1
|
Singh S, Singh S, Trivedi M, Dwivedi M. An insight into MDR Acinetobacter baumannii infection and its pathogenesis: Potential therapeutic targets and challenges. Microb Pathog 2024; 192:106674. [PMID: 38714263 DOI: 10.1016/j.micpath.2024.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Acinetobacter baumannii is observed as a common species of Gram-negative bacteria that exist in soil and water. Despite being accepted as a typical component of human skin flora, it has become an important opportunistic pathogen, especially in healthcare settings. The pathogenicity of A. baumannii is attributed to its virulence factors, which include adhesins, pili, lipopolysaccharides, outer membrane proteins, iron uptake systems, autotransporter, secretion systems, phospholipases etc. These elements provide the bacterium the ability to cling to and penetrate host cells, get past the host immune system, and destroy tissue. Its infection is a major contributor to human pathophysiological conditions including pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. It is challenging to treat infections brought on by this pathogen since this bacterium has evolved to withstand numerous drugs and further emergence of drug-resistant A. baumannii results in higher rates of morbidity and mortality. The long-term survival of this bacterium on surfaces of medical supplies and hospital furniture facilitates its frequent spread in humans from one habitat to another. There is a need for urgent investigations to find effective drug targets for A. baumannii as well as designing novel drugs to reduce the survival and spread of infection. In the current review, we represent the specific features, pathogenesis, and molecular intricacies of crucial drug targets of A. baumannii. This would also assist in proposing strategies and alternative therapies for the prevention and treatment of A. baumannii infections and their spread.
Collapse
Affiliation(s)
- Sukriti Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Sushmita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow, 226028, India.
| |
Collapse
|
2
|
Ji C, Guo W, Amir H. Experience of diagnosis and treatment of hard-to-heal wounds infected with Acinetobacter baumannii: a case study. J Wound Care 2024; 33:278-285. [PMID: 38573906 DOI: 10.12968/jowc.2024.33.4.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
OBJECTIVE To explore the efficacy of 0.01% hypochlorous acid (HOCl) in the treatment of hard-to-heal wounds infected by multidrug-resistant Acinetobacter baumannii. METHOD We report a case of hard-to-heal wounds on a patient's forearms that were infected by Acinetobacter baumannii. The wounds were treated with 0.01% HOCl. We reviewed the relevant literature and discussed the definition, epidemiology and pathogenesis of hard-to-heal wounds infected by Acinetobacter baumannii. We also explored the safety and efficacy of 0.01% HOCl for the treatment of hard-to-heal wounds infected with Acinetobacter baumannii. RESULTS After 3-4 weeks of treatment with 0.01% HOCl, the pain and pruritus of the wounds was gradually alleviated, the infection was controlled and the granulation tissue was fresh. The ulcers also shrank and the nutritional condition of the patient improved. In the fifth week, the skin of the patient's right thigh was grafted to repair the wounds, which then healed within 18 days. During the three years of follow-up, the patient had no relapse. CONCLUSION In our case, the 0.01% HOCl seemed to effectively inactivate the bacterial biological biofilm. This helped to promote wound healing, and was non-toxic to the tissues. We consider low-concentration HOCl to be safe and effective for the treatment of hard-to-heal wounds infected with Acinetobacter baumannii.
Collapse
Affiliation(s)
- Chaochao Ji
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Wenyong Guo
- Institute of Basic Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hammad Amir
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Li P, Zhang S, Wang J, Al-Shamiri MM, Luo K, Liu S, Mi P, Wu X, Liu H, Tian H, Han B, Lei J, Han S, Han L. The role of type VI secretion system genes in antibiotic resistance and virulence in Acinetobacter baumannii clinical isolates. Front Cell Infect Microbiol 2024; 14:1297818. [PMID: 38384301 PMCID: PMC10879597 DOI: 10.3389/fcimb.2024.1297818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The type VI secretion system (T6SS) is a crucial virulence factor in the nosocomial pathogen Acinetobacter baumannii. However, its association with drug resistance is less well known. Notably, the roles that different T6SS components play in the process of antimicrobial resistance, as well as in virulence, have not been systematically revealed. Methods The importance of three representative T6SS core genes involved in the drug resistance and virulence of A. baumannii, namely, tssB, tssD (hcp), and tssM was elucidated. Results A higher ratio of the three core genes was detected in drug-resistant strains than in susceptible strains among our 114 A. baumannii clinical isolates. Upon deletion of tssB in AB795639, increased antimicrobial resistance to cefuroxime and ceftriaxone was observed, alongside reduced resistance to gentamicin. The ΔtssD mutant showed decreased resistance to ciprofloxacin, norfloxacin, ofloxacin, tetracycline, and doxycycline, but increased resistance to tobramycin and streptomycin. The tssM-lacking mutant showed an increased sensitivity to ofloxacin, polymyxin B, and furazolidone. In addition, a significant reduction in biofilm formation was observed only with the ΔtssM mutant. Moreover, the ΔtssM strain, followed by the ΔtssD mutant, showed decreased survival in human serum, with attenuated competition with Escherichia coli and impaired lethality in Galleria mellonella. Discussion The above results suggest that T6SS plays an important role, participating in the antibiotic resistance of A. baumannii, especially in terms of intrinsic resistance. Meanwhile, tssM and tssD contribute to bacterial virulence to a greater degree, with tssM being associated with greater importance.
