1
|
Wang Y, Tian Y, Xie Y, Sun Y, Li T, Zhang X, Wang Y, Huang J, Xia B, Wang S, Dong W. The relationship between the secondary structure and the emulsifying ability of protein-based particles and the Pickering emulsions stabilized by the zein-lysine complex. SOFT MATTER 2024; 20:8089-8097. [PMID: 39356209 DOI: 10.1039/d4sm00394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Due to the sustainability and widespread use of proteins, protein-based materials are extensively utilized in the preparation of Pickering emulsions. However, the relationship between the secondary structure of proteins and their emulsifying ability has not been further investigated. This study used the addition of three different amino acids to influence the interaction between zein chains, which may induce changes in the secondary structure of the prepared zein complex particles. This study demonstrates that the emulsifying properties of proteins, such as dispersibility, zeta potential, three-phase contact angles, interfacial affinity, adsorption rates, and the volume of the stabilized oil phase, are closely related to the β-sheet content of the complex particles, providing a theoretical reference for protein-based stabilizers. Additionally, amino acids, as the blocks of proteins, have high compatibility with proteins, and using amino acids as modifiers aligns with the safety requirements for food processing. In this study, the prepared zein-lysine complex particles have good emulsifying ability, capable of stabilizing a 50 (v/v)% emulsion at a lower concentration (10 mg mL-1), and the prepared emulsion exhibits high-temperature stability and ionic resistance. This characteristic makes the emulsion potentially valuable for application in systems with high salt concentrations and those that may undergo heat treatment.
Collapse
Affiliation(s)
- Yijie Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Yunze Tian
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Yunpeng Xie
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Yue Sun
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
2
|
Cortesi R, Sguizzato M, Ferrara F. Lipid-based nanosystems for wound healing. Expert Opin Drug Deliv 2024; 21:1191-1211. [PMID: 39172249 DOI: 10.1080/17425247.2024.2391473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Wounds, resulting from traumas, surgery, burns or diabetes, are important medical problems due to the complexity of wound healing process regarding healing times and healthcare costs. Nanosystems have emerged as promising candidates in this field thank to their properties and versatile applications in drugs delivery. AREAS COVERED Lipid-based nanosystems (LBN) are described for wound treatment, highlighting their different behaviors when interacting with the cutaneous tissue. The role of nanosystems in delivering mostly natural compounds on skin as well as the technological and engineering strategies to increase their efficiency in wound healing effect are reviewed. Finally, in vitro, ex-vivo and in vivo studies are reported. EXPERT OPINION LBN have shown promise in addressing the challenges of wound healing as they can improve the stability of drugs used in wound therapy, leading to higher efficacy and fewer adverse effects as compared to traditional formulations. LBNs being involved in the inflammatory and proliferation stages of the wound healing process, enable the modification of wound healing through multiple ways. In addition, the use of new technologies, including 3D bioprinting and photobiomodulation, may lead to potential breakthroughs in wound healing. This would provide clinicians with more potent forms of therapy for wound healing.
Collapse
Affiliation(s)
- Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (Docpas), University of Ferrara, University of Ferrara, Ferrara, Italy
- Biotechnology InterUniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (Docpas), University of Ferrara, University of Ferrara, Ferrara, Italy
- Biotechnology InterUniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences (Docpas), University of Ferrara, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Arabestani MR, Bigham A, Kamarehei F, Dini M, Gorjikhah F, Shariati A, Hosseini SM. Solid lipid nanoparticles and their application in the treatment of bacterial infectious diseases. Biomed Pharmacother 2024; 174:116433. [PMID: 38508079 DOI: 10.1016/j.biopha.2024.116433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Nano pharmacology is considered an effective, safe, and applicable approach for drug delivery applications. Solid lipid nanoparticle (SLNs) colloids contain biocompatible lipids which are capable of encapsulating and maintaining hydrophilic or hydrophobic drugs in the solid matrix followed by releasing the drug in a sustained manner in the target site. SLNs have more promising potential than other drug delivery systems for various purposes. Nowadays, the SLNs are used as a carrier for antibiotics, chemotherapeutic drugs, nucleic acids, herbal compounds, etc. The SLNs have been widely applied in biomedicine because of their non-toxicity, biocompatibility, and simple production procedures. In this review, the complications related to the optimization, preparation process, routes of transplantation, uptake and delivery system, and release of the loaded drug along with the advantages of SLNs as therapeutic agents were discussed.
Collapse
Affiliation(s)
- Mohammad Reza Arabestani
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples 80125, Italy
| | - Farideh Kamarehei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahya Dini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Gorjikhah
- University reference laboratory, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of medical sciences, Arak, Iran
| | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Jadhav V, Roy A, Kaur K, Roy A, Sharma K, Verma R, Rustagi S, Malik S. Current advancements in functional nanomaterials for drug delivery systems. NANO-STRUCTURES & NANO-OBJECTS 2024; 38:101177. [DOI: 10.1016/j.nanoso.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
|
5
|
Lei Y, Yang Y, Yang G, Li A, Yang Y, Wang Y, Gao C. Delivery Strategies for Colchicine as a Critical Dose Drug: Reducing Toxicity and Enhancing Efficacy. Pharmaceutics 2024; 16:222. [PMID: 38399276 PMCID: PMC10891573 DOI: 10.3390/pharmaceutics16020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Colchicine (COL), a widely used natural drug, has potent anti-inflammatory effects; however, as a narrow therapeutic index drug, its clinical application is limited by its serious gastrointestinal adverse effects, and only oral formulations are currently marketed worldwide. Recent studies have shown that transdermal, injection, and oral drug delivery are the three main delivery strategies for COL. This article elaborates on the research progress of different delivery strategies in terms of toxicity reduction and efficacy enhancement, depicting that the transdermal drug delivery route can avoid the first-pass effect and the traumatic pain associated with the oral and injection routes, respectively. Therefore, such a dosage form holds a significant promise that requires the development of further research to investigate effective COL delivery formulations. In addition, the permeation-promoting technologies utilized for transdermal drug delivery systems are briefly discussed. This article is expected to provide scientific ideas and theoretical guidance for future research and the exploration of COL delivery strategies.
