjun Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianguo Zhou
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyu Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yefan Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Liu C, Li Z, Ding J, Zhen H, Fang M, Nie C. Species-Level Analysis of the Human Gut Microbiome Shows Antibiotic Resistance Genes Associated With Colorectal Cancer. Front Microbiol 2022; 12:765291. [PMID: 34975790 PMCID: PMC8715872 DOI: 10.3389/fmicb.2021.765291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer deaths and continuously increases new cancer cases globally. Accumulating evidence links risks of CRC to antibiotic use. Long-term use and abuse of antibiotics increase the resistance of the gut microbiota; however, whether CRC is associated with antibiotic resistance in gut microbiota is still unclear. In this study, we performed a de novo assembly to metagenomic sequences in 382 CRC patients and 387 healthy controls to obtain representative species-level genome bins (rSGBs) and plasmids and analyzed the abundance variation of species and antibiotic resistance genes (ARGs). Twenty-five species and 65 ARGs were significantly enriched in the CRC patients, and among these ARGs, 12 were multidrug-resistant genes (MRGs), which mainly included acrB, TolC, marA, H-NS, Escherichia coli acrR mutation, and AcrS. These MRGs could confer resistance to fluoroquinolones, tetracyclines, cephalosporins, and rifamycin antibiotics by antibiotic efflux and inactivation. A classification model was built using the abundance of species and ARGs and achieved areas under the curve of 0.831 and 0.715, respectively. Our investigation has identified the antibiotic resistance types of ARGs and suggested that E. coli is the primary antibiotic resistance reservoir of ARGs in CRC patients, providing valuable evidence for selecting appropriate antibiotics in the CRC treatment.
Collapse
Affiliation(s)
- Chuanfa Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Zhiming Li
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jiahong Ding
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Hefu Zhen
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Mingyan Fang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Chao Nie
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
39
|
Jiang Q, Liu X, Yang Q, Chen L, Yang D. Salivary Microbiome in Adenoid Cystic Carcinoma Detected by 16S rRNA Sequencing and Shotgun Metagenomics. Front Cell Infect Microbiol 2022; 11:774453. [PMID: 34970508 PMCID: PMC8712576 DOI: 10.3389/fcimb.2021.774453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/25/2021] [Indexed: 01/14/2023] Open
Abstract
Microorganisms are confirmed to be closely related to the occurrence and development of cancers in human beings. However, there has been no published report detailing relationships between the oral microbiota and salivary adenoid cystic carcinoma (SACC). In this study, unstimulated saliva was collected from 13 SACC patients and 10 healthy controls. The microbial diversities, compositions and functions were comprehensively analyzed after 16S rRNA sequencing and whole-genome shotgun metagenomic sequencing. The alpha diversity showed no significant difference between SACC patients and healthy controls, while beta diversity showed a separation trend. The SACC patients showed higher abundances of Streptococcus and Rothia, while Prevotella and Alloprevotella were more abundant in healthy controls. The prevalent KEGG pathways, carbohydrate-active enzymes, antibiotic resistances and virulence factors as well as the biomarkers in SACC were determined by functional gene analysis. Our study preliminarily investigated the salivary microbiome of SACC patients compared with healthy controls and might be the basis for further studies on novel diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Qian Jiang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xing Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Qifen Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liang Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Deqin Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
40
|
Zhang JR, Hou P, Wang XJ, Weng ZQ, Shang-Guan XC, Wang H, You F, Lin BQ, Huang ZY, Chen XQ. TNFRSF11B Suppresses Memory CD4+ T Cell Infiltration in the Colon Cancer Microenvironment: A Multiomics Integrative Analysis. Front Immunol 2021; 12:742358. [PMID: 34938284 PMCID: PMC8685235 DOI: 10.3389/fimmu.2021.742358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Colorectal cancer is a lethal cancer worldwide. Due to the low tumor mutation burden and low proportion of tumor-infiltrating lymphocytes in the microenvironment of most patients, innovative immunotherapeutic approaches need to be identified. Methods Using the TCGA-COAD dataset (n = 514), we identified TNFRSF11B as a prognostic factor of colon cancer. An immunohistochemistry (IHC) dataset (n = 86), 290 single colorectal cancer cells (GSE81861), and 31 paired colon cancer transcriptional