Collapse
Affiliation(s)
- Pu Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Sirui Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jingdan Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Mona Mohamed Al-Shamiri
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Kai Luo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shuyan Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Peng Mi
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Laboratory Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaokang Wu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haiping Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Laboratory Medicine, Xi’an Daxing Hospital, Xi’an, China
| | - Huohuan Tian
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Han
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jin’e Lei
- Department of Laboratory Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Yao Y, Chen Q, Zhou H. Virulence Factors and Pathogenicity Mechanisms of Acinetobacter baumannii in Respiratory Infectious Diseases. Antibiotics (Basel) 2023; 12:1749. [PMID: 38136783 PMCID: PMC10740465 DOI: 10.3390/antibiotics12121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) has become a notorious pathogen causing nosocomial and community-acquired infections, especially ventilator-associated pneumonia. This opportunistic pathogen is found to possess powerful genomic plasticity and numerous virulence factors that facilitate its success in the infectious process. Although the interactions between A. baumannii and the pulmonary epitheliums have been extensively studied, a complete and specific description of its overall pathogenic process is lacking. In this review, we summarize the current knowledge of the antibiotic resistance and virulence factors of A. baumannii, specifically focusing on the pathogenic mechanisms of this detrimental pathogen in respiratory infectious diseases. An expansion of the knowledge regarding A. baumannii pathogenesis will contribute to the development of effective therapies based on immunopathology or intracellular signaling pathways to eliminate this harmful pathogen during infections.
Collapse
Affiliation(s)
| | | | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Y.Y.); (Q.C.)
| |
Collapse
|
5
|
Zhang L, Gade V, Kirienko NV. Pathogen-induced dormancy in liquid limits gastrointestinal colonization of Caenorhabditis elegans. Virulence 2023; 14:2204004. [PMID: 37096826 PMCID: PMC10132241 DOI: 10.1080/21505594.2023.2204004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023] Open
Abstract
Colonization is generally considered a prerequisite for infection, but this event is context-dependent, as evidenced by the differing ability of the human pathogen Pseudomonas aeruginosa to efficiently colonize Caenorhabditis elegans on agar but not in liquid . In this study, we examined the impact of the environment, pathogen, host, and their interactions on host colonization. We found that the transition to a liquid environment reduces food uptake by about two-fold. Also expression of specific adhesins was significantly altered in liquid-based assays for P. aeruginosa, suggesting that it may be one factor driving diminished colonization. Unexpectedly, host immune pathways did not appear to play a significant role in decreased colonization in liquid. Although knocking down key immune pathways (e.g. daf-16 or zip-2), either alone or in combination, significantly reduced survival, the changes in colonization were very small. In spite of the limited bacterial accumulation in the liquid setting, pathogenic colonization was still required for the virulence of Enterococcus faecalis. In addition, we found that a pathogen-induced dormancy was displayed by C. elegans in liquid medium after pathogen exposure, resulting in cessation of pharyngeal pumping and a decrease in bacterial intake. We conclude that poor colonization in liquid is likely due to a combination of environmental factors and host-pathogen interactions. These results provide new insights into mechanisms for colonization in different models, enabling pathogenesis models to be fine-tuned to more accurately represent the conditions seen in human infections so that new tools for curbing bacterial and fungal infections can be developed.