Collapse
Affiliation(s)
- Yaran Lei
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (Y.Y.); (G.Y.); (A.L.); (Y.Y.)
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Yulu Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (Y.Y.); (G.Y.); (A.L.); (Y.Y.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Guobao Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (Y.Y.); (G.Y.); (A.L.); (Y.Y.)
| | - Ao Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (Y.Y.); (G.Y.); (A.L.); (Y.Y.)
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (Y.Y.); (G.Y.); (A.L.); (Y.Y.)
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (Y.Y.); (G.Y.); (A.L.); (Y.Y.)
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.L.); (Y.Y.); (G.Y.); (A.L.); (Y.Y.)
| |
Collapse
|
6
|
Singh S, Patil VM, Paliwal SK, Masand N. Nanotechnology-based Drug Delivery of Topical Antifungal Agents. Pharm Nanotechnol 2024; 12:185-196. [PMID: 37594096 DOI: 10.2174/2211738511666230818125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Among the various prominent fungal infections, superficial ones are widespread. A large number of antifungal agents and their formulations for topical use are commercially available. They have some pharmacokinetic limitations which cannot be retracted by conventional delivery systems. While nanoformulations composed of lipidic and polymeric nanoparticles have the potential to overcome the limitations of conventional systems. The broad spectrum category of antifungals i.e. azoles (ketoconazole, voriconazole, econazole, miconazole, etc.) nanoparticles have been designed, prepared and their pharmacokinetic and pharmacodynamic profile was established. This review briefly elaborates on the types of nano-based topical drug delivery systems and portrays their advantages for researchers in the related field to benefit the available antifungal therapeutics.
Collapse
Affiliation(s)
- Sumita Singh
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan, India
- Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Vaishali M Patil
- Charak School of Pharmacy, Chaudhary Charan Singh (CCS) University, Meerut, Uttar Pradesh, India
| | | | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
7
|
Chantaburanan T, Teeranachaideekul V, Jintapattanakit A, Chantasart D, Junyaprasert VB. Enhanced stability and skin permeation of ibuprofen-loaded solid lipid nanoparticles based binary solid lipid matrix: Effect of surfactant and lipid compositions. Int J Pharm X 2023; 6:100205. [PMID: 37609107 PMCID: PMC10440359 DOI: 10.1016/j.ijpx.2023.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
Hypothesis The type of emulsifier selected has an impact on the physicochemical properties of solid lipid nanoparticles (SLNs). This study was designed to compare the effects of emulsifiers on the physicochemical properties and in vitro skin performance of SLNs prepared from a binary mixture of Softisan® 378 (S378) and cetyl palmitate (CP) to those of SLNs prepared from only CP and S378. Experiments SLNs were prepared from CP, S378, or a binary mixture of CP and S378 (1:1 w/w) as the lipid phase and stabilized with Tego®Care 450 (TG450) or poloxamer 188 (P188) containing 1.0% w/w ibuprofen loading. The physicochemical properties including the particle size, polydispersity index (PDI), zeta potential (ZP), encapsulation efficiency (E.E.), crystallinity (%CI), and polymorphism were determined after production and after storage for 180 days under different conditions. In addition, in vitro drug release and permeation through human skin was studied after production and storage at room temperature for 180 days. Finding The particle sizes of ibuprofen-loaded SLNs (IBSLNs) stabilized with P188 (IBSLN-P188) were smaller than those of SLNs stabilized with TG450 (IBSLN-TG450) (p < 0.05). After 180 days, the particle sizes of the IBSLNs were slightly increased compared to those at the initial time but were <250 nm. The IBSLN-TG450 sample showed a higher %CI than IBSLN-P188 prepared with similar propotions of CP and S378, and ibuprofen crystals were observed in the IBSLN1-TG450 sample after storage at 4 °C for 180 days. Based on the result of the in vitro release study and the in vitro skin permeation test, the addition of S378 into the CP-matrix modified ibuprofen release and skin permeation both permeated ibuprofen through the epidermis and retained ibuprofen in the epidermis. In addition, the storage time affected the release and skin permeation of ibuprofen from the SLNs, which depended on the composition of the IBSLNs.
Collapse
Affiliation(s)
- Thitirat Chantaburanan
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-Ayutthaya Road, Rajathevee, Bangkok 10400, Thailand
| | - Veerawat Teeranachaideekul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-Ayutthaya Road, Rajathevee, Bangkok 10400, Thailand
| | - Anchalee Jintapattanakit
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-Ayutthaya Road, Rajathevee, Bangkok 10400, Thailand
| | - Doungdaw Chantasart
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-Ayutthaya Road, Rajathevee, Bangkok 10400, Thailand
| | | |
Collapse
|
8
|
Mehta M, Bui TA, Yang X, Aksoy Y, Goldys EM, Deng W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS MATERIALS AU 2023; 3:600-619. [PMID: 38089666 PMCID: PMC10636777 DOI: 10.1021/acsmaterialsau.3c00032] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 02/13/2024]
Abstract
Over the past decade, the therapeutic potential of nanomaterials as novel drug delivery systems complementing conventional pharmacology has been widely acknowledged. Among these nanomaterials, lipid-based nanoparticles (LNPs) have shown remarkable pharmacological performance and promising therapeutic outcomes, thus gaining substantial interest in preclinical and clinical research. In this review, we introduce the main types of LNPs used in drug formulations such as liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, and lipid polymer hybrid nanoparticles, focusing on their main physicochemical properties and therapeutic potential. We discuss computational studies and modeling techniques to enhance the understanding of how LNPs interact with therapeutic cargo and to predict the potential effectiveness of such interactions in therapeutic applications. We also analyze the benefits and drawbacks of various LNP production techniques such as nanoprecipitation, emulsification, evaporation, thin film hydration, microfluidic-based methods, and an impingement jet mixer. Additionally, we discuss the major challenges associated with industrial development, including stability and sterilization, storage, regulatory compliance, reproducibility, and quality control. Overcoming these challenges and facilitating regulatory compliance represent the key steps toward LNP's successful commercialization and translation into clinical settings.
