1
|
Dong Y, Wang X, Feng GD, Yao Q, Zhu H. A Novel Strain Burkholderia theae GS2Y Exhibits Strong Biocontrol Potential Against Fungal Diseases in Tea Plants ( Camellia sinensis). Cells 2024; 13:1768. [PMID: 39513875 PMCID: PMC11545236 DOI: 10.3390/cells13211768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Tea plants (Camellia sinensis) are widely cultivated cash crops. However, fungal diseases lead to significant reductions in both the yield and quality of tea. Therefore, searching for economical, eco-friendly, and efficient biological control measures is crucial for protecting tea plants from pathogenic fungi. METHODS The confrontation assays were performed to identify the antagonistic bacteria against tea pathogenic fungi and evaluate the antifungal activity of these bacteria. RESULTS Here, three tea pathogenic fungi were identified: Colletotrichum siamense HT-1, Diaporthe phaseolorum HT-3, and Fusarium fujikuroi HT-4. Notably, D. phaseolorum was the first to be reported in tea plants in China. Some tea pathogenic fungi showed a high relative abundance, suggesting a potential disease risk in tea plantations. Strain GS2Y, isolated from tea rhizosphere soil, exhibited strong antifungal activity against tea pathogenic fungi and represented a novel species within the genus Burkholderia, designated as Burkholderia theae. GS2Y could directly inhibit tea pathogenic fungi by disrupting the cellular structures and protect tea plants from fungal diseases caused by C. siamense HT-1 and D. phaseolorum HT-3. CONCLUSIONS B. theae GS2Y might function as a potentially valuable resource for biocontrol agents, laying the foundation for the development of strategies to manage fungal diseases in tea plants.
Collapse
Affiliation(s)
- Yijie Dong
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.D.); (X.W.); (G.-D.F.)
| | - Xing Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.D.); (X.W.); (G.-D.F.)
| | - Guang-Da Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.D.); (X.W.); (G.-D.F.)
| | - Qing Yao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.D.); (X.W.); (G.-D.F.)
| |
Collapse
|
2
|
Aleynova OA, Ananev AA, Nityagovsky NN, Suprun AR, Zhanbyrshina NZ, Beresh AA, Ogneva ZV, Tyunin AP, Kiselev KV. Endophytic Bacteria and Fungi Associated with Polygonum cuspidatum in the Russian Far East. PLANTS (BASEL, SWITZERLAND) 2024; 13:2618. [PMID: 39339593 PMCID: PMC11434733 DOI: 10.3390/plants13182618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Polygonum cuspidatum, alternatively known as Fallopia japonica or Reynoutria japonica, is a perennial herb belonging to the Polygonaceae family. Commonly called Japanese knotweed or Asian knotweed, this plant is native to East Asia, particularly in regions such as Korea, China, and Japan. It has successfully adapted to a wide range of habitats, resulting in it being listed as a pest and invasive species in several countries in North America and Europe. This study focuses on analysing the composition of the bacterial and fungal endophytic communities associated with Japanese knotweed growing in the Russian Far East, employing next-generation sequencing (NGS) and a cultivation-based method (microbiological sowing). The NGS analysis showed that the dominant classes of endophytic bacteria were Alphaproteobacteria (28%) and Gammaproteobacteria (28%), Actinobacteria (20%), Bacteroidia (15%), and Bacilli (4%), and fungal classes were Agaricomycetes (40%), Dothideomycetes (24%), Leotiomycetes (10%), Tremellomycetes (9%), Pezizomycetes (5%), Sordariomycetes (3%), and Exobasidiomycetes (3%). The most common genera of endophytic bacteria were Burkholderia-Caballeronia-Parabukholderia, Sphingomonas, Hydrotalea, Methylobacterium-Metylorubrum, Cutibacterium, and Comamonadaceae, and genera of fungal endophytes were Marasmius, Tuber, Microcyclosporella, Schizothyrium, Alternaria, Parastagonospora, Vishniacozyma, and Cladosporium. The present data showed that the roots, leaves, and stems of P. cuspidatum have a greater number and diversity of endophytic bacteria and fungi compared to the flowers and seeds. Thus, the biodiversity of endophytic bacteria and fungi of P. cuspidatum was described and analysed for the first time in this study.
Collapse
Affiliation(s)
- Olga A Aleynova
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alexey A Ananev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Nikolay N Nityagovsky
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Andrey R Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Nursaule Zh Zhanbyrshina
- The Department of Agriculture and Plant Growing, S. Seifullin Kazakh Agrotechnical Research University, Astana 010011, Kazakhstan
| | - Alina A Beresh
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
- Institute of the World Ocean, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Zlata V Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alexey P Tyunin
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Konstantin V Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
3
|
Balleux G, Höfte M, Arguelles-Arias A, Deleu M, Ongena M. Bacillus lipopeptides as key players in rhizosphere chemical ecology. Trends Microbiol 2024:S0966-842X(24)00197-5. [PMID: 39214821 DOI: 10.1016/j.tim.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Microbial natural products are widely explored for their therapeutic potential. Understanding the underlying evolutionary and adaptive forces driving their production remains a fundamental question in biology. Amphiphilic cyclic lipopeptides (CLPs), a prominent category of bacterial specialized metabolites, show strong antimicrobial activity, particularly against phytopathogens. It is thus assumed that these compounds are deployed by soil- or rhizosphere-dwelling bacteria as microbial weapons in competitive natural environments. Here, we challenge this reductionist perspective and present evidence that Bacillus CLPs are prominent chemical mediators of ecological interactions. They help Bacillus to communicate, compete, defend against predators, or cooperate and establish mutualistic relationships with other (micro)organisms. Additional parallel examples are highlighted in other genera, such as Pseudomonas. This broader perspective underscores the need for further investigation into the role of CLPs in shaping the adaptive strategies of key rhizobacterial species.