datasets were further applied to validate the function of TNFRSF11B, which was confirmed via fluorescence-activated cell sorting (FACS) analysis. Results A risk score system consisting of eight immune-related genes (IRGs) (FGFR2, ZC3HAV1L, TNFRSF11B, CD79A, IGHV3-11, IGHV3-21, IGKV2D-30, and IGKV6D-21) was constructed to predict the prognosis of colon cancer patients. Only TNFRSF11B was closely correlated with late-stage lymph node metastasis and worse survival outcomes (p = 0.010, p = 0.014, and p = 0.0061). In our IHC dataset, 72.09% (62/86) of the colon cancer patients had TNFRSF11B overexpression with significantly shorter overall survival times (p = 0.072). High TNFRSF11B expression typically had a later TNM stage (p = 0.067), a higher frequency of lymph node (p = 0.029) and lymphovascular (p = 0.007) invasion, and a higher incidence of pneumonia (p = 0.056) than their counterparts. The expression of six genes (KRT18, ARPC5L, ACTG1, ARPC2, EZR, and YWHAZ) related to pathogenic E. coli infection was simultaneously increased with TNFRSF11B overexpression via gene set enrichment analysis (GSEA). These genes are involved in the regulation of the actin cytoskeleton, shigellosis, bacterial invasion of epithelial cells, and Salmonella infection. Finally, only activated memory CD4+ T cells (p = 0.017) were significantly decreased in the high TNFRSF11B expression group via CIBERSORT comparison, which was confirmed by TIMER2.0 analysis of the TCGA-COAD dataset. We also performed FACS analysis to show that TNFRSF11B decreased the infiltration of central memory CD4+ T cells and effector memory CD4+ T cells in the colorectal cancer microenvironment (all p <0.001). Conclusion TNFRSF11B acts as a prognostic factor for colon cancer patients and could affect the colon cancer immune response. TNFRSF11B was closely related to lymph node invasion and pathogenic E. coli. infection, which may negatively affect memory-activated CD4+ T cell infiltration in colon cancer.
Collapse
Affiliation(s)
- Jun-Rong Zhang
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, Fuzhou, China
| | - Ping Hou
- Immunotherapy Institute, Fujian Medical University, Fuzhou, China
| | - Xiao-Jie Wang
- Department of General Surgery (Colorectal Surgery), Fujian Medical University Union Hospital, Fuzhou, China
| | - Zong-Qi Weng
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, Fuzhou, China
| | - Xin-Chang Shang-Guan
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, Fuzhou, China
| | - Hui Wang
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, Fuzhou, China
| | - Fang You
- Department of Emergency Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bing-Qiang Lin
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, Fuzhou, China
| | - Zheng-Yuan Huang
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, Fuzhou, China
| | - Xian-Qiang Chen
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
41
|
Kamali Dolatabadi R, Feizi A, Halaji M, Fazeli H, Adibi P. The Prevalence of Adherent-Invasive Escherichia coli and Its Association With Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:730243. [PMID: 34926490 PMCID: PMC8678049 DOI: 10.3389/fmed.2021.730243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are known as chronic gastrointestinal inflammatory disorders. The present systematic review and meta analysis was conducted to estimate the prevalence of adherent-invasive Escherichia coli (AIEC) isolates and their phylogenetic grouping among IBD patients compared with the controls. A systematic literature search was conducted among published papers by international authors until April 30, 2020 in Web of Science, Scopus, EMBASE, and PubMed databases. The pooled prevalence of AIEC isolates and their phylogenetic grouping among IBD patients as well as in controls was estimated using fixed or random effects models. Furthermore, for estimating the association of colonization by AIEC with IBD, odds ratio along with 95% confidence interval was reported. A total of 205 articles retrieved by the initial search of databases, 13 case–control studies met the eligibility criteria for inclusion in the meta analysis. There were 465 IBD cases (348 CD and 117 UC) and 307 controls. The pooled prevalence of AIEC isolates were 28% (95% CI: 18–39%), 29% (95% CI: 20–40%), 13% (95% CI: 1–30%), and 9% (95% CI: 3–19%), respectively among IBD, CD, UC, and control group, respectively. Our results revealed that the most frequent AIEC phylogroup in the IBD, CD, and control groups was B2. Fixed-effects meta analysis showed that colonization of AIEC is significantly associated with IBD (OR: 2.93; 95% CI: 1.90–4.52; P < 0.001) and CD (OR: 3.07; 95% CI: 1.99–4.74; P < 0.001), but not with UC (OR: 2.29; 95% CI: 0.81–6.51; P = 0.11). In summary, this meta analysis revealed that colonization by AIEC is more frequent in IBD and is associated with IBD (CD and UC). Our results suggested that the affects of IBD in patients colonized with the AIEC pathovar is not random, it is in fact a specific disease-related pathovar.