Collapse
Affiliation(s)
- Meenu Mehta
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Thuy Anh Bui
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xinpu Yang
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yagiz Aksoy
- Cancer
Diagnosis and Pathology Group, Kolling Institute of Medical Research,
Royal North Shore Hospital, St Leonards NSW 2065 Australia - Sydney
Medical School, University of Sydney, Sydney NSW 2006 Australia
| | - Ewa M. Goldys
- Graduate
School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale
Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - Wei Deng
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
9
|
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B 2023; 13:4391-4416. [PMID: 37969727 PMCID: PMC10638504 DOI: 10.1016/j.apsb.2023.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 11/17/2023] Open
Abstract
Owing to the inherent shortcomings of traditional therapeutic drugs in terms of inadequate therapeutic efficacy and toxicity in clinical treatment, nanomedicine designs have received widespread attention with significantly improved efficacy and reduced non-target side effects. Nanomedicines hold tremendous theranostic potential for treating, monitoring, diagnosing, and controlling various diseases and are attracting an unfathomable amount of input of research resources. Against the backdrop of an exponentially growing number of publications, it is imperative to help the audience get a panorama image of the research activities in the field of nanomedicines. Herein, this review elaborates on the development trends of nanomedicines, emerging nanocarriers, in vivo fate and safety of nanomedicines, and their extensive applications. Moreover, the potential challenges and the obstacles hindering the clinical translation of nanomedicines are also discussed. The elaboration on various aspects of the research trends of nanomedicines may help enlighten the readers and set the route for future endeavors.
Collapse
Affiliation(s)
- Qiuyue Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
10
|
Kumar M, Virmani T, Kumar G, Deshmukh R, Sharma A, Duarte S, Brandão P, Fonte P. Nanocarriers in Tuberculosis Treatment: Challenges and Delivery Strategies. Pharmaceuticals (Basel) 2023; 16:1360. [PMID: 37895831 PMCID: PMC10609727 DOI: 10.3390/ph16101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The World Health Organization identifies tuberculosis (TB), caused by Mycobacterium tuberculosis, as a leading infectious killer. Although conventional treatments for TB exist, they come with challenges such as a heavy pill regimen, prolonged treatment duration, and a strict schedule, leading to multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. The rise of MDR strains endangers future TB control. Despite these concerns, the hunt for an efficient treatment continues. One breakthrough has been the use of nanotechnology in medicines, presenting a novel approach for TB treatment. Nanocarriers, such as lipid nanoparticles, nanosuspensions, liposomes, and polymeric micelles, facilitate targeted delivery of anti-TB drugs. The benefits of nanocarriers include reduced drug doses, fewer side effects, improved drug solubility, better bioavailability, and improved patient compliance, speeding up recovery. Additionally, nanocarriers can be made even more targeted by linking them with ligands such as mannose or hyaluronic acid. This review explores these innovative TB treatments, including studies on nanocarriers containing anti-TB drugs and related patents.
Collapse
Affiliation(s)
- Mahesh Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Sofia Duarte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro Brandão
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Pedro Fonte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
11
|
Pereira M, Rodrigues ARO, Amaral L, Côrte-Real M, Santos-Pereira C, Castanheira EMS. Bovine Lactoferrin-Loaded Plasmonic Magnetoliposomes for Antifungal Therapeutic Applications. Pharmaceutics 2023; 15:2162. [PMID: 37631376 PMCID: PMC10458800 DOI: 10.3390/pharmaceutics15082162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Bovine lactoferrin (bLf) is a milk-derived protein that exhibits potent broad-spectrum antifungal activity against multiple fungi. bLf is susceptible to degradation, while some of its properties depend on the tertiary structure. So, the encapsulation of bLf in stimuli-responsive therapeutic formulations provides an added value to enhance its biological activities. Plasmonic magnetoliposomes (PMLs) arise as promising nanocarriers for dual hyperthermia (magneto-photothermia) and local chemotherapy, since the combination of magnetic and gold nanoparticles (NPs) in a single nanosystem (multifunctional liposomes) enables the targeting and controlled release of loaded drugs. In this work, plasmonic magnetoliposomes (PMLs) containing manganese ferrite nanoparticles (28 nm size) and gold nanoparticles (5-7.5 nm size), functionalized with 11-mercaptoundecanoic acid or octadecanethiol, were prepared and loaded with bLf. The NPs' optical, magnetic and structural properties were measured via UV/vis/NIR absorption spectroscopy, SQUID and TEM, respectively. The Specific Absorption Rate (SAR) was calculated to assess the capabilities for magnetic and photothermal hyperthermia. Finally, the antifungal potential of bLf-loaded PMLs and their mechanism of internalization were assessed in Saccharomyces cerevisiae by counting the colony forming units and using fluorescence microscopy. The results demonstrate that PMLs are mainly internalized through an energy- and temperature-dependent endocytic process, though the contribution of a diffusion component cannot be discarded. Most notably, only bLf-loaded plasmonic magnetoliposomes display cytotoxicity with an efficiency similar to free bLf, attesting their promising potential for bLf delivery in the context of antifungal therapeutic interventions.
Collapse
Affiliation(s)
- Mélanie Pereira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Rita O. Rodrigues
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal
| | - Leslie Amaral
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Cátia Santos-Pereira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
12
|
Almawash S. Solid lipid nanoparticles, an effective carrier for classical antifungal drugs. Saudi Pharm J 2023; 31:1167-1180. [PMID: 37273269 PMCID: PMC10236373 DOI: 10.1016/j.jsps.2023.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Solid-lipid nanoparticles (SLNs) are an innovative group of nanosystems used to deliver medicine to their respective targets with better efficiency and bioavailability in contrast to classical formulations. SLNs are less noxious, have fewer adverse effects, have more biocompatibility, and have easy biodegradability. Lipophilic, hydrophilic and hydrophobic drugs can be loaded into SLNs, to enhance their physical and chemical stability in critical environments. Certain antifungal agents used in different treatments are poorly soluble medications, biologicals, proteins etc. incorporated in SLNs to enhance their therapeutic outcome, increase their bioavailability and target specificity. SLNs-based antifungal agents are currently helpful against vicious drug-resistant fungal infections. This review covers the importance of SLNs in drug delivery of classical antifungal drugs, historical background, preparation, physicochemical characteristic, structure and sizes of SLNs, composition, drug entrapment efficacy, clinical evaluations and uses, challenges, antifungal drug resistance, strategies to overcome limitations, novel antifungal agents currently in clinical trials with special emphasis on fungal infections.