Collapse
Affiliation(s)
- Guillaume Balleux
- Microbial Processes and Interactions laboratory, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium.
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Anthony Arguelles-Arias
- Microbial Processes and Interactions laboratory, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions laboratory, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium.
| |
Collapse
|
4
|
Li W, Fu Y, Jiang Y, Hu J, Wei Y, Li H, Li J, Yang H, Wu Y. Synergistic Biocontrol and Growth Promotion in Strawberries by Co-Cultured Trichoderma harzianum TW21990 and Burkholderia vietnamiensis B418. J Fungi (Basel) 2024; 10:551. [PMID: 39194877 DOI: 10.3390/jof10080551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
This study aimed to investigate the efficiency of the secondary metabolites (SMs) produced by a co-culture of Trichoderma harzianum TW21990 and Burkholderia vietnamiensis B418 in the control of Colletotrichum siamense CM9. A fermentation filtrate of B418 + TW21990 co-culture (BT21) produced a notable increase in the inhibition rate of CM9 compared to those of TW21990 and B418 monocultures, which reached 91.40% and 80.46% on PDA plates and strawberry leaves, respectively. The BT21 fermentation broth exhibited high control efficiency on strawberry root rot of 68.95% in a pot experiment, which was higher than that in the monocultures and fluazinam treatment. In addition, BT21 treatment promoted strawberry root development, improved antioxidative enzyme activities in the leaves and roots, and enhanced the total chlorophyll content of the strawberry leaves. UHPLC-MS/MS analysis of fermentation filtrates was performed to elucidate SM variations, revealing 478 and 795 metabolites in BT21 co-culture in positive and negative ion modes, respectively. The metabolomic profiles suggested abundant SMs with antagonistic capabilities and growth-promoting effects: 3-(propan-2-yl)-octahydropyrrolo [1,2-a]pyrazine-1,4-dione (cyclo(L-Pro-L-Val)), 3-[(4-hydroxyphenyl)methyl]-octahydropyrrolo[1,2-a]pyrazine-1,4-dione (cyclo(L-Pro-L-Tyr)), 3-indoleacetic acid (IAA), 2-hydroxycinnamic acid, 4-aminobutyric acid (GABA), bafilomycin B1, and DL-indole-3-lactic acid (ILA) were significantly enhanced in the co-culture. Overall, this study demonstrates that a co-culture strategy is efficient for inducing bioactive SMs in T. harzianum and B. vietnamiensis, which could be exploited as a novel approach for developing biocontrol consortia.
Collapse
Affiliation(s)
- Wenzhe Li
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Yiting Fu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Yanqing Jiang
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Jindong Hu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Yanli Wei
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Hongmei Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Jishun Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Hetong Yang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Yuanzheng Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| |
Collapse
|
5
|
Chen X, Liu J, Chen AJ, Wang L, Jiang X, Gong A, Liu W, Wu H. Burkholderia ambifaria H8 as an effective biocontrol strain against maize stalk rot via producing volatile dimethyl disulfide. PEST MANAGEMENT SCIENCE 2024; 80:4125-4136. [PMID: 38578571 DOI: 10.1002/ps.8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Maize stalk rot (MSR) caused by Fusarium graminearum is the primary factor contributing to the reduction in maize yield and quality. However, this soil-borne disease presents a significant challenge for sustainable control through field management and chemical agents. The screening of novel biocontrol agents can aid in developing innovative and successful strategies for MSR control. RESULTS A total of 407 strains of bacteria were isolated from the rhizosphere soil of a resistant maize inbred line. One strain exhibited significant antagonistic activity in plate and pot experiments, and was identified as Burkholderia ambifaria H8. The strain could significantly inhibit the mycelial growth and spore germination of F. graminearum, induce resistance to stalk rot, and promote plant growth. The volatile compounds produced by strain H8 and its secondary metabolites in the sterile fermentation broth exhibited antagonistic activity. The primary volatile compound produced by strain H8 was identified as dimethyl disulfide (DMDS) using gas chromatography tandem mass spectrometry. Through in vitro antagonistic activity assays and microscopic observation, it was confirmed that DMDS was capable of inhibiting mycelial growth and disrupting the mycelial structure of F. graminearum, suggesting it may be the major active compound for strain H8. The transcriptome data of F. graminearum further indicated that strain H8 and its volatile compounds could alter pathogenic fungi metabolism, influence the related metabolic pathways, and potentially induce cell apoptosis within F. graminearum. CONCLUSION Our results showed that B. ambifaria H8 was capable of producing the volatile substance dimethyl disulfide, which influenced the synthesis and permeability of cell membranes in pathogens. Thus, B. ambifaria H8 was found to be a promising biological control agent against MSR. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyu Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Jingrong Liu
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Amanda Juan Chen
- Microbiome Research Center, Moon (Beijing) Biotech Ltd., Beijing, P.R. China
| | - Lin Wang
- Microbiome Research Center, Moon (Beijing) Biotech Ltd., Beijing, P.R. China
| | - Xianzhi Jiang
- Microbiome Research Center, Moon (Beijing) Biotech Ltd., Beijing, P.R. China
| | - Andong Gong
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Hanxiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
6
|
Sharma D, Kraft AL, Owade JO, Milicevic M, Yi J, Bergholz TM. Impact of Biotic and Abiotic Factors on Listeria monocytogenes, Salmonella enterica, and Enterohemorrhagic Escherichia coli in Agricultural Soil Extracts. Microorganisms 2024; 12:1498. [PMID: 39065266 PMCID: PMC11278928 DOI: 10.3390/microorganisms12071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Outbreaks of Enterohemorrhagic Escherichia coli (EHEC), Salmonella enterica, and Listeria monocytogenes linked to fresh produce consumption pose significant food safety concerns. These pathogens can contaminate pre-harvest produce through various routes, including contaminated water. Soil physicochemical properties and flooding can influence pathogen survival in soils. We investigated survival of EHEC, S. enterica, and L. monocytogenes in soil extracts designed to represent soils with stagnant water. We hypothesized pathogen survival would be influenced by soil extract nutrient levels and the presence of native microbes. A chemical analysis revealed higher levels of total nitrogen, phosphorus, and carbon in high-nutrient soil extracts compared to low-nutrient extracts. Pathogen survival was enhanced in high-nutrient, sterile soil extracts, while the presence of native microbes reduced pathogen numbers. A microbiome analysis showed greater diversity in low-nutrient soil extracts, with distinct microbial compositions between extract types. Our findings highlight the importance of soil nutrient composition and microbial dynamics in influencing pathogen behavior. Given key soil parameters, a long short-term memory model (LSTM) effectively predicted pathogen survival. Integrating these factors can aid in developing predictive models for pathogen persistence in agricultural systems. Overall, our study contributes to understanding the complex interplay in agricultural ecosystems, facilitating informed decision-making for crop production and food safety enhancement.