Collapse
Affiliation(s)
- Razie Kamali Dolatabadi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran.,Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi
- Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
42
|
Abstract
Colorectal cancer (CRC) is one of the most prevalent, most lethal cancers in the world. Increasing evidence suggests that the intestinal microbiota is closely related to the pathogenesis and prognosis of CRC. The normal microbiota plays an essential role in maintaining gut barrier function and the immune microenvironment. Recent studies have identified carcinogenic bacteria such as enterotoxigenic Bacteroides fragilis (ETBF) and Streptococcus gallolyticus (S. gallolyticus), as well as protective bacterial such as Akkermansia muciniphila (A. muciniphila), as potential targets of CRC treatment. Gut microbiota modulation aims to restore gut dysbiosis, regulate the intestinal immune system and prevent from pathogen invasion, all of which are beneficial for CRC prevention and prognosis. The utility of probiotics, prebiotics, postbiotics, fecal microbiota transplantation and dietary inventions to treat CRC makes them novel microbe-based management tools. In this review, we describe the mechanisms involved in bacteria-derived colorectal carcinogenesis and summarized novel bacteria-related therapies for CRC. In summary, we hope to facilitate clinical applications of intestinal bacteria for preventing and treating CRC.
Collapse
|
43
|
Mezerova K, Raclavsky V, Stary L. Which bacterial toxins are worthy of validation as markers in colorectal cancer screening? A critical review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 166:1-11. [PMID: 34747413 DOI: 10.5507/bp.2021.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Appropriate screening of early asymptomatic cases can reduce the disease burden and mortality rate of sporadic colorectal cancer (CRC) significantly. Currently, fecal occult blood testing (FOBT) is able to detect up to 80% of asymptomatic cases in the population aged 50+. Therefore, there is still a demand for new screening tests that would complement FOBT, mainly by detecting at least a part of the FOBT-negative CRC and adenoma cases, or possibly by identifying person at increased risk of sporadic CRC in order to offer them tailored follow-up. Among the potential markers studied, our knowledge has advanced at most in toxigenic gram-negative bacteria. In this review, we assess their potential critically and recommend those best suited for prospective evaluation of their true ability to increase the sensitivity of FOBT when combined during general population screening. In our opinion, colibactin and Bacteroides fragilis toxin are the best candidates, possibly complemented by the cytotoxic necrotizing factor (CNF).
Collapse
Affiliation(s)
- Kristina Mezerova
- Department of Microbiology, Faculty of Medicine & Dentistry, Palacky University Olomouc, Czech Republic
| | - Vladislav Raclavsky
- Department of Microbiology, Faculty of Medicine & Dentistry, Palacky University Olomouc, Czech Republic
| | - Lubomir Stary
- Department of Surgery I, University Hospital Olomouc, Czech Republic
| |
Collapse
|
44
|
Mezerová K, Starý L, Zbořil P, Klementa I, Stašek M, Špička P, Skalický P, Raclavský V. Cyclomodulins and Hemolysis in E. coli as Potential Low-Cost Non-Invasive Biomarkers for Colorectal Cancer Screening. Life (Basel) 2021; 11:1165. [PMID: 34833041 PMCID: PMC8621933 DOI: 10.3390/life11111165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/01/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022] Open
Abstract
The frequent occurrence of E. coli positive for cyclomodulins such as colibactin (CLB), the cytotoxic necrotizing factor (CNF), and the cytolethal distending factor (CDT) in colorectal cancer (CRC) patients published so far provides the opportunity to use them as CRC screening markers. We examined the practicability and performance of a low-cost detection approach that relied on culture followed by simplified DNA extraction and PCR in E. coli isolates recovered from 130 CRC patients and 111 controls. Our results showed a statistically significant association between CRC and the presence of colibactin genes clbB and clbN, the cnf gene, and newly, the hemolytic phenotype of E. coli isolates. We also observed a significant increase in the mean number of morphologically distinct E. coli isolates per patient in the CRC cohort compared to controls, indicating that the cyclomodulin-producing E. coli strains may represent potentially preventable harmful newcomers in CRC patients. A colibactin gene assay showed the highest detection rate (45.4%), and males would benefit from the screening more than females. However, because of the high number of false positives, practical use of this marker must be explored. In our opinion, it may serve as an auxiliary marker to increase the specificity and/or sensitivity of the well-established fecal immunochemical test (FIT) in CRC screening.