Collapse
Affiliation(s)
- Liyang Zhang
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Vyshnavi Gade
- Department of BioSciences, Rice University, Houston, TX, USA
| | | |
Collapse
|
6
|
Gui S, Li X, Feng M, Liu H, Huang L, Niu X. A fresh pH-responsive imipenem-loaded nanocarrier against Acinetobacter baumannii with a synergetic effect. Front Bioeng Biotechnol 2023; 11:1166790. [PMID: 37113664 PMCID: PMC10128990 DOI: 10.3389/fbioe.2023.1166790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, the treatment of Acinetobacter baumannii infections has become a pressing clinical challenge due to its increasing incidence and its serious pathogenic risk. The research and development of new antibacterial agents for A. baumannii have attracted the attention of the scientific community. Therefore, we have constructed a new pH-responsive antibacterial nano-delivery system (Imi@ZIF-8) for the antibacterial treatment of A. baumannii. Due to its pH-sensitive characteristics, the nano-delivery system offers an improved release of the loaded imipenem antibiotic at the acidic infection site. Based on the high loading capacity and positive charge of the modified ZIF-8 nanoparticles, they are excellent carriers and are suitable for imipenem loading. The Imi@ZIF-8 nanosystem features synergistic antibacterial effects, combining ZIF-8 and imipenem to eliminate A. baumannii through different antibacterial mechanisms. When the loaded imipenem concentration reaches 20 µg/mL, Imi@ZIF-8 is highly effective against A. baumannii in vitro. Imi@ZIF-8 not only inhibits the biofilm formation of A. baumannii but also has a potent killing effect. Furthermore, in mice with celiac disease, the Imi@ZIF-8 nanosystem demonstrates excellent therapeutic efficacy against A. baumannii at imipenem concentrations of 10 mg/kg, and it can inhibit inflammatory reaction and local leukocyte infiltration. Due to its biocompatibility and biosafety, this nano-delivery system is a promising therapeutic strategy in the clinical treatment of A. baumannii infections, providing a new direction for the treatment of antibacterial infections.
Collapse
Affiliation(s)
- Shumin Gui
- Department of Hematology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xisheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Cental South University, Changsha, Hunan, China
| | - Mingming Feng
- Department of Hematology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liwenhui Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinqing Niu
- Department of Hematology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Xinqing Niu,
| |
Collapse
|
7
|
Xue P, Sang R, Li N, Du S, Kong X, Tai M, Jiang Z, Chen Y. A new approach to overcoming antibiotic-resistant bacteria: Traditional Chinese medicine therapy based on the gut microbiota. Front Cell Infect Microbiol 2023; 13:1119037. [PMID: 37091671 PMCID: PMC10117969 DOI: 10.3389/fcimb.2023.1119037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 04/25/2023] Open
Abstract
With the irrational use of antibiotics and the increasing abuse of oral antibiotics, the drug resistance of gastrointestinal pathogens has become a prominent problem in clinical practice. Gut microbiota plays an important role in maintaining human health, and the change of microbiota also affects the activity of pathogenic bacteria. Interfering with antibiotic resistant bacteria by affecting gut microbiota has also become an important regulatory signal. In clinical application, due to the unique advantages of traditional Chinese medicine in sterilization and drug resistance, it is possible for traditional Chinese medicine to improve the gut microbial microenvironment. This review discusses the strategies of traditional Chinese medicine for the treatment of drug-resistant bacterial infections by changing the gut microenvironment, unlocking the interaction between microbiota and drug resistance of pathogenic bacteria.
Collapse
Affiliation(s)
- Peng Xue
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Rui Sang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Nan Li
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Siyuan Du
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xiuwen Kong
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Mingliang Tai
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zhihao Jiang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Ying Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
- *Correspondence: Ying Chen,
| |
Collapse
|
8
|
Tiwari P, Sharma P, Kumar M, Kapil A, Abdul Samath E, Kaur P. Identification of novel natural MurD ligase inhibitors as potential antimicrobial agents targeting Acinetobacter baumannii: In silico screening and biological evaluation. J Biomol Struct Dyn 2022; 40:14051-14066. [PMID: 34766874 DOI: 10.1080/07391102.2021.2000497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The increased multidrug resistance in Acinetobacter baumannii (A. baumannii) to the present-day known antibiotics has stimulated academic and industrial efforts globally for the development of novel antibacterial agents. Natural compounds as potential drug leads are gaining significant attention due to their less toxic and more tolerant nature. In the current study, the natural product-based compounds were explored as probable inhibitors of UDP-N-acetylmuramoyl-L-alanine:D-glutamate (MurD) ligase from A.baumannii (AbMurD) to provide a new class of drug leads. The prepared natural library of 3,16,714 compounds from ZINC database was screened into the active site of AbMurD using in silico high-throughput virtual screening which resulted in 100 compounds having high binding affinities. Further screening through flexible molecular docking yielded four potential compounds selected on the basis of estimated binding affinity (ΔG) and favorable protein-ligand interactions. MD simulation of these four compounds under physiological conditions and free binding energy calculations using MM/PBSA (molecular mechanics with Poisson- Boltzmann and surface area solvation) approach revealed three compounds ZINC08879777, ZINC30726863, and ZINC95486217 as potential binders of AbMurD. The calculated physicochemical and ADME properties of these compounds revealed that they can be exploited and modified to improve their binding affinity with the enzyme. Two compounds were purchased and tested against bacterial cell cultures of A. baumannii, Salmonella Typhi, and Staphylococcus aureus to determine their broad-spectrum antibacterial activity. The results suggest that the identified compounds can be exploited as potential herbal leads to target both Gram-positive and Gram-negative pathogens. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Sharma