Collapse
|
13
|
Guzmán-Altamirano MÁ, Rebollo-Plata B, Joaquín-Ramos ADJ, Gómez-Espinoza MG. Green synthesis and antimicrobial mechanism of nanoparticles: applications in agricultural and agrifood safety. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2727-2744. [PMID: 35941521 DOI: 10.1002/jsfa.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The growing demand for food and its safety are a challenge for agriculture and agrifood. This has led to the incorporation of alternatives such as organic agriculture, the use of biocontrollers, the development of transgenic plants resistant to pathogens and the incorporation of nanotechnology. In this sense, agrochemicals based on nanoparticles (NPs) have been developed. Recently, the green synthesis of NPs has grown rapidly and, for this reason, molecules, microorganisms, fungi and plants are used. Synthesis from plant extracts offers a broad spectrum and, despite the fact that NPs are usually dispersed in size and shape, extensive antimicrobial effectiveness has been demonstrated at nanomolar concentrations. It has been shown that the mechanism of action can be through the dissipation of the driving force of the protons, the alteration of cellular permeability, the formation of bonds with the thiol group of the proteins, the generation of reactive species of oxygen, and the hyperoxidation of DNA, RNA and even the cell membrane. To improve the efficiency of NPs, modifications have been made such as coating with other metals, the addition of antibiotics, detergents and surfactants, as well as the acidification of the solution. Consequently, NPs are considered as a promising method for achieving safety in the agricultural and agrifood area. However, it is necessary to investigate the side effects of NPs, when applied in agroecological systems, on the textural, nutriment and sensory properties of food, as well as the impact on human health. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Bernabe Rebollo-Plata
- Departamento de Ing. Electrónica, Instituto Tecnológico superior de Irapuato, Guanajuato, México
| | | | | |
Collapse
|
14
|
Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, Dong Y, Zhang T, Liang Y, Han S, Cao J, Wang X, Sun W, Ma H, Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. NANOSCALE ADVANCES 2023; 5:1527-1558. [PMID: 36926556 PMCID: PMC10012846 DOI: 10.1039/d2na00530a] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.
Collapse
Affiliation(s)
- Lijun Liu
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Qingming Ma
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Yang Gao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Xuan Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yunxia Dong
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Tingting Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yan Liang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Shangcong Han
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Jie Cao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University Jinan 250061 China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| | - Haifeng Ma
- Department of Geriatrics, Zibo Municipal Hospital Zibo 255400 China
| | - Yong Sun
- School of Pharmacy, Qingdao University Qingdao 266071 China
| |
Collapse
|
15
|
Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15020656. [PMID: 36839978 PMCID: PMC9967415 DOI: 10.3390/pharmaceutics15020656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Skin delivery is an exciting and challenging field. It is a promising approach for effective drug delivery due to its ease of administration, ease of handling, high flexibility, controlled release, prolonged therapeutic effect, adaptability, and many other advantages. The main associated challenge, however, is low skin permeability. The skin is a healthy barrier that serves as the body's primary defence mechanism against foreign particles. New advances in skin delivery (both topical and transdermal) depend on overcoming the challenges associated with drug molecule permeation and skin irritation. These limitations can be overcome by employing new approaches such as lipid nanosystems. Due to their advantages (such as easy scaling, low cost, and remarkable stability) these systems have attracted interest from the scientific community. However, for a successful formulation, several factors including particle size, surface charge, components, etc. have to be understood and controlled. This review provided a brief overview of the structure of the skin as well as the different pathways of nanoparticle penetration. In addition, the main factors influencing the penetration of nanoparticles have been highlighted. Applications of lipid nanosystems for dermal and transdermal delivery, as well as regulatory aspects, were critically discussed.
Collapse
|
16
|
Development of a Clioquinol Nanocarrier as a New, Promising Option for the Treatment of Dermatomycosis. Pharmaceutics 2023; 15:pharmaceutics15020531. [PMID: 36839854 PMCID: PMC9965560 DOI: 10.3390/pharmaceutics15020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Dermatomycosis is a common fungal infection, and its treatment is limited by few antifungal agents. Clioquinol (CQ) is an antiparasitic agent that has been studied for new uses, such as antifungal and antiviral applications. CQ was incorporated into a lipid-based nanocarrier as a new, promising option for dermatomycosis. This study aimed to develop a CQ-loaded lipid-based nanocarrier for cutaneous application and to evaluate its antifungal activity. CQ-loaded nanoformulation (LBN-CQ) was developed using the ultrasonication method, and the particle size, polydispersity index (PDI), pH, zeta potential, and drug content were monitored for 45 days. To evaluate antifungal activity, broth microdilution and a time-kill assay were performed. LBN-CQ presented a particle size of 91 ± 3 nm and PDI of 0.102 ± 0.009. The zeta potential and pH values were -9.7 ± 2.0 mV and 6.0 ± 0.1, respectively. The drug content was 96.4 ± 2.3%, and the encapsulation efficiency was 98.4%. LBN-CQ was able to reduce the minimum inhibitory concentration (MIC) in a 2-fold or 4-fold manner in most of the tested strains. Additionally, LBN-CQ presented stable fungistatic action that was not concentration- or time-dependent. In conclusion, the developed CQ-loaded nanocarrier is a promising treatment for skin fungal infections and a promising candidate for future randomized clinical trials.