Collapse
Affiliation(s)
- Dimple Sharma
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (D.S.)
| | - Autumn L. Kraft
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Joshua O. Owade
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (D.S.)
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA (J.Y.)
| | - Mateja Milicevic
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA (J.Y.)
| | - Jiyoon Yi
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA (J.Y.)
| | - Teresa M. Bergholz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (D.S.)
| |
Collapse
|
7
|
Chang YL, Chang YC, Kurniawan A, Chang PC, Liou TY, Wang WD, Chuang HW. Employing Genomic Tools to Explore the Molecular Mechanisms behind the Enhancement of Plant Growth and Stress Resilience Facilitated by a Burkholderia Rhizobacterial Strain. Int J Mol Sci 2024; 25:6091. [PMID: 38892282 PMCID: PMC11172717 DOI: 10.3390/ijms25116091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The rhizobacterial strain BJ3 showed 16S rDNA sequence similarity to species within the Burkholderia genus. Its complete genome sequence revealed a 97% match with Burkholderia contaminans and uncovered gene clusters essential for plant-growth-promoting traits (PGPTs). These clusters include genes responsible for producing indole acetic acid (IAA), osmolytes, non-ribosomal peptides (NRPS), volatile organic compounds (VOCs), siderophores, lipopolysaccharides, hydrolytic enzymes, and spermidine. Additionally, the genome contains genes for nitrogen fixation and phosphate solubilization, as well as a gene encoding 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The treatment with BJ3 enhanced root architecture, boosted vegetative growth, and accelerated early flowering in Arabidopsis. Treated seedlings also showed increased lignin production and antioxidant capabilities, as well as notably increased tolerance to water deficit and high salinity. An RNA-seq transcriptome analysis indicated that BJ3 treatment significantly activated genes related to immunity induction, hormone signaling, and vegetative growth. It specifically activated genes involved in the production of auxin, ethylene, and salicylic acid (SA), as well as genes involved in the synthesis of defense compounds like glucosinolates, camalexin, and terpenoids. The expression of AP2/ERF transcription factors was markedly increased. These findings highlight BJ3's potential to produce various bioactive metabolites and its ability to activate auxin, ethylene, and SA signaling in Arabidopsis, positioning it as a new Burkholderia strain that could significantly improve plant growth, stress resilience, and immune function.
Collapse
Affiliation(s)
- Yueh-Long Chang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Yu-Cheng Chang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Andi Kurniawan
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
- Department of Agronomy, Brawijaya University, Malang 65145, Indonesia
| | - Po-Chun Chang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Ting-Yu Liou
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Wen-Der Wang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Huey-wen Chuang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| |
Collapse
|
8
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
9
|
Wang S, Liu P, Yu J, Liu T. Multi-omics analysis revealed the regulation mode of intratumor microorganisms and microbial signatures in gastrointestinal cancer. Carcinogenesis 2024; 45:149-162. [PMID: 37944024 DOI: 10.1093/carcin/bgad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Gastrointestinal cancer is one of the most common malignant tumors in the world, and its incidence rate is always high. In recent years, research has shown that microorganisms may play a broad role in the diagnosis, pathogenesis, and treatment of cancer. METHODS In this study, samples were first classified according to the microbial expression data of Gastrointestinal cancer, followed by functional enrichment and Immunoassay. In order to better understand the role of intratumor microorganisms in the prognosis, we screened gene signatures and constructed risk model through univariate cox and lasso regression and multivariable cox, then screened microbial signatures using zero-inflated model regression model and constructed risk index (RI), and finally predicted the immunotherapeutic effect of the risk model. RESULTS The results indicate that the composition of tumor microorganisms in the C3 subtype is closely related to tumor angiogenesis, and there is a significant difference in the proportion of innate and acquired immune cells between the C2 and C1 subtypes, as well as differences in the physiological functions of immune cells. There are significant differences in the expression of microbial signatures between high and low risk subtypes, with 9 microbial signatures upregulated in high risk subtypes and 15 microbial signatures upregulated in low risk subtypes. These microbial signatures were significantly correlated with the prognosis of patients. The results of immunotherapy indicate that immunotherapy for high-risk subtypes is more effective. CONCLUSION Overall, we analyze from the perspective of microorganisms within tumors, pointing out new directions for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Siqi Wang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing 100081, China
| | - Pei Liu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing 100081, China
| | - Jie Yu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing 100081, China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing 100081, China
| |
Collapse
|
10
|
Guerrero-Egido G, Pintado A, Bretscher KM, Arias-Giraldo LM, Paulson JN, Spaink HP, Claessen D, Ramos C, Cazorla FM, Medema MH, Raaijmakers JM, Carrión VJ. bacLIFE: a user-friendly computational workflow for genome analysis and prediction of lifestyle-associated genes in bacteria. Nat Commun 2024; 15:2072. [PMID: 38453959 PMCID: PMC10920822 DOI: 10.1038/s41467-024-46302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Bacteria have an extensive adaptive ability to live in close association with eukaryotic hosts, exhibiting detrimental, neutral or beneficial effects on host growth and health. However, the genes involved in niche adaptation are mostly unknown and their functions poorly characterized. Here, we present bacLIFE ( https://github.com/Carrion-lab/bacLIFE ) a streamlined computational workflow for genome annotation, large-scale comparative genomics, and prediction of lifestyle-associated genes (LAGs). As a proof of concept, we analyzed 16,846 genomes from the Burkholderia/Paraburkholderia and Pseudomonas genera, which led to the identification of hundreds of genes potentially associated with a plant pathogenic lifestyle. Site-directed mutagenesis of 14 of these predicted LAGs of unknown function, followed by plant bioassays, showed that 6 predicted LAGs are indeed involved in the phytopathogenic lifestyle of Burkholderia plantarii and Pseudomonas syringae pv. phaseolicola. These 6 LAGs encompassed a glycosyltransferase, extracellular binding proteins, homoserine dehydrogenases and hypothetical proteins. Collectively, our results highlight bacLIFE as an effective computational tool for prediction of LAGs and the generation of hypotheses for a better understanding of bacteria-host interactions.
