1
|
Tansel B. PFAS use in electronic products and exposure risks during handling and processing of e-waste: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115291. [PMID: 35584593 DOI: 10.1016/j.jenvman.2022.115291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Poly- and perfluorinated alkyl substances (PFAS) have been and are used in electronic products due to their unique properties that improve product quality and performance. Ubiquities and persistence of some PFAS detected in environmental samples (water, soil, air) have attracted much attention and regulatory actions in recent years. This review provides an overview of PFAS use in electronic components; trends in quantities of e-waste generation; PFAS exposure pathways during e-waste handling and processing; reported PFAS in environmental samples and samples of serum, blood, and hair collected from people living near and working at e-waste processing sites. Processes used for manufacturing electronic components (e.g., embedded processes, additive manufacturing) make recycling or materials recovery from discarded electronic units and components very difficult and unfeasible. Exposure during numerous processing steps for materials recovery and scavenging at disposal sites can result in PFAS intake through inhalation, ingestion, and dermal routes. Chemical risk assessment approaches have been continuously evolving to consider chemical-specific dosimetric and mechanistic information. While the metabolic fate of PFAS is not well understood, some PFAS bioaccumulate and bind to proteins (but not to lipids) in biota and humans due to their surface-active characteristics and very low solubility in water and fat. It is difficult to associate the adverse health effects due to exposure to e-waste directly to PFAS as there are other factors that could contribute to the observed adverse effects. However, PFAS have been detected in the samples collected from different environmental compartments (e.g., water, soil, leachate, blood sera, rainwater) at and near e-waste processing sites, landfills, and near electronics and optoelectronics industries indicating that e-waste collection, processing, and disposal sites are potential PFAS exposure locations. Better monitoring of e-waste handling sites and detailed epidemiological studies for at risk populations are needed for assessing potential health risks due to PFAS exposure at these sites.
Collapse
Affiliation(s)
- Berrin Tansel
- Florida International University, Civil and Environmental Engineering Department, Florida, USA.
| |
Collapse
|
2
|
Gozalbes R, Vicente de Julián-Ortiz J. Applications of Chemoinformatics in Predictive Toxicology for Regulatory Purposes, Especially in the Context of the EU REACH Legislation. ACTA ACUST UNITED AC 2018. [DOI: 10.4018/ijqspr.2018010101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chemoinformatics methodologies such as QSAR/QSPR have been used for decades in drug discovery projects, especially for the finding of new compounds with therapeutic properties and the optimization of ADME properties on chemical series. The application of computational techniques in predictive toxicology is much more recent, and they are experiencing an increasingly interest because of the new legal requirements imposed by national and international regulations. In the pharmaceutical field, the US Food and Drug Administration (FDA) support the use of predictive models for regulatory decision-making when assessing the genotoxic and carcinogenic potential of drug impurities. In Europe, the REACH legislation promotes the use of QSAR in order to reduce the huge amount of animal testing needed to demonstrate the safety of new chemical entities subjected to registration, provided they meet specific conditions to ensure their quality and predictive power. In this review, the authors summarize the state of art of in silico methods for regulatory purposes, with especial emphasis on QSAR models.
Collapse
|
3
|
Jónsdóttir SÓ, Reffstrup TK, Petersen A, Nielsen E. Physicologically Based Toxicokinetic Models of Tebuconazole and Application in Human Risk Assessment. Chem Res Toxicol 2016; 29:715-34. [DOI: 10.1021/acs.chemrestox.5b00341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Svava Ósk Jónsdóttir
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Trine Klein Reffstrup
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Annette Petersen
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Elsa Nielsen
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| |
Collapse
|
4
|
Cheikh Rouhou M, Rheault I, Haddad S. Modulation of trichloroethylene in vitro metabolism by different drugs in rats. Toxicol In Vitro 2013; 27:34-43. [DOI: 10.1016/j.tiv.2012.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/10/2012] [Accepted: 10/08/2012] [Indexed: 11/26/2022]
Affiliation(s)
- Mouna Cheikh Rouhou
- TOXEN, Département des Sciences Biologiques, Université du Québec à Montréal, CP 8888 Succ Centre-ville, Montreal, Canada H3C 3P8
| | | | | |
Collapse
|
5
|
Teeguarden JG, Housand CJ, Smith JN, Hinderliter PM, Gunawan R, Timchalk CA. A multi-route model of nicotine-cotinine pharmacokinetics, pharmacodynamics and brain nicotinic acetylcholine receptor binding in humans. Regul Toxicol Pharmacol 2012; 65:12-28. [PMID: 23099439 DOI: 10.1016/j.yrtph.2012.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 02/04/2023]
Abstract
The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.