Collapse
|
17
|
Gupta AK, Polla Ravi S, Choi SY, Konda A, Cooper EA. Strategies for the enhancement of nail plate permeation of drugs to treat onychomycosis. J Eur Acad Dermatol Venereol 2023; 37:243-255. [PMID: 36196052 DOI: 10.1111/jdv.18638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023]
Abstract
Onychomycosis is caused by dermatophytes, non-dermatophytes and yeasts. It has a global prevalence of 5.5%, requires long treatment periods, and has high relapse rates following therapy. Oral antifungals are generally the most common treatment. While effective, they have limitations such as drug-drug interactions, hepatotoxicity and adverse side effects; thus, they cannot be used in several populations. Topical antifungals do not have the safety limitations but are typically not as effective. The primary challenge of topical treatment is the permeation of drug molecules across the nail plate barrier, which is a highly cross-linked keratin network. The use of drugs and formulations with favourable characteristics such as small size, absence of lipophilicity, hydrophilic nature, hydrating properties and appropriate pH can greatly improve permeation. Here, we review physical, nanoparticle-based, formulation-based, mechanical and chemical drug delivery strategies to improve the permeation of drugs across the nail plate.
Collapse
Affiliation(s)
- Aditya K Gupta
- Mediprobe Research Inc., London, Ontario, Canada.,Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Su Yong Choi
- Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey, USA
| | - Adarsh Konda
- Bausch Health US, LLC, Bridgewater, New Jersey, USA
| | | |
Collapse
|
18
|
Roque-Borda CA, Bento da Silva P, Rodrigues MC, Di Filippo LD, Duarte JL, Chorilli M, Vicente EF, Garrido SS, Rogério Pavan F. Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem 2022; 241:114640. [PMID: 35970075 DOI: 10.1016/j.ejmech.2022.114640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs. However, the application of several AMPs to biological systems is hampered by their poor stability and lifetime, inactivating them completely. Therefore, nanotechnology plays an important role in the development of new AMP-based drugs, protecting and carrying the bioactive to the target. This is the first review article on the different reported nanosystems using AMPs against bacteria listed on the WHO priority list. The current shortage of information implies a nanobiotechnological potential to obtain new drugs or repurpose drugs based on the AMP-drug synergistic effect.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil; Universidad Católica de Santa María, Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Brazil
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, CEP 17602-496, Brazil
| | - Saulo Santesso Garrido
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, CEP 14801-902, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil.
| |
Collapse
|
19
|
Novel topical drug delivery systems in acne management: Molecular mechanisms and role of targeted delivery systems for better therapeutic outcomes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Liu L, Ma Q, Wang S, Gao Y, Zhu C, Zhao W, Sun W, Ma H, Sun Y. Efficient epidermal delivery of antibiotics by self-assembled lecithin/chitosan nanoparticles for enhanced therapy on epidermal bacterial infections. Int J Biol Macromol 2022; 218:568-579. [PMID: 35902014 DOI: 10.1016/j.ijbiomac.2022.07.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
The treatment for epidermal bacterial infections has become a primary healthy concern, producing a significant therapeutic challenge. Here we present a facile strategy to fabricate lecithin/chitosan nanoparticles (LCNPs) for efficient epidermal drug delivery over epidermal bacterial infections. The central rotatable composite design method was used for the optimization of the preparation, and that the optimal size (212.63 ± 1.95 nm) was obtained via analysis of variance (ANOVA). The prepared CIP-LCNPs show an average diameter of 325.9 ± 7.4 nm and a zeta potential of 26.6 ± 1.2 mV. Antibiotics can be well encapsulated in LCNPs and its release kinetics is studied with cumulative release of 93.81 ± 2.05 % for 48 h. The hemolytic activity, cytotoxicity, and skin irritation are further investigated. The zones of inhibition are 2.16 ± 0.04 cm and 2.92 ± 0.03 cm for Escherichia coli and Staphylococcus aureus, respectively. Moreover, in vitro permeation studies demonstrate that LCNPs can increase the accumulation of antibiotics in the epidermis with retention ratio 2-3 fold higher than commercial formulations. The in vivo result over epidermal-infected wound demonstrates the superior therapeutic effects of LCNPs. The developed LCNPs represent an important advance in fabricating therapeutic materials for enhanced therapy over epidermal bacterial infections.
Collapse
Affiliation(s)
- Lijun Liu
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Suning Wang
- Tongliao Market Detection and Testing Center, Tongliao 028000, China
| | - Yang Gao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Chunrong Zhu
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Haifeng Ma
- Department of Geriatrics, Zibo Municipal Hospital, Zibo 255400, China.
| | - Yong Sun
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
21
|
Tu Y, Yao Z, Yang W, Tao S, Li B, Wang Y, Su Z, Li S. Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.948705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer is a major cause of death worldwide, and nearly 1 in 6 deaths each year is caused by cancer. Traditional cancer treatment strategies cannot completely solve cancer recurrence and metastasis. With the development of nanotechnology, the study of nanoparticles (NPs) has gradually become a hotspot of medical research. NPs have various advantages. NPs exploit the enhanced permeability and retention (EPR) of tumour cells to achieve targeted drug delivery and can be retained in tumours long-term. NPs can be used as a powerful design platform for vaccines as well as immunization enhancers. Liposomes, as organic nanomaterials, are widely used in the preparation of nanodrugs and vaccines. Currently, most of the anticancer drugs that have been approved and entered clinical practice are prepared from lipid materials. However, the current clinical conversion rate of NPs is still extremely low, and the transition of NPs from the laboratory to clinical practice is still a substantial challenge. In this paper, we review the in vivo targeted delivery methods, material characteristics of NPs and the application of NPs in vaccine preparation. The application of nanoliposomes is also emphasized. Furthermore, the challenges and limitations of NPs are briefly discussed.
Collapse
|
22
|
Zhao YQ, Li LJ, Zhou EF, Wang JY, Wang Y, Guo LM, Zhang XX. Lipid-Based Nanocarrier Systems for Drug Delivery: Advances and Applications. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1751036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Lipid-based nanocarriers have been extensively investigated for drug delivery due to their advantages including biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity. However, the shortcomings of traditional lipid-based nanocarriers such as insufficient targeting, capture by the reticuloendothelial system, and fast elimination limit the efficiency of drug delivery and therapeutic efficacy. Therefore, a series of multifunctional lipid-based nanocarriers have been developed to enhance the accumulation of drugs in the lesion site, aiming for improved diagnosis and treatment of various diseases. In this review, we summarized the advances and applications of lipid-based nanocarriers from traditional to novel functional lipid preparations, including liposomes, stimuli-responsive lipid-based nanocarriers, ionizable lipid nanoparticles, lipid hybrid nanocarriers, as well as biomembrane-camouflaged nanoparticles, and further discussed the challenges and prospects of this system. This exploration may give a complete idea viewing the lipid-based nanocarriers as a promising choice for drug delivery system, and fuel the advancement of pharmaceutical products by materials innovation and nanotechnology.