Collapse
Affiliation(s)
- Guillermo Guerrero-Egido
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
| | - Adrian Pintado
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
| | - Kevin M Bretscher
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
| | - Luisa-Maria Arias-Giraldo
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Joseph N Paulson
- Department of Data Sciences, N-Power Medicine, Redwood City, CA, 94063, USA
| | - Herman P Spaink
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Dennis Claessen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Cayo Ramos
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
- Área de Genética, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
| | - Marnix H Medema
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Víctor J Carrión
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain.
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain.
| |
Collapse
|
11
|
Bach E, Chen J, Angolini CFF, Bauer JS, Gross H, Passaglia LMP. Genome-guided purification of high amounts of the siderophore ornibactin and detection of potentially novel burkholdine derivatives produced by Burkholderia catarinensis 89T. J Appl Microbiol 2024; 135:lxae040. [PMID: 38364306 DOI: 10.1093/jambio/lxae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
AIM The increased availability of genome sequences has enabled the development of valuable tools for the prediction and identification of bacterial natural products. Burkholderia catarinensis 89T produces siderophores and an unknown potent antifungal metabolite. The aim of this work was to identify and purify natural products of B. catarinensis 89T through a genome-guided approach. MATERIALS AND METHODS The analysis of B. catarinensis 89T genome revealed 16 clusters putatively related to secondary metabolism and antibiotics production. Of particular note was the identification of a nonribosomal peptide synthetase (NRPS) cluster related to the production of the siderophore ornibactin, a hybrid NRPS-polyketide synthase Type 1 cluster for the production of the antifungal glycolipopeptide burkholdine, and a gene cluster encoding homoserine lactones (HSL), probably involved in the regulation of both metabolites. We were able to purify high amounts of the ornibactin derivatives D/C6 and F/C8, while also detecting the derivative B/C4 in mass spectrometry investigations. A group of metabolites with molecular masses ranging from 1188 to 1272 Da could be detected in MS experiments, which we postulate to be new burkholdine analogs produced by B. catarinensis. The comparison of B. catarinensis BGCs with other Bcc members corroborates the hypothesis that this bacterium could produce new derivatives of these metabolites. Moreover, the quorum sensing metabolites C6-HSL, C8-HSL, and 3OH-C8-HSL were observed in LC-MS/MS analysis. CONCLUSION The new species B. catarinensis is a potential source of new bioactive secondary metabolites. Our results highlight the importance of genome-guided purification and identification of metabolites of biotechnological importance.
Collapse
Affiliation(s)
- Evelise Bach
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), 91540-000, Porto, Alegre, RS, Brazil
| | - Julia Chen
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, 72076, Germany
| | | | - Judith S Bauer
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, 72076, Germany
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, 72076, Germany
| | | |
Collapse
|
12
|
Kim B, Han SR, Lee H, Oh TJ. Insights into group-specific pattern of secondary metabolite gene cluster in Burkholderia genus. Front Microbiol 2024; 14:1302236. [PMID: 38293557 PMCID: PMC10826400 DOI: 10.3389/fmicb.2023.1302236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
Burkholderia is a versatile strain that has expanded into several genera. It has been steadily reported that the genome features of Burkholderia exhibit activities ranging from plant growth promotion to pathogenicity across various isolation areas. The objective of this study was to investigate the secondary metabolite patterns of 366 Burkholderia species through comparative genomics. Samples were selected based on assembly quality assessment and similarity below 80% in average nucleotide identity. Duplicate samples were excluded. Samples were divided into two groups using FastANI analysis. Group A included B. pseudomallei complex. Group B included B. cepacia complex. The limitations of MLST were proposed. The detection of genes was performed, including environmental and virulence-related genes. In the pan-genome analysis, each complex possessed a similar pattern of cluster for orthologous groups. Group A (n = 185) had 14,066 cloud genes, 2,465 shell genes, 682 soft-core genes, and 2,553 strict-core genes. Group B (n = 181) had 39,867 cloud genes, 4,986 shell genes, 324 soft-core genes, 222 core genes, and 2,949 strict-core genes. AntiSMASH was employed to analyze the biosynthetic gene cluster (BGC). The results were then utilized for network analysis using BiG-SCAPE and CORASON. Principal component analysis was conducted and a table was constructed using the results obtained from antiSMASH. The results were divided into Group A and Group B. We expected the various species to show similar patterns of secondary metabolite gene clusters. For in-depth analysis, a network analysis of secondary metabolite gene clusters was conducted, exemplified by BiG-SCAPE analysis. Depending on the species and complex, Burkholderia possessed several kinds of siderophore. Among them, ornibactin was possessed in most Burkholderia and was clustered into 4,062 clans. There was a similar pattern of gene clusters depending on the species. NRPS_04014 belonged to siderophore BGCs including ornibactin and indigoidine. However, it was observed that each family included a similar species. This suggests that, besides siderophores being species-specific, the ornibactin gene cluster itself might also be species-specific. The results suggest that siderophores are associated with environmental adaptation, possessing a similar pattern of siderophore gene clusters among species, which could provide another perspective on species-specific environmental adaptation mechanisms.