Collapse
Affiliation(s)
- Kristýna Mezerová
- Department of Microbiology, Faculty of Medicine & Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic;
| | - Lubomír Starý
- First Department of Surgery, University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic; (L.S.); (P.Z.); (I.K.); (M.S.); (P.Š.); (P.S.)
| | - Pavel Zbořil
- First Department of Surgery, University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic; (L.S.); (P.Z.); (I.K.); (M.S.); (P.Š.); (P.S.)
| | - Ivo Klementa
- First Department of Surgery, University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic; (L.S.); (P.Z.); (I.K.); (M.S.); (P.Š.); (P.S.)
| | - Martin Stašek
- First Department of Surgery, University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic; (L.S.); (P.Z.); (I.K.); (M.S.); (P.Š.); (P.S.)
| | - Petr Špička
- First Department of Surgery, University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic; (L.S.); (P.Z.); (I.K.); (M.S.); (P.Š.); (P.S.)
| | - Pavel Skalický
- First Department of Surgery, University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic; (L.S.); (P.Z.); (I.K.); (M.S.); (P.Š.); (P.S.)
| | - Vladislav Raclavský
- Department of Microbiology, Faculty of Medicine & Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic;
| |
Collapse
|
45
|
Association of Polygenic Risk Score and Bacterial Toxins at Screening Colonoscopy with Colorectal Cancer Progression: A Multicenter Case-Control Study. Toxins (Basel) 2021; 13:toxins13080569. [PMID: 34437440 PMCID: PMC8402601 DOI: 10.3390/toxins13080569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and its incidence is correlated with infections, chronic inflammation, diet, and genetic factors. An emerging aspect is that microbial dysbiosis and chronic infections triggered by certain bacteria can be risk factors for tumor progression. Recent data suggest that certain bacterial toxins implicated in DNA attack or in proliferation, replication, and death can be risk factors for insurgence and progression of CRC. In this study, we recruited more than 300 biopsy specimens from people undergoing colonoscopy, and we analyzed to determine whether a correlation exists between the presence of bacterial genes coding for toxins possibly involved in CRC onset and progression and the different stages of CRC. We also analyzed to determine whether CRC-predisposing genetic factors could contribute to bacterial toxins response. Our results showed that CIF toxin is associated with polyps or adenomas, whereas pks+ seems to be a predisposing factor for CRC. Toxins from Escherichia coli as a whole have a higher incidence rate in adenocarcinoma patients compared to controls, whereas Bacteroides fragilis toxin does not seem to be associated with pre-cancerous nor with cancerous lesions. These results have been obtained irrespectively of the presence of CRC-risk loci.
Collapse
|
46
|
Perumal K, Ahmad S, Mohd-Zahid MH, Wan Hanaffi WN, Z.A. I, Six JL, Ferji K, Jaafar J, Boer JC, Plebanski M, Uskoković V, Mohamud R. Nanoparticles and Gut Microbiota in Colorectal Cancer. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.681760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent years have witnessed an unprecedented growth in the research area of nanomedicine. There is an increasing optimism that nanotechnology applied to medicine will bring significant advances in the diagnosis and treatment of various diseases, including colorectal cancer (CRC), a type of neoplasm affecting cells in the colon or the rectum. Recent findings suggest that the role of microbiota is crucial in the development of CRC and its progression. Dysbiosis is a condition that disturbs the normal microbial environment in the gut and is often observed in CRC patients. In order to detect and treat precancerous lesions, new tools such as nanotechnology-based theranostics, provide a promising option for targeted marker detection or therapy for CRC. Because the presence of gut microbiota influences the route of biomarker detection and the route of the interaction of nanoparticle/drug complexes with target cells, the development of nanoparticles with appropriate sizes, morphologies, chemical compositions and concentrations might overcome this fundamental barrier. Metallic particles are good candidates for nanoparticle-induced intestinal dysbiosis, but this aspect has been poorly explored to date. Herein, we focus on reviewing and discussing nanotechnologies with potential applications in CRC through the involvement of gut microbiota and highlight the clinical areas that would benefit from these new medical technologies.