Collapse
Affiliation(s)
- Yan-Qi Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Li-Jun Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Er-Fen Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jiang-Yue Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lin-Miao Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin-Xin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
23
|
Trucillo P, Sofia D, Cortese L, Urciuolo M. Production of Q10+B2 nanostructured lipid carriers and optimization of their entrapment capacities. Colloids Surf B Biointerfaces 2022; 217:112653. [DOI: 10.1016/j.colsurfb.2022.112653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/01/2022] [Accepted: 06/18/2022] [Indexed: 10/17/2022]
|
24
|
Marena GD, Ramos MADS, Carvalho GC, Junior JAP, Resende FA, Corrêa I, Ono GYB, Sousa Araujo VH, Camargo BAF, Bauab TM, Chorilli M. Natural product‐based nanomedicine applied to fungal infection treatment: A review of the last 4 years. Phytother Res 2022; 36:2710-2745. [DOI: 10.1002/ptr.7460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 03/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Gabriel Davi Marena
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Matheus Aparecido dos Santos Ramos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | | | | | - Ione Corrêa
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Yuki Bressanim Ono
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Victor Hugo Sousa Araujo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Bruna Almeida Furquim Camargo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences and Health University of Araraquara (UNIARA) Araraquara Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| |
Collapse
|
25
|
dos Santos AM, Junior AGT, Carvalho SG, Chorilli M. An updated review on properties, nanodelivery systems, and analytical methods for the determination of 5-fluorouracil in pharmaceutical and biological samples. Curr Pharm Des 2022; 28:1501-1512. [DOI: 10.2174/1381612828666220509150918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
5-Fluorouracil (5-FU) is an antimetabolite drug used for over 70 years as first-line chemotherapy to treat various types of cancer, such as head, neck, breast and colorectal cancer. 5-FU acts mainly by inhibiting thymidylate synthase, thereby interfering with deoxyribonucleic acid (DNA) replication or by 5-FU incorporating into DNA, causing damage to the sequence of nucleotides. Being analogous to uracil, 5-FU enters cells using the same transport mechanism, where a is converted into active metabolites such as fluorouridine triphosphate (FUTP), fluorodeoxyuridine monophosphate (FdUMP), and fluorodeoxyuridine triphosphate (FdUTP). Currently, there are several nanodelivery systems being developed and evaluated at the preclinical level to overcome existing limitations to 5-FU chemotherapy, including liposomes, polymeric nanoparticles, polymeric micelles, nanoemulsions, mesoporous silica nanoparticles, and solid lipid nanoparticles. Therefore, it is essential to choose and develop suitable analytical methods for the quantification of 5-FU and its metabolites (5-fluorouridine and 5-fluoro-2-deoxyuridine) in pharmaceutical and biological samples. Among the analytical techniques, chromatographic methods are commonly the most used for the quantification of 5-FU from different matrices. However, other analytical methods have also been developed for the determination of 5-FU, such as electrochemical methods, a sensitive, selective, and precise technique, in addition to having a reduced cost. Here, we first review the physicochemical properties, mechanism of action, and advances in 5-FU nanodelivery systems. Next, we summarize the current progress of other chromatographic methods described to determine 5-FU. Lastly, we discuss the advantages of electrochemical methods for the identification and quantification of 5-FU and its metabolites in pharmaceutical and biological samples.
Collapse
Affiliation(s)
- Aline Martins dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | | | - Suzana Gonçalves Carvalho
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
26
|
Norcantharidin Nanostructured Lipid Carrier (NCTD-NLC) Suppresses the Viability of Human Hepatocellular Carcinoma HepG2 Cells and Accelerates the Apoptosis. J Immunol Res 2022; 2022:3851604. [PMID: 35497873 PMCID: PMC9045966 DOI: 10.1155/2022/3851604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Malignant tumors have become the main cause of harm to human life and health. Development for new antitumor drugs and the exploration to drug carriers are becoming the concerned focus. In this study, we exploited our experiments to explore the effect of NCTD-NLC on liver cancer cells: the HepG2 cells cultured in vitro were given with NCTD-NLC administration; then, the estimation on cellular proliferation and apoptosis was accomplished through MTT and flow cytometry. Six hours after the administration, we performed the High Performance Liquid Chromatography (HPLC) detection to estimate the NCTD content in the heart, liver, spleen, lung, kidney and plasma of rats. Then, our outcomes showed that NCTD-NLC had a notable inhibitory effect on HepG2 cells, leading to a gradually decreased cellular viability. Cell viability was negatively correlated with NCTD-NLC concentration. Along with the concentration increasing, significantly increasing cellular apoptosis and gradually decreasing cellular viability were observed. The apoptosis rate was positively correlated with the concentration of NCTD-NLC. On the basis of the data we obtained, we found that the group with NCTD-NLC tail vein injection had an obvious advantage in drug delivery when compared with other groups. Through the tumorigenesis test to nude mice, we found that the tumor inhibition rate of the NCTD-NLC tail vein injection group had a 27.48% elevation in contrast to the NCTD gavage group, and it was also the group with the best tumor inhibition efficiency. In conclusion, the NCTD-NLC prepared in this study had a mighty inhibitory effect towards HepG2 cellular viability and an accelerating work on apoptosis. Tail vein injection of NCTD-NLC has the best drug delivery effect.