Collapse
Affiliation(s)
- Byeollee Kim
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
| | - So-Ra Han
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
| | - Hyun Lee
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
- Division of Computer Science and Engineering, SunMoon University, Asan, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Republic of Korea
| |
Collapse
|
13
|
Bach E, Volpiano CG, Sant'Anna FH, Passaglia LMP. Genome-based taxonomy of Burkholderia sensu lato: Distinguishing closely related species. Genet Mol Biol 2023; 46:e20230122. [PMID: 37935243 PMCID: PMC10629849 DOI: 10.1590/1678-4685-gmb-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/13/2023] [Indexed: 11/09/2023] Open
Abstract
The taxonomy of Burkholderia sensu lato (s.l.) has been revisited using genome-based tools, which have helped differentiate closely related species. Many species from this group are indistinguishable through phenotypic traits and 16S rRNA gene sequence analysis. Furthermore, they also exhibit whole-genome Average Nucleotide Identity (ANI) values in the twilight zone for species circumscription (95-96%), which may impair their correct classification. In this work, we provided an updated Burkholderia s.l. taxonomy focusing on closely related species and give other recommendations for those developing genome-based taxonomy studies. We showed that a combination of ANI and digital DNA-DNA hybridization (dDDH) applying the universal cutoff values of 95% and 70%, respectively, successfully discriminates Burkholderia s.l. species. Using genome metrics with this pragmatic criterion, we demonstrated that i) Paraburkholderia insulsa should be considered a later heterotypic synonym of Paraburkholderia fungorum; ii) Paraburkholderia steynii differs from P. terrae by harboring symbiotic genes; iii) some Paraburkholderia are indeed different species based on dDDH values, albeit sharing ANI values close to 95%; iv) some Burkholderia s.l. indeed represent new species from the genomic viewpoint; iv) some genome sequences should be evaluated with care due to quality concerns.
Collapse
Affiliation(s)
- Evelise Bach
- Instituto de Biociências, Departamento de Genética and Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Camila Gazolla Volpiano
- Instituto de Biociências, Departamento de Genética and Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Fernando Hayashi Sant'Anna
- Hospital Moinhos de Vento, Programa de Apoio ao Desenvolvimento Institucional do Sistema Único de Saúde (PROADI - SUS), Porto Alegre, RS, Brazil
| | - Luciane Maria Pereira Passaglia
- Instituto de Biociências, Departamento de Genética and Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Romanowski SB, Lee S, Kunakom S, Paulo BS, Recchia MJJ, Liu DY, Cavanagh H, Linington RG, Eustáquio AS. Identification of the lipodepsipeptide selethramide encoded in a giant nonribosomal peptide synthetase from a Burkholderia bacterium. Proc Natl Acad Sci U S A 2023; 120:e2304668120. [PMID: 37812712 PMCID: PMC10589681 DOI: 10.1073/pnas.2304668120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
Bacterial natural products have found many important industrial applications. Yet traditional discovery pipelines often prioritize individual natural product families despite the presence of multiple natural product biosynthetic gene clusters in each bacterial genome. Systematic characterization of talented strains is a means to expand the known natural product space. Here, we report genomics, epigenomics, and metabolomics studies of Burkholderia sp. FERM BP-3421, a soil isolate and known producer of antitumor spliceostatins. Its genome is composed of two chromosomes and two plasmids encoding at least 29 natural product families. Metabolomics studies showed that FERM BP-3421 also produces antifungal aminopyrrolnitrin and approved anticancer romidepsin. From the orphan metabolome features, we connected a lipopeptide of 1,928 Da to an 18-module nonribosomal peptide synthetase encoded as a single gene in chromosome 1. Isolation and structure elucidation led to the identification of selethramide which contains a repeating pattern of serine and leucine and is cyclized at the side chain oxygen of the one threonine residue at position 13. A (R)-3-hydroxybutyric acid moiety decorates the N-terminal serine. Initial attempts to obtain deletion mutants to probe the role of selethramide failed. After acquiring epigenome (methylome) data for FERM BP-3421, we employed a mimicry by methylation strategy that improved DNA transfer efficiency. Mutants defective in selethramide biosynthesis showed reduced surfactant activity and impaired swarming motility that could be chemically complemented with selethramide. This work unveils a lipopeptide that promotes surface motility, establishes improved DNA transfer efficiency, and sets the stage for continued natural product identification from a prolific strain.