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Dehbanipour R, Ghalavand Z. Acinetobacter baumannii: Pathogenesis, virulence factors, novel therapeutic options and mechanisms of resistance to antimicrobial agents with emphasis on tigecycline. J Clin Pharm Ther 2022; 47:1875-1884. [PMID: 36200470 DOI: 10.1111/jcpt.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Acinetobacter baumannii is one of the most important nosocomial pathogens with the ability to cause infections such as meningitis, pneumonia, urinary tract, septicaemia and wound infections. A wide range of virulence factors are responsible for pathogenesis and high mortality of A. baumannii including outer membrane proteins, lipopolysaccharide, capsule, phospholipase, nutrient- acquisition systems, efflux pumps, protein secretion systems, quarom sensing and biofilm production. These virulence factors contribute in pathogen survival in stressful conditions and antimicrobial resistance. COMMENT According to the World Health Organization (WHO), A. baumannii is one of the most resistant pathogens of ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, A. baumannii, Pseudomonas aeruginosa and Enterobacter spp.). In recent years, resistance to a wide range of antibiotics in A. baumannii has significantly increased and the high emergence of extensively drug resistant (XDR) isolates is challenging. Among therapeutic antibiotics, resistance to tigecycline as a last resort antibiotic has become a global concern. Several mechanisms are involved in tigecycline resistance, the most important of which is RND (Resistance-Nodulation-Division) family efflux pumps overexpression. The development of new therapeutic strategies to confront A. baumannii infections has been very promising in recent years. WHAT IS NEW AND CONCLUSION In the present review we highlight microbiological and virulence traits in A. baumannii and peruse the tigecycline resistance mechanisms and novel therapeutic options. Among the novel therapeutic strategies we focus on combination therapy, drug repurposing, novel antibiotics, bacteriophage therapy, antimicrobial peptides (AMPs), human monoclonal antibodies (Hu-mAbs), nanoparticles and gene editing.
Collapse
Affiliation(s)
- Razieh Dehbanipour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Srikanth D, Vinayak Joshi S, Ghouse Shaik M, Pawar G, Bujji S, Kanchupalli V, Chopra S, Nanduri S. A Comprehensive Review on Potential Therapeutic Inhibitors of Nosocomial Acinetobacter baumannii Superbugs. Bioorg Chem 2022; 124:105849. [DOI: 10.1016/j.bioorg.2022.105849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
|
11
|
Lynch JP, Clark NM, Zhanel GG. Infections Due to Acinetobacter baumannii-calcoaceticus Complex: Escalation of Antimicrobial Resistance and Evolving Treatment Options. Semin Respir Crit Care Med 2022; 43:97-124. [PMID: 35172361 DOI: 10.1055/s-0041-1741019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bacteria within the genus Acinetobacter (principally A. baumannii-calcoaceticus complex [ABC]) are gram-negative coccobacilli that most often cause infections in nosocomial settings. Community-acquired infections are rare, but may occur in patients with comorbidities, advanced age, diabetes mellitus, chronic lung or renal disease, malignancy, or impaired immunity. Most common sites of infections include blood stream, skin/soft-tissue/surgical wounds, ventilator-associated pneumonia, orthopaedic or neurosurgical procedures, and urinary tract. Acinetobacter species are intrinsically resistant to multiple antimicrobials, and have a remarkable ability to acquire new resistance determinants via plasmids, transposons, integrons, and resistance islands. Since the 1990s, antimicrobial resistance (AMR) has escalated dramatically among ABC. Global spread of multidrug-resistant (MDR)-ABC strains reflects dissemination of a few clones between hospitals, geographic regions, and continents; excessive antibiotic use amplifies this spread. Many isolates are resistant to all antimicrobials except colistimethate sodium and tetracyclines (minocycline or tigecycline); some infections are untreatable with existing antimicrobial agents. AMR poses a serious threat to effectively treat or prevent ABC infections. Strategies to curtail environmental colonization with MDR-ABC require aggressive infection-control efforts and cohorting of infected patients. Thoughtful antibiotic strategies are essential to limit the spread of MDR-ABC. Optimal therapy will likely require combination antimicrobial therapy with existing antibiotics as well as development of novel antibiotic classes.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology; Department of Medicine; The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nina M Clark
- Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Lokhande KB, Pawar SV, Madkaiker S, Nawani N, Venkateswara SK, Ghosh P. High throughput virtual screening and molecular dynamics simulation analysis of phytomolecules against BfmR of Acinetobacter baumannii: anti-virulent drug development campaign. J Biomol Struct Dyn 2022; 41:2698-2712. [PMID: 35156902 DOI: 10.1080/07391102.2022.2038271] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acinetobacter baumannii is a notorious multidrug resistant bacterium responsible for several hospital acquired infections assisted by its capacity to develop biofilms. A. baumannii BfmR (RstA), a response regulator from the BfmR/S two-component signal transduction system, is the major controller of A. baumannii biofilm development and formation. As a result, BfmR represents a novel target for anti-biofilm treatment against A. baumannii. The discovery of the high-resolution crystal structure of BfmR provides a good chance for computational screening of its probable inhibitors. Therefore, in this study we aim to search new, less toxic, and natural BfmR inhibitors from 8450 phytomolecules available in the Indian Medicinal Plants, Phytochemistry and Therapeutic (IMPPAT) database by analyzing molecular docking against BfmR (PDB ID: 6BR7). Out of these 8450 phytomolecules 6742 molecules were successfully docked with BfmR with the docking score range -6.305 kcal/mol to +5.120 kcal/mol. Structure based-molecular docking (SB-MD) and ADMET (absorption, distribution, metabolism, excretion, & toxicity) profile examination revealed that Norepinephrine, Australine, Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline phytocompounds strongly binds to the active site residues of BfmR. Furthermore, molecular dynamics simulation (MDS) studies for 100 ns and the binding free energy (MM/GBSA) analysis elucidated the binding mechanism of Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline to BfmR. In summary, these phytocompounds seems to have the promising molecules against BfmR, and thus necessitates further verification by both in vitro and in vivo experiments. HighlightsBfmR plays a key role in biofilm development and exopolysaccharide (EPS) synthesis in A. baumannii.Computational approach to search for promising BfmR inhibitors from IMPAAT database.The lead phytomolecules such as Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline displayed significant binding with BfmR active site.The outcome of BfmR binding phytomolecules has broadened the scope of hit molecules validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Dr. D. Y. Patil Vidyapeeth, Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Sarika Vishnu Pawar
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Smriti Madkaiker
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Neelu Nawani
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Swamy K Venkateswara
- Bioinformatics Research Group, MIT School of Bioengineering Sciences & Research, MIT-ADT University, Pune, Maharashtra, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
13
|
Genomic and Phenotypic Evolution of Tigecycline-Resistant Acinetobacter baumannii in Critically Ill Patients. Microbiol Spectr 2022; 10:e0159321. [PMID: 35044218 PMCID: PMC8768575 DOI: 10.1128/spectrum.01593-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii is an important opportunistic pathogen of nosocomial infections. A. baumannii presently exhibits increasing antibiotic resistance, which poses great challenges to public health. The occurrence of tigecycline-resistant A. baumannii is related to tigecycline treatment and the within-host evolution of bacteria. We analyzed isogenic A. baumannii isolates from two critically ill patients who underwent tigecycline treatment. Whole-genome sequencing and comparative analyses were performed to determine the characteristics of genomic evolution. We conducted phenotypic studies, including in vitro antibiotic sensitivity tests, biofilm formation tests, growth curve determination, serum bactericidal determination, and Galleria mellonella lethality assays. In vivo emergent tigecycline resistance was observed after tigecycline treatment. After the withdrawal of tigecycline pressure, tigecycline-resistant isolates were not isolated from one patient. Four tigecycline-resistant isolates exhibited lower growth rates. The biofilm formation and virulence characteristics of tigecycline-resistant isolates were reasonably different between the two patients. A special phenotype appeared after tigecycline treatment in both patients, accompanied by reduced serum tolerance, enhanced biofilm formation ability, and reduced virulence of Galleria mellonella. Most of the genomic variation occurred after the tigecycline treatment, primarily involving transcription-, signal transduction-, translation-, ribosomal biogenesis-, and cell wall biogenesis-related genes. We determined that the genomic variations in baeR, wzc, aroQ, rluC, and adeS and acquisition of ISAba1 were associated with tigecycline resistance in vivo. Capsular polysaccharide-related genes, wzc, and itrA2, and aroQ, were the key genes related to the virulence evolution of A. baumannii within the host. IMPORTANCE Multidrug-resistant Acinetobacter baumannii poses a huge challenge to clinical treatment, and tigecycline is considered a last-line drug for the treatment of multidrug-resistant A. baumannii. However, the mechanism of tigecycline resistance in vivo has not been elucidated. This study analyzed the genomic and phenotypic evolution of tigecycline-resistant A. baumannii in two critically ill patients. In this study, after treatment with tigecycline, tigecycline-resistant A. baumannii emerged with higher fitness costs. After the withdrawal of tigecycline pressure, tigecycline-resistant isolates were not isolated from one patient. The in vivo and in vitro virulence of the isolates exhibited diametrically opposite results in the two patients. Genomic variations in baeR, wzc, aroQ, rluC, and adeS and acquisition of ISAba1 were associated with tigecycline resistance in vivo. The capsular polysaccharide-related genes, wzc, itrA2, and aroQ, were the key genes related to the virulence of A. baumannii in hosts. Our research provides a theoretical basis for elucidating the mechanism of tigecycline resistance and presents new clues for future surveillance and treatment of multidrug-resistant A. baumannii.