Collapse
|
27
|
Kamran M, Khan MA, Shafique M, Alotaibi G, Mouslem AA, Rehman M, Khan MA, Gul S. Formulation Design, Characterization and In-Vivo Assessment of Cefixime Loaded Binary Solid Lipid Nanoparticles to Enhance Oral Bioavailability. J Biomed Nanotechnol 2022; 18:1215-1226. [PMID: 35854445 DOI: 10.1166/jbn.2022.3313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cefixime; widely employed cephalosporin antibiotic is unfortunately coupled to poor water solubility with resultant low oral bioavailability issues. To solve this problem micro-emulsion technique was used to fabricate binary SLNs using blend of solid and liquid lipids, surfactant as well as co-surfactant. The optimized nano suspension was characterized followed by modification to solidified dosage form. During characterization, optimized nano-suspension (CFX-4) produced particle size 189±2.1 nm with PDI 0.310±0.02 as well as -33.9±2 mV zeta potential. Scanning electron microscopy (SEM) presented nearly identical and spherical shaped particles. Differential scanning calorimetry and X-ray powder diffraction analysis ascertained decrease in drug's crystallinity. In-vitro release of drug pursued zero-order characteristics and demonstrated non-fickian pattern of diffusion. The freeze dried nano suspension (CFX-4) was transformed to capsule dosage form to perform comparison based In-Vivo studies. In-Vivo evaluation corresponded to 2.20-fold and 2.11-fold enhancement in relative bioavailability of CFX nano-formulation (CFX-4) as well as the prepared capsules respectively in contrast to the commercialized product (Cefiget®). In general; the obtained results substantiated superior oral bioavailability along with sustained pattern of drug release for CFX loaded binary nano particles. Thus, binary SLNs could be employed as a resourceful drug carrier for oral CFX delivery.
Collapse
Affiliation(s)
- Mahwish Kamran
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), 18800, Khyber Pakhtunkhwa, Pakistan
| | - Mir Azam Khan
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), 18800, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Shafique
- Department of Pharmaceutical Sciences, College of Pharmacy-Boys, Al-Dawadmi Campus, Shaqra University, Shaqra, 15572, KSA
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy-Boys, Al-Dawadmi Campus, Shaqra University, Shaqra, 15572, KSA
| | - Abdulaziz Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Maqsood Rehman
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), 18800, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Asghar Khan
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), 18800, Khyber Pakhtunkhwa, Pakistan
| | - Sumaira Gul
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| |
Collapse
|
28
|
Marena GD, Ramos MADS, Lima LC, Chorilli M, Bauab TM. Galleria mellonella for systemic assessment of anti-Candida auris using amphotericin B loaded in nanoemulsion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151023. [PMID: 34662607 DOI: 10.1016/j.scitotenv.2021.151023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Galleria mellonella is a model that uses adult larvae to assess the prophylactic, therapeutic, and acute toxic potential of substances. Given their benefits, G. mellonella models are being employed in investigations of systemic infections caused by highly resistant microorganisms. Among the multiresistant microorganisms, we highlight Candida auris, a yeast with high mortality potential and resistance. Among the potential drugs, amphotericin B (AmB) stands out; however, microbial resistance episodes and side effects caused by low selectivity have been observed. The incorporation of AmB into a nanoemulsion (NE) can contribute to the control of C. auris infections and resistance as well as decrease the side effects of this drug. This study aimed to develop AmB-loaded NE (NEA) and evaluate its antifungal action against C. auris in G. mellonella. NEs were obtained by using sunflower oil and cholesterol as the oily phase, polyoxyethylene 20 cetyl ether (Brij® 58) and soy phosphatidylcholine as the surfactant system, and PBS buffer as the aqueous phase. An alternative in vivo assay with G. mellonella for acute toxicity and infection was performed using adult stage larvae (200 mg to 400 mg). According to the obtained results, NE and NEA exhibited sizes of 43 and 48 nm, respectively. The PDI was 0.285 and 0.389 for NE and NEA, respectively. The ZP showed electronegativity for both systems, with -3.77 mV and -3.80 mV for NE and NEA, respectively. Acute toxicity showed that free AmB had greater acute toxicity potential than NEA. The survival assay showed high larval viability. NEA had a better antifungal profile against systemic infection in G. mellonella. It is concluded that the alternative model proved to be an efficient in vivo assay to determine the toxicity and evaluate the therapeutic property of free AmB and NEA in systemic infections caused by C. auris.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil
| | - Matheus Aparecido Dos Santos Ramos
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil
| | - Laura Caminitti Lima
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil.
| | - Tais Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil.
| |
Collapse
|
29
|
Nanocarriers for Sustainable Active Packaging: An Overview during and Post COVID-19. COATINGS 2022. [DOI: 10.3390/coatings12010102] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lockdown has been installed due to the fast spread of COVID-19, and several challenges have occurred. Active packaging was considered a sustainable option for mitigating risks to food systems during COVID-19. Biopolymeric-based active packaging incorporating the release of active compounds with antimicrobial and antioxidant activity represents an innovative solution for increasing shelf life and maintaining food quality during transportation from producers to consumers. However, food packaging requires certain physical, chemical, and mechanical performances, which biopolymers such as proteins, polysaccharides, and lipids have not satisfied. In addition, active compounds have low stability and can easily burst when added directly into biopolymeric materials. Due to these drawbacks, encapsulation into lipid-based, polymeric-based, and nanoclay-based nanocarriers has currently captured increased interest. Nanocarriers can protect and control the release of active compounds and can enhance the performance of biopolymeric matrices. The aim of this manuscript is to provide an overview regarding the benefits of released active compound-loaded nanocarriers in developing sustainable biopolymeric-based active packaging with antimicrobial and antioxidant properties. Nanocarriers improve physical, chemical, and mechanical properties of the biopolymeric matrix and increase the bioactivity of released active compounds. Furthermore, challenges during the COVID-19 pandemic and a brief post-COVID-19 scenario were also mentioned.