Collapse
Affiliation(s)
- Sean B. Romanowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | - Sanghoon Lee
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Sylvia Kunakom
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | - Bruno S. Paulo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | | | - Dennis Y. Liu
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Hannah Cavanagh
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Roger G. Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| |
Collapse
|
15
|
Webster G, Mullins AJ, Petrova YD, Mahenthiralingam E. Polyyne-producing Burkholderia suppress Globisporangium ultimum damping-off disease of Pisum sativum (pea). Front Microbiol 2023; 14:1240206. [PMID: 37692405 PMCID: PMC10485841 DOI: 10.3389/fmicb.2023.1240206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Extensive crop losses are caused by oomycete and fungal damping-off diseases. Agriculture relies heavily on chemical pesticides to control disease, but due to safety concerns multiple agents have been withdrawn. Burkholderia were successfully used as commercial biopesticides because of their fungicidal activity and plant protective traits. However, their potential for opportunistic pathogenicity led to a moratorium on their registration as biopesticides. Subsequently, Burkholderia were shown to produce multiple specialised metabolites including potent antimicrobial polyynes. Cepacin A, a polyyne produced by Burkholderia ambifaria biopesticide strains was shown to be an important metabolite for the protection of germinating peas against Globisporangium ultimum (formerly Pythium) damping-off disease. Recently, there has been an expansion in bacterial polyyne discovery, with the metabolites and their biosynthetic gene pathways found in several bacterial genera including Burkholderia, Collimonas, Trinickia, and Pseudomonas. To define the efficacy of these bacterial polyyne producers as biopesticidal agents, we systematically evaluated metabolite production, in vitro microbial antagonism, and G. ultimum biocontrol across a panel of 30 strains representing four bacterial genera. In vitro polyyne production and antimicrobial activity was demonstrated for most strains, but only Burkholderia polyyne producers were protective within the in vivo G. ultimum damping-off pea protection model. B. ambifaria was the most effective cepacin-expressing biopesticide, and despite their known potential for plant pathogenicity Burkholderia gladioli and Burkholderia plantarii were uniquely shown to be protective as caryoynencin-producing biopesticides. In summary, Burkholderia are effective biopesticides due to their suite of antimicrobials, but the ability to deploy polyyne metabolites, caryoynencin and cepacin, is strain and species dependent. Graphical Abstract.
Collapse
|
16
|
Verstraete B, Janssens S, De Block P, Asselman P, Méndez G, Ly S, Hamon P, Guyot R. Metagenomics of African Empogona and Tricalysia (Rubiaceae) reveals the presence of leaf endophytes. PeerJ 2023; 11:e15778. [PMID: 37554339 PMCID: PMC10405798 DOI: 10.7717/peerj.15778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Background Leaf symbiosis is a phenomenon in which host plants of Rubiaceae interact with bacterial endophytes within their leaves. To date, it has been found in around 650 species belonging to eight genera in four tribes; however, the true extent in Rubiaceae remains unknown. Our aim is to investigate the possible occurrence of leaf endophytes in the African plant genera Empogona and Tricalysia and, if present, to establish their identity. Methods Total DNA was extracted from the leaves of four species of the Coffeeae tribe (Empogona congesta, Tricalysia hensii, T. lasiodelphys, and T. semidecidua) and sequenced. Bacterial reads were filtered out and assembled. Phylogenetic analysis of the endophytes was used to reveal their identity and their relationship with known symbionts. Results All four species have non-nodulated leaf endophytes, which are identified as Caballeronia. The endophytes are distinct from each other but related to other nodulated and non-nodulated endophytes. An apparent phylogenetic or geographic pattern appears to be absent in endophytes or host plants. Caballeronia endophytes are present in the leaves of Empogona and Tricalysia, two genera not previously implicated in leaf symbiosis. This interaction is likely to be more widespread, and future discoveries are inevitable.
Collapse
Affiliation(s)
| | - Steven Janssens
- Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | | | - Gabriela Méndez
- Grupo de Investigación (BIOARN), Universidad Politécnica Salesiana, Quito, Ecuador
- Facultad de ingenieria, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Serigne Ly
- DIADE, Université de Montpellier, Montpellier, France
| | - Perla Hamon
- DIADE, Université de Montpellier, Montpellier, France
| | - Romain Guyot
- DIADE, Université de Montpellier, Montpellier, France
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| |
Collapse
|
17
|
Gonzales M, Plener L, Armengaud J, Armstrong N, Chabrière É, Daudé D. Lactonase-mediated inhibition of quorum sensing largely alters phenotypes, proteome, and antimicrobial activities in Burkholderia thailandensis E264. Front Cell Infect Microbiol 2023; 13:1190859. [PMID: 37333853 PMCID: PMC10272358 DOI: 10.3389/fcimb.2023.1190859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Burkholderia thailandensis is a study model for Burkholderia pseudomallei, a highly virulent pathogen, known to be the causative agent of melioidosis and a potential bioterrorism agent. These two bacteria use an (acyl-homoserine lactone) AHL-mediated quorum sensing (QS) system to regulate different behaviors including biofilm formation, secondary metabolite productions, and motility. Methods Using an enzyme-based quorum quenching (QQ) strategy, with the lactonase SsoPox having the best activity on B. thailandensis AHLs, we evaluated the importance of QS in B. thailandensis by combining proteomic and phenotypic analyses. Results We demonstrated that QS disruption largely affects overall bacterial behavior including motility, proteolytic activity, and antimicrobial molecule production. We further showed that QQ treatment drastically decreases B. thailandensis bactericidal activity against two bacteria (Chromobacterium violaceum and Staphylococcus aureus), while a spectacular increase in antifungal activity was observed against fungi and yeast (Aspergillus niger, Fusarium graminearum and Saccharomyces cerevisiae). Discussion This study provides evidence that QS is of prime interest when it comes to understanding the virulence of Burkholderia species and developing alternative treatments.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- Gene&GreenTK, Marseille, France
| | | | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | |
Collapse
|
18
|
Nitrogen-Fixing Symbiotic Paraburkholderia Species: Current Knowledge and Future Perspectives. NITROGEN 2023. [DOI: 10.3390/nitrogen4010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
A century after the discovery of rhizobia, the first Beta-proteobacteria species (beta-rhizobia) were isolated from legume nodules in South Africa and South America. Since then, numerous species belonging to the Burkholderiaceae family have been isolated. The presence of a highly branching lineage of nodulation genes in beta-rhizobia suggests a long symbiotic history. In this review, we focus on the beta-rhizobial genus Paraburkholderia, which includes two main groups: the South American mimosoid-nodulating Paraburkholderia and the South African predominantly papilionoid-nodulating Paraburkholderia. Here, we discuss the latest knowledge on Paraburkholderia nitrogen-fixing symbionts in each step of the symbiosis, from their survival in the soil, through the first contact with the legumes until the formation of an efficient nitrogen-fixing symbiosis in root nodules. Special attention is given to the strain P. phymatum STM815T that exhibits extraordinary features, such as the ability to: (i) enter into symbiosis with more than 50 legume species, including the agriculturally important common bean, (ii) outcompete other rhizobial species for nodulation of several legumes, and (iii) endure stressful soil conditions (e.g., high salt concentration and low pH) and high temperatures.