Collapse
|
14
|
Hagag YA, Said HS, Kenawy HI, Hassan R. A novel pentavalent vaccine candidate completely protects against Acinetobacter baumannii in a mouse model of peritonitis. Appl Microbiol Biotechnol 2022; 106:8151-8167. [PMID: 36401642 PMCID: PMC9676856 DOI: 10.1007/s00253-022-12231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022]
Abstract
Acinetobacter baumannii is considered as one of the most virulent and infectious organisms that have an increased ability to both evade host immune response and resist various classes of antibiotics, leading to life-threatening infections. Multiple virulence factors have been implicated in the high prevalence rate of A. baumannii in hospitalized and immunocompromised patients. Moreover, improper use of antibiotics has led to the emergence of extensive drug-resistant strains that urgently require alternative strategies to control this superbug. Unfortunately, the availability of a licensed vaccine against A. baumannii infections is still challenged by the vast diversity among A. baumannii strains. Here, we report the development of a novel pentavalent vaccine candidate composed of two recombinant proteins (Wza and YiaD) and a pool of capsular polysaccharides isolated from 3 clinical isolates. We tested this new vaccine in vivo in a mouse model of peritonitis against the standard strain ATCC 19606 in addition to 3 clinical isolates of A. baumannii. Immunization with this vaccine completely protected the challenged mice with 100% survival rate in the case of all the tested bacteria. Further clinical studies are urgently needed to evaluate the efficacy and safety of this proprietary vaccine to protect patients from A. baumannii lethal infections. KEY POINTS: • Recombinant proteins pool (Wza and YiaD) immunization led to a synergistic immune response. • Capsular polysaccharides pool induced up to 90% protection of tested clinical isolates. • The pentavalent pool showed superiority with 100% survival of immunized mice.
Collapse
Affiliation(s)
- Yomna A. Hagag
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Heba Shehta Said
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Hany I. Kenawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Ramadan Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
15
|
Lin HL, Chiang CE, Lin MC, Kau ML, Lin YT, Chen CS. Aerosolized Hypertonic Saline Hinders Biofilm Formation to Enhance Antibiotic Susceptibility of Multidrug-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2021; 10:antibiotics10091115. [PMID: 34572697 PMCID: PMC8465634 DOI: 10.3390/antibiotics10091115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 01/13/2023] Open
Abstract
Limited therapeutic options are available for multidrug-resistant Acinetobacter baumannii (MDR-AB), and the development of effective treatments is urgently needed. The efficacy of four aerosolized antibiotics (gentamicin, amikacin, imipenem, and meropenem) on three different MDR-AB strains was evaluated using hypertonic saline (HS, 7 g/100 mL) as the aerosol carrier. HS aerosol effectively hindered biofilm formation by specific MDR-AB strains. It could also interrupt the swarming dynamics of MDR-AB and the production of extracellular polymeric substances, which are essential for biofilm progression. Biofilms protect the microorganisms from antibiotics. The use of HS aerosol as a carrier resulted in a decreased tolerance to gentamicin and amikacin in the biofilm-rich MDR-AB. Moreover, we tested the aerosol characteristics of antibiotics mixed with HS and saline, and results showed that HS enhanced the inhaled delivery dose with a smaller particle size distribution of the four antibiotics. Our findings demonstrate the potential of using “old” antibiotics with our “new” aerosol carrier, and potentiate an alternative therapeutic strategy to eliminate MDR-AB infections from a biofilm-disruption perspective.
Collapse
Affiliation(s)
- Hui-Ling Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (H.-L.L.); (Y.-T.L.)
- Department of Respiratory Therapy, Chang Gung University, Taoyuan 33323, Taiwan;
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Chen-En Chiang
- Department of Respiratory Therapy, Chang Gung University, Taoyuan 33323, Taiwan;
| | - Mei-Chun Lin
- Department of Respiratory Therapy, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (M.-C.L.); (M.-L.K.)
| | - Mei-Lan Kau
- Department of Respiratory Therapy, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (M.-C.L.); (M.-L.K.)
| | - Yun-Tzu Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (H.-L.L.); (Y.-T.L.)
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (H.-L.L.); (Y.-T.L.)