Collapse
|
30
|
Carvalho GC, de Camargo BAF, de Araújo JTC, Chorilli M. Lycopene: From tomato to its nutraceutical use and its association with nanotechnology. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao CX. Lipid Nanoparticles for Drug Delivery. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Letao Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Xing Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Robert J. Falconer
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
32
|
Gomes A, Aguiar L, Ferraz R, Teixeira C, Gomes P. The Emerging Role of Ionic Liquid-Based Approaches for Enhanced Skin Permeation of Bioactive Molecules: A Snapshot of the Past Couple of Years. Int J Mol Sci 2021; 22:11991. [PMID: 34769430 PMCID: PMC8584570 DOI: 10.3390/ijms222111991] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Topical and transdermal delivery systems are of undeniable significance and ubiquity in healthcare, to facilitate the delivery of active pharmaceutical ingredients, respectively, onto or across the skin to enter systemic circulation. From ancient ointments and potions to modern micro/nanotechnological devices, a variety of approaches has been explored over the ages to improve the skin permeation of diverse medicines and cosmetics. Amongst the latest investigational dermal permeation enhancers, ionic liquids have been gaining momentum, and recent years have been prolific in this regard. As such, this review offers an outline of current methods for enhancing percutaneous permeation, highlighting selected reports where ionic liquid-based approaches have been investigated for this purpose. Future perspectives on use of ionic liquids for topical delivery of bioactive peptides are also presented.
Collapse
Affiliation(s)
- Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal; (A.G.); (L.A.); (R.F.); (C.T.)
| | - Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal; (A.G.); (L.A.); (R.F.); (C.T.)
| | - Ricardo Ferraz
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal; (A.G.); (L.A.); (R.F.); (C.T.)
- Ciências Químicas e das Biomoléculas, CISA, Escola Superior de Saúde, Politécnico do Porto, R. Dr. António Bernardino de Almeida 400, P-4200-072 Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal; (A.G.); (L.A.); (R.F.); (C.T.)
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal; (A.G.); (L.A.); (R.F.); (C.T.)
| |
Collapse
|
33
|
Stefanov SR, Andonova VY. Lipid Nanoparticulate Drug Delivery Systems: Recent Advances in the Treatment of Skin Disorders. Pharmaceuticals (Basel) 2021; 14:1083. [PMID: 34832865 PMCID: PMC8619682 DOI: 10.3390/ph14111083] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
The multifunctional role of the human skin is well known. It acts as a sensory and immune organ that protects the human body from harmful environmental impacts such as chemical, mechanical, and physical threats, reduces UV radiation effects, prevents moisture loss, and helps thermoregulation. In this regard, skin disorders related to skin integrity require adequate treatment. Lipid nanoparticles (LN) are recognized as promising drug delivery systems (DDS) in treating skin disorders. Solid lipid nanoparticles (SLN) together with nanostructured lipid carriers (NLC) exhibit excellent tolerability as these are produced from physiological and biodegradable lipids. Moreover, LN applied to the skin can improve stability, drug targeting, occlusion, penetration enhancement, and increased skin hydration compared with other drug nanocarriers. Furthermore, the features of LN can be enhanced by inclusion in suitable bases such as creams, ointments, gels (i.e., hydrogel, emulgel, bigel), lotions, etc. This review focuses on recent developments in lipid nanoparticle systems and their application to treating skin diseases. We point out and consider the reasons for their creation, pay attention to their advantages and disadvantages, list the main production techniques for obtaining them, and examine the place assigned to them in solving the problems caused by skin disorders.
Collapse
Affiliation(s)
- Stefan R. Stefanov
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | | |
Collapse
|
34
|
Sguizzato M, Esposito E, Cortesi R. Lipid-Based Nanosystems as a Tool to Overcome Skin Barrier. Int J Mol Sci 2021; 22:8319. [PMID: 34361084 PMCID: PMC8348303 DOI: 10.3390/ijms22158319] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Skin may be affected by many disorders that can be treated by topical applications of drugs on the action site. With the advent of nanotechnologies, new efficient delivery systems have been developed. Particularly, lipid-based nanosystems such as liposomes, ethosomes, transferosomes, solid lipid nanoparticles, nanostructured lipid carriers, cubosomes, and monoolein aqueous dispersions have been proposed for cutaneous application, reaching in some cases the market or clinical trials. This review aims to provide an overview of the different lipid-based nanosystems, focusing on their use for topical application. Particularly, biocompatible nanosystems able to dissolve lipophilic compounds and to control the release of carried drug, possibly reducing side effects, are described. Notably, the rationale to topically administer antioxidant molecules by lipid nanocarriers is described. Indeed, the structural similarity between the nanosystem lipid matrix and the skin lipids allows the achievement of a transdermal effect. Surely, more research is required to better understand the mechanism of interaction between lipid-based nanosystems and skin. However, this attempt to summarize and highlight the possibilities offered by lipid-based nanosystems could help the scientific community to take advantage of the benefits derived from this kind of nanosystem.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (E.E.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (E.E.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (E.E.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
35
|
Dos Santos Ramos MA, de Toledo LG, Spósito L, Marena GD, de Lima LC, Fortunato GC, Araújo VHS, Bauab TM, Chorilli M. Nanotechnology-based lipid systems applied to resistant bacterial control: A review of their use in the past two decades. Int J Pharm 2021; 603:120706. [PMID: 33991597 DOI: 10.1016/j.ijpharm.2021.120706] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
The rate of infections caused by resistant bacteria to the antimicrobials available for human use grows exponentially every year, which generates major impacts on human health and the world economy. In the last two decades, human beings can witness the expressive increase in the Science and Technology worldwide, and areas such as Health Sciences have benefited from these advances in favor of human health, such as the advent of Pharmaceutical Nanotechnology as an important approach applied for bacterial infections treatment with resistance profile to available antibiotics. This review of the scientific literature brings the applicability of nanotechnology-based lipid systems as an innovative tool in the improvement of bacterial infections treatment. Important studies involving the use of liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, microemulsions and lipid nanocapsules were verified in the period from 2000 to 2020, where important scientific results were found and will serve as a basis for the use of these systems to remain in constant updating. This manuscript shows the use of these drug delivery systems as potential vehicles for antibacterial compounds, which opens a new hope in the complement of the antibacterial therapeutic arsenal. Important studies developed in the last 20 years are present in this review, and thus guarantees an update on the use of these drug delivery systems for researchers from different areas of Health Sciences.
Collapse
Affiliation(s)
- Matheus Aparecido Dos Santos Ramos
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil.
| | - Luciani Gaspar de Toledo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Larissa Spósito
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Gabriel Davi Marena
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Laura Caminitti de Lima
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Giovanna Capaldi Fortunato
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Victor Hugo Sousa Araújo
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Marlus Chorilli
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil.
| |
Collapse
|