Collapse
|
47
|
Liu Y, Li X, Yang Y, Liu Y, Wang S, Ji B, Wei Y. Exploring Gut Microbiota in Patients with Colorectal Disease Based on 16S rRNA Gene Amplicon and Shallow Metagenomic Sequencing. Front Mol Biosci 2021; 8:703638. [PMID: 34307461 PMCID: PMC8299945 DOI: 10.3389/fmolb.2021.703638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
The gastrointestinal tract, the largest human microbial reservoir, is highly dynamic. The gut microbes play essential roles in causing colorectal diseases. In the present study, we explored potential keystone taxa during the development of colorectal diseases in central China. Fecal samples of some patients were collected and were allocated to the adenoma (Group A), colorectal cancer (Group C), and hemorrhoid (Group H) groups. The 16S rRNA amplicon and shallow metagenomic sequencing (SMS) strategies were used to recover the gut microbiota. Microbial diversities obtained from 16S rRNA amplicon and SMS data were similar. Group C had the highest diversity, although no significant difference in diversity was observed among the groups. The most dominant phyla in the gut microbiota of patients with colorectal diseases were Bacteroidetes, Firmicutes, and Proteobacteria, accounting for >95% of microbes in the samples. The most abundant genera in the samples were Bacteroides, Prevotella, and Escherichia/Shigella, and further species-level and network analyses identified certain potential keystone taxa in each group. Some of the dominant species, such as Prevotella copri, Bacteroides dorei, and Bacteroides vulgatus, could be responsible for causing colorectal diseases. The SMS data recovered diverse antibiotic resistance genes of tetracycline, macrolide, and beta-lactam, which could be a result of antibiotic overuse. This study explored the gut microbiota of patients with three different types of colorectal diseases, and the microbial diversity results obtained from 16S rRNA amplicon sequencing and SMS data were found to be similar. However, the findings of this study are based on a limited sample size, which warrants further large-scale studies. The recovery of gut microbiota profiles in patients with colorectal diseases could be beneficial for future diagnosis and treatment with modulation of the gut microbiota. Moreover, SMS data can provide accurate species- and gene-level information, and it is economical. It can therefore be widely applied in future clinical metagenomic studies.
Collapse
Affiliation(s)
- Yuanfeng Liu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Li
- Science China Press, Beijing, China
| | - Yudie Yang
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmaceutical Sciences, Ministry of Education, Zhengzhou University, Zhengzhou, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Ye Liu
- Oncology Department, Colorectal and Anal Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shijun Wang
- Oncology Department, Colorectal and Anal Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmaceutical Sciences, Ministry of Education, Zhengzhou University, Zhengzhou, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Wami H, Wallenstein A, Sauer D, Stoll M, von Bünau R, Oswald E, Müller R, Dobrindt U. Insights into evolution and coexistence of the colibactin- and yersiniabactin secondary metabolite determinants in enterobacterial populations. Microb Genom 2021; 7. [PMID: 34128785 PMCID: PMC8461471 DOI: 10.1099/mgen.0.000577] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial genotoxin colibactin interferes with the eukaryotic cell cycle by causing dsDNA breaks. It has been linked to bacterially induced colorectal cancer in humans. Colibactin is encoded by a 54 kb genomic region in Enterobacteriaceae. The colibactin genes commonly co-occur with the yersiniabactin biosynthetic determinant. Investigating the prevalence and sequence diversity of the colibactin determinant and its linkage to the yersiniabactin operon in prokaryotic genomes, we discovered mainly species-specific lineages of the colibactin determinant and classified three main structural settings of the colibactin–yersiniabactin genomic region in Enterobacteriaceae. The colibactin gene cluster has a similar but not identical evolutionary track to that of the yersiniabactin operon. Both determinants could have been acquired on several occasions and/or exchanged independently between enterobacteria by horizontal gene transfer. Integrative and conjugative elements play(ed) a central role in the evolution and structural diversity of the colibactin–yersiniabactin genomic region. Addition of an activating and regulating module (clbAR) to the biosynthesis and transport module (clbB-S) represents the most recent step in the evolution of the colibactin determinant. In a first attempt to correlate colibactin expression with individual lineages of colibactin determinants and different bacterial genetic backgrounds, we compared colibactin expression of selected enterobacterial isolates in vitro. Colibactin production in the tested Klebsiella species and Citrobacter koseri strains was more homogeneous and generally higher than that in most of the Escherichia coli isolates studied. Our results improve the understanding of the diversity of colibactin determinants and its expression level, and may contribute to risk assessment of colibactin-producing enterobacteria.