- Correspondence: ; Tel.: +886-3-574-2680; Fax: +886-3-571-8649
| |
Collapse
|
16
|
Shahryari S, Mohammadnejad P, Noghabi KA. Screening of anti- Acinetobacter baumannii phytochemicals, based on the potential inhibitory effect on OmpA and OmpW functions. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201652. [PMID: 34457318 PMCID: PMC8371366 DOI: 10.1098/rsos.201652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/27/2021] [Indexed: 05/08/2023]
Abstract
Therapeutic options including last-line or combined antibiotic therapies for multi-drug-resistant strains of Acinetobacter baumannii are ineffective. The outer membrane protein A (OmpA) and outer membrane protein W (OmpW) are two porins known for their different cellular functions. Identification of natural compounds with the potentials to block these putative porins can attenuate the growth of the bacteria and control the relating diseases. The current work aimed to screen a library of 384 phytochemicals according to their potentials to be used as a drug, and potentials to inhibit the function of OmpA and OmpW in A. baumannii. The phytocompounds were initially screened based on their physico-chemical, absorption, distribution, metabolism, excretion and toxicity (ADMET) drug-like properties. Afterwards, the selected ligands were subjected to standard docking calculations against the predicted three-dimensional structure of OmpA and OmpW in A. baumannii. We identified three phytochemicals (isosakuranetin, aloe-emodin and pinocembrin) possessing appreciable binding affinity towards the selected binding pocket of OmpA and OmpW. Molecular dynamics simulation analysis confirmed the stability of the complexes. Among them, isosakuranetin was suggested as the best phytocompound for further in vitro and in vivo study.
Collapse
Affiliation(s)
- Shahab Shahryari
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), PO Box 14155-6343, Tehran, Iran
| | - Parvin Mohammadnejad
- Division of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), PO Box 14965/161, Tehran, Iran
| | - Kambiz Akbari Noghabi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), PO Box 14155-6343, Tehran, Iran
| |
Collapse
|
17
|
Discrimination of hospital isolates of Acinetobacter baumannii using repeated sequences and whole genome alignment differential analysis. J Appl Genet 2021; 62:511-521. [PMID: 34105103 PMCID: PMC8357709 DOI: 10.1007/s13353-021-00640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022]
Abstract
An optimized method for bacterial strain differentiation, based on combination of Repeated Sequences and Whole Genome Alignment Differential Analysis (RS&WGADA), is presented in this report. In this analysis, 51 Acinetobacter baumannii multidrug-resistance strains from one hospital environment and patients from 14 hospital wards were classified on the basis of polymorphisms of repeated sequences located in CRISPR region, variation in the gene encoding the EmrA-homologue of E. coli, and antibiotic resistance patterns, in combination with three newly identified polymorphic regions in the genomes of A. baumannii clinical isolates. Differential analysis of two similarity matrices between different genotypes and resistance patterns allowed to distinguish three significant correlations (p < 0.05) between 172 bp DNA insertion combined with resistance to chloramphenicol and gentamycin. Interestingly, 45 and 55 bp DNA insertions within the CRISPR region were identified, and combined during analyses with resistance/susceptibility to trimethoprim/sulfamethoxazole. Moreover, 184 or 1374 bp DNA length polymorphisms in the genomic region located upstream of the GTP cyclohydrolase I gene, associated mainly with imipenem susceptibility, was identified. In addition, considerable nucleotide polymorphism of the gene encoding the gamma/tau subunit of DNA polymerase III, an enzyme crucial for bacterial DNA replication, was discovered. The differentiation analysis performed using the above described approach allowed us to monitor the distribution of A. baumannii isolates in different wards of the hospital in the time frame of several years, indicating that the optimized method may be useful in hospital epidemiological studies, particularly in identification of the source of primary infections.
Collapse
|
18
|
Jie J, Chu X, Li D, Luo Z. A set of shuttle plasmids for gene expression in Acinetobacter baumannii. PLoS One 2021; 16:e0246918. [PMID: 33566854 PMCID: PMC7875395 DOI: 10.1371/journal.pone.0246918] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022] Open
Abstract
Infections caused by the emerging opportunistic bacterial pathogen Acinetobacter baumannii are occurring at increasingly alarming rates, and such increase in incidence is further compounded by the development of wide spread multidrug-resistant strains. Yet, our understanding of its pathogenesis and biology remains limited which can be attributed in part to the scarce of tools for molecular genetic analysis of this bacterium. Plasmids based on pWH1277 originally isolated from Acinetobacter calcoaceticus are the only vehicles currently available for ectopic gene expression in Acinetobacter species, which restricts experiments that require simultaneous analysis of multiple genes. Here, we found that plasmids of the IncQ group are able to replicate in A. baumannii and can stably co-reside with derivatives of pWH1277. Furthermore, we have constructed a series of four plasmids that allow inducible expression of Flag-tagged proteins in A. baumannii by arabinose or isopropyl β-d-1-thiogalactopyranoside. Together with constructs previously developed, these plasmids will accommodate the need in genetic analysis of this increasingly important pathogen.