Collapse
|
19
|
Abstract
A major source of pseudomonad-specialized metabolites is the nonribosomal peptide synthetases (NRPSs) assembling siderophores and lipopeptides. Cyclic lipopeptides (CLPs) of the Mycin and Peptin families are frequently associated with, but not restricted to, phytopathogenic species. We conducted an in silico analysis of the NRPSs encoded by lipopeptide biosynthetic gene clusters in nonpathogenic Pseudomonas genomes, covering 13 chemically diversified families. This global assessment of lipopeptide production capacity revealed it to be confined to the Pseudomonas fluorescens lineage, with most strains synthesizing a single type of CLP. Whereas certain lipopeptide families are specific for a taxonomic subgroup, others are found in distant groups. NRPS activation domain-guided peptide predictions enabled reliable family assignments, including identification of novel members. Focusing on the two most abundant lipopeptide families (Viscosin and Amphisin), a portion of their uncharted diversity was mapped, including characterization of two novel Amphisin family members (nepenthesin and oakridgin). Using NMR fingerprint matching, known Viscosin-family lipopeptides were identified in 15 (type) species spread across different taxonomic groups. A bifurcate genomic organization predominates among Viscosin-family producers and typifies Xantholysin-, Entolysin-, and Poaeamide-family producers but most families feature a single NRPS gene cluster embedded between cognate regulator and transporter genes. The strong correlation observed between NRPS system phylogeny and rpoD-based taxonomic affiliation indicates that much of the structural diversity is linked to speciation, providing few indications of horizontal gene transfer. The grouping of most NRPS systems in four superfamilies based on activation domain homology suggests extensive module dynamics driven by domain deletions, duplications, and exchanges. IMPORTANCE Pseudomonas species are prominent producers of lipopeptides that support proliferation in a multitude of environments and foster varied lifestyles. By genome mining of biosynthetic gene clusters (BGCs) with lipopeptide-specific organization, we mapped the global Pseudomonas lipopeptidome and linked its staggering diversity to taxonomy of the producers, belonging to different groups within the major Pseudomonas fluorescens lineage. Activation domain phylogeny of newly mined lipopeptide synthetases combined with previously characterized enzymes enabled assignment of predicted BGC products to specific lipopeptide families. In addition, novel peptide sequences were detected, showing the value of substrate specificity analysis for prioritization of BGCs for further characterization. NMR fingerprint matching proved an excellent tool to unequivocally identify multiple lipopeptides bioinformatically assigned to the Viscosin family, by far the most abundant one in Pseudomonas and with stereochemistry of all its current members elucidated. In-depth analysis of activation domains provided insight into mechanisms driving lipopeptide structural diversification.
Collapse
|
20
|
Beck ML, Song S, Shuster IE, Miharia A, Walker AS. Diversity and taxonomic distribution of bacterial biosynthetic gene clusters predicted to produce compounds with therapeutically relevant bioactivities. J Ind Microbiol Biotechnol 2023; 50:kuad024. [PMID: 37653463 PMCID: PMC10548851 DOI: 10.1093/jimb/kuad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
Bacteria have long been a source of natural products with diverse bioactivities that have been developed into therapeutics to treat human disease. Historically, researchers have focused on a few taxa of bacteria, mainly Streptomyces and other actinomycetes. This strategy was initially highly successful and resulted in the golden era of antibiotic discovery. The golden era ended when the most common antibiotics from Streptomyces had been discovered. Rediscovery of known compounds has plagued natural product discovery ever since. Recently, there has been increasing interest in identifying other taxa that produce bioactive natural products. Several bioinformatics studies have identified promising taxa with high biosynthetic capacity. However, these studies do not address the question of whether any of the products produced by these taxa are likely to have activities that will make them useful as human therapeutics. We address this gap by applying a recently developed machine learning tool that predicts natural product activity from biosynthetic gene cluster (BGC) sequences to determine which taxa are likely to produce compounds that are not only novel but also bioactive. This machine learning tool is trained on a dataset of BGC-natural product activity pairs and relies on counts of different protein domains and resistance genes in the BGC to make its predictions. We find that rare and understudied actinomycetes are the most promising sources for novel active compounds. There are also several taxa outside of actinomycetes that are likely to produce novel active compounds. We also find that most strains of Streptomyces likely produce both characterized and uncharacterized bioactive natural products. The results of this study provide guidelines to increase the efficiency of future bioprospecting efforts. ONE-SENTENCE SUMMARY This paper combines several bioinformatics workflows to identify which genera of bacteria are most likely to produce novel natural products with useful bioactivities such as antibacterial, antitumor, or antifungal activity.