Collapse
Affiliation(s)
- Haleluya Wami
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Daniel Sauer
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Campus E8 1, Saarbrücken, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | | | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Campus E8 1, Saarbrücken, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| |
Collapse
|
49
|
Bonde A, Daly S, Kirsten J, Kondapaneni S, Mellnick V, Menias CO, Katabathina VS. Human Gut Microbiota-associated Gastrointestinal Malignancies: A Comprehensive Review. Radiographics 2021; 41:1103-1122. [PMID: 33989072 DOI: 10.1148/rg.2021200168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human gastrointestinal tract houses trillions of microbes. The gut and various types of microorganisms, including bacteria, viruses, fungi, and archaea, form a complex ecosystem known as the gut microbiota, and the whole genome of the gut microbiota is referred to as the gut microbiome. The gut microbiota is essential for homeostasis and the overall well-being of a person and is increasingly considered an adjunct "virtual organ," with a complexity level comparable to that of the other organ systems. The gut microbiota plays an essential role in nutrition, local mucosal homeostasis, inflammation, and the mucosal immune system. An imbalanced state of the gut microbiota, known as dysbiosis, can predispose to development of various gastrointestinal malignancies through three speculated pathogenic mechanisms: (a) direct cytotoxic effects with damage to the host DNA, (b) disproportionate proinflammatory signaling inducing inflammation, and (c) activation of tumorigenic pathways or suppression of tumor-suppressing pathways. Several microorganisms, including Helicobacter pylori, Epstein-Barr virus, human papillomavirus, Mycoplasma species, Escherichia coli, and Streptococcus bovis, are associated with gastrointestinal malignancies such as esophageal adenocarcinoma, gastric adenocarcinoma, gastric mucosa-associated lymphoid tissue lymphoma, colorectal adenocarcinoma, and anal squamous cell carcinoma. Imaging plays a pivotal role in diagnosis and management of microbiota-associated gastrointestinal malignancies. Appropriate use of probiotics, fecal microbiota transplantation, and overall promotion of the healthy gut are ongoing areas of research for prevention and treatment of malignancies. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Apurva Bonde
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Sean Daly
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Julia Kirsten
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Sainath Kondapaneni
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Vincent Mellnick
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Christine O Menias
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Venkata S Katabathina
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| |
Collapse
|
50
|
Dougherty MW, Jobin C. Shining a Light on Colibactin Biology. Toxins (Basel) 2021; 13:346. [PMID: 34065799 PMCID: PMC8151066 DOI: 10.3390/toxins13050346] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Colibactin is a secondary metabolite encoded by the pks gene island identified in several Enterobacteriaceae, including some pathogenic Escherichia coli (E. coli) commonly enriched in mucosal tissue collected from patients with inflammatory bowel disease and colorectal cancer. E. coli harboring this biosynthetic gene cluster cause DNA damage and tumorigenesis in cell lines and pre-clinical models, yet fundamental knowledge regarding colibactin function is lacking. To accurately assess the role of pks+ E. coli in cancer etiology, the biological mechanisms governing production and delivery of colibactin by these bacteria must be elucidated. In this review, we will focus on recent advances in our understanding of colibactin's structural mode-of-action and mutagenic potential with consideration for how this activity may be regulated by physiologic conditions within the intestine.
Collapse
Affiliation(s)
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Infectious Diseases and Inflammation, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|