Collapse
Affiliation(s)
- Justin G Teeguarden
- Battelle, Pacific Northwest Division, 902 Battelle Blvd., Richland, WA 99352, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Cutting Edge PBPK Models and Analyses: Providing the Basis for Future Modeling Efforts and Bridges to Emerging Toxicology Paradigms. J Toxicol 2012; 2012:852384. [PMID: 22899915 PMCID: PMC3413973 DOI: 10.1155/2012/852384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/21/2012] [Indexed: 12/16/2022] Open
Abstract
Physiologically based Pharmacokinetic (PBPK) models are used for predictions of internal or target dose from environmental and pharmacologic chemical exposures. Their use in human risk assessment is dependent on the nature of databases (animal or human) used to develop and test them, and includes extrapolations across species, experimental paradigms, and determination of variability of response within human populations. Integration of state-of-the science PBPK modeling with emerging computational toxicology models is critical for extrapolation between in vitro exposures, in vivo physiologic exposure, whole organism responses, and long-term health outcomes. This special issue contains papers that can provide the basis for future modeling efforts and provide bridges to emerging toxicology paradigms. In this overview paper, we present an overview of the field and introduction for these papers that includes discussions of model development, best practices, risk-assessment applications of PBPK models, and limitations and bridges of modeling approaches for future applications. Specifically, issues addressed include: (a) increased understanding of human variability of pharmacokinetics and pharmacodynamics in the population, (b) exploration of mode of action hypotheses (MOA), (c) application of biological modeling in the risk assessment of individual chemicals and chemical mixtures, and (d) identification and discussion of uncertainties in the modeling process.
Collapse
|
7
|
Baas J, Jager T, Kooijman B. Understanding toxicity as processes in time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:3735-9. [PMID: 19969324 DOI: 10.1016/j.scitotenv.2009.10.066] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/09/2009] [Accepted: 10/26/2009] [Indexed: 05/18/2023]
Abstract
Studies in ecotoxicology usually focus on a single end point (typically mortality, growth, or reproduction) at a standardized exposure time. The exposure time is chosen irrespective of the properties of the chemical under scrutiny, but should depend on the organism of choice in combination with the compound(s) of interest. This paper discusses the typical patterns for toxic effects in time that can be observed for the most encountered endpoints growth reproduction and survival. Ignoring the fact that toxicity is a process in time can lead to severe bias in environmental risk assessment. We show that especially EC(x) values for sublethal endpoints can show very distinct patterns in time. We recommend that the test duration for survival as an endpoint should be extended till the incipient LC(50) is observed. Given the fact that toxicity data for single compounds show clear patterns in time, it is to be expected that effects of mixtures will also be strongly dependent on time. The few examples that have been published support this statement.
Collapse
Affiliation(s)
- Jan Baas
- Vrije Universiteit of Amsterdam, Department of Theoretical Biology, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
8
|
Jollow DJ, Bruckner JV, McMillan DC, Fisher JW, Hoel DG, Mohr LC. Trichloroethylene risk assessment: a review and commentary. Crit Rev Toxicol 2010; 39:782-97. [PMID: 19852561 DOI: 10.3109/10408440903222177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trichloroethylene (TCE) is a widespread environmental contaminant that is carcinogenic when given in high, chronic doses to certain strains of mice and rats. The capacity of TCE to cause cancer in humans is less clear. The current maximum contaminant level (MCL) of 5 ppb (microg/L) is based on an US Environment Protection Agency (USEPA) policy decision rather than the underlying science. In view of major advances in understanding the etiology and mechanisms of chemically induced cancer, USEPA began in the late 1990s to revise its guidelines for cancer risk assessment. TCE was chosen as the pilot chemical. The USEPA (2005) final guidelines emphasized a "weight-of-evidence" approach with consideration of dose-response relationships, modes of action, and metabolic/toxicokinetic processes. Where adequate data are available to support reversible binding of the carcinogenic moiety to biological receptors as the initiating event (i.e., a threshold exists), a nonlinear approach is to be used. Otherwise, the default assumption of a linear (i.e., nonthreshold) dose-response is utilized. When validated physiologically based pharmacokinetic (PBPK) models are available, they are to be used to predict internal dosimetry as the basis for species and dose extrapolations. The present article reviews pertinent literature and discusses areas where research may resolve some outstanding issues and facilitate the reassessment process. Key research needs are proposed, including role of dichloroacetic acid (DCA) in TCE-induced liver tumorigenesis in humans; extension of current PBPK models to predict target organ deposition of trichloroacetic acid (TCA) and DCA in humans ingesting TCE in drinking water; use of human hepatocytes to ascertain metabolic rate constants for use in PBPK models that incorporate variability in metabolism of TCE by potentially sensitive subpopulations; measurement of the efficiency of first-pass elimination of trace levels of TCE in drinking water; and assessment of exogenous factors' (e.g., alcohol, drugs) ability to alter metabolic activation and risks at such low-level exposure.