Collapse
Affiliation(s)
- Jing Jie
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- * E-mail: (DL); (ZL)
| | - Zhaoqing Luo
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- * E-mail: (DL); (ZL)
| |
Collapse
|
19
|
Uppalapati SR, Sett A, Pathania R. The Outer Membrane Proteins OmpA, CarO, and OprD of Acinetobacter baumannii Confer a Two-Pronged Defense in Facilitating Its Success as a Potent Human Pathogen. Front Microbiol 2020; 11:589234. [PMID: 33123117 PMCID: PMC7573547 DOI: 10.3389/fmicb.2020.589234] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Of all the ESKAPE pathogens, carbapenem-resistant and multidrug-resistant Acinetobacter baumannii is the leading cause of hospital-acquired and ventilator-associated pneumonia. A. baumannii infections are notoriously hard to eradicate due to its propensity to rapidly acquire multitude of resistance determinants and the virulence factor cornucopia elucidated by the bacterium that help it fend off a wide range of adverse conditions imposed upon by host and environment. One such weapon in the arsenal of A. baumannii is the outer membrane protein (OMP) compendium. OMPs in A. baumannii play distinctive roles in facilitating the bacterial acclimatization to antibiotic- and host-induced stresses, albeit following entirely different mechanisms. OMPs are major immunogenic proteins in bacteria conferring bacteria host-fitness advantages including immune evasion, stress tolerance, and resistance to antibiotics and antibacterials. In this review, we summarize the current knowledge of major A. baumannii OMPs and discuss their versatile role in antibiotic resistance and virulence. Specifically, we explore how OmpA, CarO, and OprD-like porins mediate antibiotic and amino acid shuttle and host virulence.
Collapse
Affiliation(s)
- Siva R Uppalapati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Abhiroop Sett
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ranjana Pathania
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
20
|
Mohammed MA, Ahmed MT, Anwer BE, Aboshanab KM, Aboulwafa MM. Propranolol, chlorpromazine and diclofenac restore susceptibility of extensively drug-resistant (XDR)-Acinetobacter baumannii to fluoroquinolones. PLoS One 2020; 15:e0238195. [PMID: 32845920 PMCID: PMC7449414 DOI: 10.1371/journal.pone.0238195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Nosocomial infections caused by extensively drug-resistant (XDR) or Pan-Drug resistant (PDR) Acinetobacter (A.) baumannii have recently increased dramatically creating a medical challenge as therapeutic options became very limited. The aim of our study was to investigate the antibiotic-resistance profiles and evaluate the various combinations of ciprofloxacin (CIP) or levofloxacin (LEV) with antimicrobial agents and non-antimicrobial agents to combat antimicrobial resistance of XDR A. baumannii. A total of 100 (6.25%) A. baumannii clinical isolates were recovered from 1600 clinical specimens collected from hospitalized patients of two major university hospitals in Upper Egypt. Antimicrobial susceptibility tests were carried out according to CLSI guidelines. Antimicrobial susceptibility testing of the respective isolates showed a high percentage of bacterial resistance to 19 antimicrobial agents ranging from 76 to99%. However, a lower percentage of resistance was observed for only colistin (5%) and doxycycline (57%). The isolates were categorized as PDR (2; 2%), XDR (68; 68%), and multi-drug resistant (MDR) (30; 30%). Genotypic analysis using ERIC-PCR on 2 PDR and 32 selected XDR isolates showed that they were not clonal. Combinations of CIP or LEV with antibiotics (including, ampicillin, ceftriaxone, amikacin, or doxycycline) were tested on these A. baumannii non-clonal isolates using standard protocols where fractional inhibitory concentrations (-FICs) were calculated. Results of the respective combinations showed synergism in 23.5%, 17.65%, 32.35%, 17.65% and 26.47%, 8.28%, 14.71%, 26.47%, of the tested isolates, respectively. CIP or LEV combinations with either chlorpromazine (CPZ) 200 μg/ml, propranolol (PR) in two concentrations, 0.5 mg/ml and 1.0 mg/ml or diclofenac (DIC) 4 mg/ml were carried out and the MIC decrease factor (MDF) of each isolate was calculated and results showed synergism in 44%, 50%, 100%, 100% and 94%, 85%, 100%, 100%, of the tested isolates, respectively. In conclusion, combinations of CIP or LEV with CPZ, PR, or DIC showed synergism in most of the selected PDR and XDR A. baumannii clinical isolates. However, these combinations have to be re-evaluated in vivo using appropriate animal models infected by XDR- or PDR- A. baumannii.
Collapse
Affiliation(s)
- Mostafa A. Mohammed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut, Egypt
| | - Mohammed T. Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut, Egypt
| | - Bahaa E. Anwer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad M. Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|