Collapse
Affiliation(s)
- Max L Beck
- Department of Chemistry, Vanderbilt University. 1234 Stevenson Center Lane, Nashville, TN 37240, Untited States
| | - Siyeon Song
- Department of Chemistry, Vanderbilt University. 1234 Stevenson Center Lane, Nashville, TN 37240, Untited States
| | - Isra E Shuster
- Department of Chemistry, Vanderbilt University. 1234 Stevenson Center Lane, Nashville, TN 37240, Untited States
| | - Aarzu Miharia
- Department of Chemistry, Vanderbilt University. 1234 Stevenson Center Lane, Nashville, TN 37240, Untited States
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University. 1234 Stevenson Center Lane, Nashville, TN 37240, Untited States
- Department of Biological Sciences, Vanderbilt University. VU Station B, Box 35-1634, Nashville, TN 37235, Untited States
| |
Collapse
|
21
|
An C, Ma S, Liu C, Ding H, Xue W. Burkholderia ambifaria XN08: A plant growth-promoting endophytic bacterium with biocontrol potential against sharp eyespot in wheat. Front Microbiol 2022; 13:906724. [PMID: 35966702 PMCID: PMC9368319 DOI: 10.3389/fmicb.2022.906724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) have been considered promising biological agents to increase crop yields for years. However, the successful application of PGPB for biocontrol of sharp eyespot in wheat has been limited, partly by the lack of knowledge of the ecological/environmental factors affecting the colonization, prevalence, and activity of beneficial bacteria on the crop. In this study, an endophytic bacterium XN08 with antagonistic activity against Rhizoctonia cerealis (wheat sharp eyespot pathogenic fungus), isolated from healthy wheat plants, was identified as Burkholderia ambifaria according to the sequence analysis of 16S rRNA. The antibiotic synthesis gene amplification and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) analyses were used to characterize the secondary metabolites. The results showed that the known powerful antifungal compound named pyrrolnitrin was produced by the strain XN08. In addition, B. ambifaria XN08 also showed the capacity for phosphate solubilization, indole-3-acetic acid (IAA), protease, and siderophore production in vitro. In the pot experiments, a derivate strain carrying the green fluorescent protein (GFP) gene was used to observe its colonization in wheat plants. The results showed that GFP-tagged B. ambifaria could colonize wheat tissues effectively. This significant colonization was accompanied by an enhancement of wheat plants' growth and an induction of immune resistance for wheat seedlings, which was revealed by the higher activities of polyphenol oxidase (PPO), peroxidase (POD), and phenylalanine ammonia-lyase (PAL). As far as we know, this is the first report describing the colonization traits of B. ambifaria in wheat plants. In addition, our results indicated that B. ambifaria XN08 might serve as a new effective biocontrol agent against wheat sharp eyespot disease caused by R. cerealis.
Collapse
|
22
|
Mathur V, Ulanova D. Microbial Metabolites Beneficial to Plant Hosts Across Ecosystems. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02073-x. [PMID: 35867138 DOI: 10.1007/s00248-022-02073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Plants are intimately connected with their associated microorganisms. Chemical interactions via natural products between plants and their microbial symbionts form an important aspect in host health and development, both in aquatic and terrestrial ecosystems. These interactions range from negative to beneficial for microbial symbionts as well as their hosts. Symbiotic microbes synchronize their metabolism with their hosts, thus suggesting a possible coevolution among them. Metabolites, synthesized from plants and microbes due to their association and coaction, supplement the already present metabolites, thus promoting plant growth, maintaining physiological status, and countering various biotic and abiotic stress factors. However, environmental changes, such as pollution and temperature variations, as well as anthropogenic-induced monoculture settings, have a significant influence on plant-associated microbial community and its interaction with the host. In this review, we put the prominent microbial metabolites participating in plant-microbe interactions in the natural terrestrial and aquatic ecosystems in a single perspective and have discussed commonalities and differences in these interactions for adaptation to surrounding environment and how environmental changes can alter the same. We also present the status and further possibilities of employing chemical interactions for environment remediation. Our review thus underlines the importance of ecosystem-driven functional adaptations of plant-microbe interactions in natural and anthropogenically influenced ecosystems and their possible applications.
Collapse
Affiliation(s)
- Vartika Mathur
- Animal Plant Interactions Lab, Department of Zoology, Sri Venkateswara College, Benito Juarez Marg, Dhaula Kuan, New Delhi-110021, India.
| | - Dana Ulanova
- Department of Marine Resource Sciences, Faculty of Agriculture and Marine Science, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
- Center for Advanced Marine Core Research, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
| |
Collapse
|
23
|
Jungkhun N, Gomes de Farias AR, Watcharachaiyakup J, Kositcharoenkul N, Ham JH, Patarapuwadol S. Phylogenetic Characterization and Genome Sequence Analysis of Burkholderia glumae Strains Isolated in Thailand as the Causal Agent of Rice Bacterial Panicle Blight. Pathogens 2022; 11:pathogens11060676. [PMID: 35745530 PMCID: PMC9228322 DOI: 10.3390/pathogens11060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Burkholderia glumae is one of the most critical rice-pathogenic bacteria, and it causes bacterial panicle blight (BPB) in rice plants. In 2017, BPB symptoms were observed from rice fields in Chiang Rai, Northern Thailand. Sixty-one isolates obtained from the symptomatic panicles of rice were initially identified as B. glumae by polymerase chain reaction (PCR) using species-specific primers. Among them, six selected strains isolated from the susceptible japonica rice cultivar DOA2 were characterized in terms of morpho-physiology, pathology, phylogenetics, and genomics. Our genome sequence analysis of the six selected strains revealed the presence of multiple prophages, which may reflect the high level of diversity in this bacterial species through dynamic horizontal gene transfer processes, including phage infection. This notion was supported by the results of phylogenetic and phylogenomic analyses, which showed the formation of several subgroups not related to the years of isolation or the geographical origins. This study reports the isolation of B. glumae as the causal pathogen of BPB disease in japonica rice in Thailand and provides genomic resources to better understand the biology and diversity of this plant pathogenic bacterium. Further studies with a vast collection of B. glumae strains from various rice-growing regions around the world are needed to elucidate the evolution, variability, and lifestyle of the pathogen.
Collapse
Affiliation(s)
- Nootjarin Jungkhun
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
- Rice Department, Chiang Rai Rice Research Center, Phan, Chiang Rai 57120, Thailand
| | | | - Jutatape Watcharachaiyakup
- Center for Agricultural Biotechnology, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok 10900, Thailand
| | - Nuttima Kositcharoenkul
- Department of Agriculture, Plant Pathology Research Group, Plant Protection Research and Development Office, Bangkok 10900, Thailand;
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA;
| | - Sujin Patarapuwadol
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
- Center for Agricultural Biotechnology, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
- Correspondence:
| |
Collapse
|