Collapse
Affiliation(s)
- David J Jollow
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
9
|
Liu Y, Bartlett MG, White CA, Muralidhara S, Bruckner JV. Presystemic elimination of trichloroethylene in rats following environmentally relevant oral exposures. Drug Metab Dispos 2009; 37:1994-8. [PMID: 19581386 DOI: 10.1124/dmd.109.028100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
1,1,2-Trichloroethylene (TCE), a volatile organic contaminant (VOC) of drinking water in the Unites States, is frequently present in trace amounts. TCE is currently classified by the International Agency for Research on Cancer and the U.S. Environmental Protection Agency as a probable human carcinogen, because it produces tumors in some organs of certain strains of mice or rats in chronic, high-dose bioassays. Previous studies (Toxicol Appl Pharmacol 60:509-526, 1981; Regul Toxicol Pharmacol 8:447-466, 1988) used physiological modeling principles to reason that the liver should remove virtually all of a well metabolized VOC, such as TCE, as long as concentrations in the portal blood were not high enough to saturate metabolism. To test this hypothesis, groups of unanesthetized male Sprague-Dawley rats received intravenous injections of 0.1, 1.0, or 2.5 mg TCE/kg as an aqueous emulsion. Other rats were gavaged with 0.0001, 0.001, 0.01, 0.1, 1, 2.5, 5, or 10 mg TCE/kg b.wt. Serial microblood samples were taken via an indwelling carotid artery cannula, to generate blood TCE versus time profiles. Headspace solid-phase microextraction gas chromatography with negative chemical ionization mass spectrometry (limit of quantitation = 25 pg/ml) was used to quantify TCE. TCE was undetectable in rats given 0.0001 mg/kg, but it exhibited linear kinetics from 0.1 to 5.0 mg/kg. Bioavailability was consistent over this dosage range, ranging from 12.5 to 16.4%. The presence of these limited amounts of TCE in the arterial blood disprove the aforementioned hypothesis, yet demonstrate that first-pass hepatic and pulmonary elimination in the rat afford its extrahepatic organs protection from potential adverse effects by the majority of the low levels of TCE absorbed from drinking water.
Collapse
Affiliation(s)
- Y Liu
- College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
| | | | | | | | | |
Collapse
|
10
|
Caldwell JC, Evans MV, Marcus AH, Scott CS, Chiu WA, Okino MS, Preuss PW. Comments on Article “Applying Mode-of-Action and Pharmacokinetic Considerations in Contemporary Cancer Risk Assessments: An Example with Trichloroethylene” by Clewell and Andersen. Crit Rev Toxicol 2008; 36:291-4; discussion 295-8. [PMID: 16686425 DOI: 10.1080/10408440600599240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In their 2004 article, Clewell and Andersen provide their perspective on the application of mode-of-action (MOA) and pharmacokinetic considerations in contemporary cancer risk assessment using trichloroethylene (TCE) as a case example. TCE is a complex chemical toxicologically, with multiple metabolites, multiple sites of observed toxicity, and multiple potential MOAs. As scientists who are responsible for revising the U.S. Environmental Protection Agency's draft risk assessment of TCE, we welcome input of the quality to which the Agency is held accountable. However, in our view, Clewell and Andersen do not present a sufficiently current, complete, accurate, and transparent review of the pertinent scientific literature. In particular, their article would need to incorporate substantial recently published scientific information, better support its conclusions about MOA and choice of linear or nonlinear dose-response extrapolation, and increase its transparency as to quantitative analyses in order to make a significant contribution to the scientific discussion of TCE health risks.
Collapse
Affiliation(s)
- Jane C Caldwell
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC 20460, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Clewell HJ, Gentry PR, Kester JE, Andersen ME. Evaluation of Physiologically Based Pharmacokinetic Models in Risk Assessment: An Example with Perchloroethylene. Crit Rev Toxicol 2008; 35:413-33. [PMID: 16097137 DOI: 10.1080/10408440590931994] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
One of the more problematic aspects of the application of physiologically based pharmacokinetic (PBPK) models in risk assessment is the question of whether the model has been adequately validated to provide confidence in the dose metrics calculated with it. A number of PBPK models have been developed for perchloroethylene (PCE), differing primarily in the parameters estimated for metabolism. All of the models provide reasonably accurate simulations of selected kinetic data for PCE in mice and humans and could thus be considered to be "validated" to some extent. However, quantitative estimates of PCE cancer risk are critically dependent on the prediction of the rate of metabolism at low environmental exposures. Recent data on the urinary excretion of trichloroacetic acid (TCA), the major metabolite of PCE, for human subjects exposed to lower concentrations than those used in previous studies, make it possible to compare the high- to low-dose extrapolation capability of the various published human models. The model of Gearhart et al., which is the only model to include a description of TCA kinetics, provided the closest predictions of the urinary excretion observed in these low-concentration exposures. Other models overestimated metabolite excretion in this study by 5- to 15-fold. A systematic discrepancy between model predictions and experimental data for the time course of the urinary excretion of TCA suggested a contribution from TCA formed by metabolism of PCE in the kidney and excreted directly into the urine. A modification of the model of Gearhart et al. to include metabolism of PCE to TCA in the kidney at 10% of the capacity of the liver, with direct excretion of the TCA formed in the kidney into the urine, markedly improved agreement with the experimental time-course data, without altering predictions of liver metabolism. This case study with PCE demonstrates the danger of relying on parent chemical kinetic data to validate a model that will be used for the prediction of metabolism.
Collapse
|
12
|
Clewell HJ, Andersen ME. Response to Comments by Caldwell et al. on Article “Applying Mode-of-Action and Pharmacokinetic Considerations in Contemporary Cancer Risk Assessments: An Example with Trichloroethylene”. Crit Rev Toxicol 2008. [DOI: 10.1080/10408440600599182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Thompson CM, Sonawane B, Barton HA, DeWoskin RS, Lipscomb JC, Schlosser P, Chiu WA, Krishnan K. Approaches for applications of physiologically based pharmacokinetic models in risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:519-47. [PMID: 18584453 DOI: 10.1080/10937400701724337] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) models are particularly useful for simulating exposures to environmental toxicants for which, unlike pharmaceuticals, there is often little or no human data available to estimate the internal dose of a putative toxic moiety in a target tissue or an appropriate surrogate. This article reviews the current state of knowledge and approaches for application of PBPK models in the process of deriving reference dose, reference concentration, and cancer risk estimates. Examples drawn from previous U.S. Environmental Protection Agency (EPA) risk assessments and human health risk assessments in peer-reviewed literature illustrate the ways and means of using PBPK models to quantify the pharmacokinetic component of the interspecies and intraspecies uncertainty factors as well as to conduct route to route, high dose to low dose and duration extrapolations. The choice of the appropriate dose metric is key to the use of the PBPK models for the various applications in risk assessment. Issues related to whether uncertainty factors are most appropriately applied before or after derivation of human equivalent dose (or concentration) continue to be explored. Scientific progress in the understanding of life stage and genetic differences in dosimetry and their impacts on variability in susceptibility, as well as ongoing development of analytical methods to characterize uncertainty in PBPK models, will make their use in risk assessment increasingly likely. As such, it is anticipated that when PBPK models are used to express adverse tissue responses in terms of the internal target tissue dose of the toxic moiety rather than the external concentration, the scientific basis of, and confidence in, risk assessments will be enhanced.
Collapse
Affiliation(s)
- Chad M Thompson
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Moore MM, Heflich RH, Haber LT, Allen BC, Shipp AM, Kodell RL. Analysis of in vivo mutation data can inform cancer risk assessment. Regul Toxicol Pharmacol 2008; 51:151-61. [DOI: 10.1016/j.yrtph.2008.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 01/18/2008] [Accepted: 01/18/2008] [Indexed: 11/25/2022]
|
15
|
Guyton KZ, Barone S, Brown RC, Euling SY, Jinot J, Makris S. Mode of action frameworks: a critical analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:16-31. [PMID: 18176885 DOI: 10.1080/10937400701600321] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mode of action (MOA) information is increasingly being applied in human health risk assessment. The MOA can inform issues such as the relevance of observed effects in laboratory animals to humans, and the variability of response within the human population. Several collaborative groups have developed frameworks for analyzing and utilizing MOA information in human health risk assessment of environmental carcinogens and toxins, including the International Programme on Chemical Safety, International Life Sciences Institute, and U.S. Environmental Protection Agency. With the goal of identifying gaps and opportunities for progress, we critically evaluate several of these MOA frameworks. Despite continued improvement in incorporating biological data in human health risk assessment, several notable challenges remain. These include articulation of the significant role of scientific judgment in establishing an MOA and its relevance to humans. In addition, binary (yes/no) decisions can inappropriately exclude consideration of data that may nonetheless be informative to the overall assessment of risk. Indeed, the frameworks lack a broad consideration of known causes of human disease and the potential for chemical effects to act additively with these as well as endogenous background processes. No integrated analysis of the impact of multiple MOAs over the same dose range, or of varying MOAs at different life stages, is included. Separate consideration of each MOA and outcome limits understanding of how multiple metabolites, modes, and toxicity pathways contribute to the toxicological profile of the chemical. An extension of the analyses across outcomes with common modes is also needed.
Collapse
Affiliation(s)
- Kathryn Z Guyton
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Liao KH, Tan YM, Conolly RB, Borghoff SJ, Gargas ML, Andersen ME, Clewell HJ. Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment for chloroform. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2007; 27:1535-1551. [PMID: 18093051 DOI: 10.1111/j.1539-6924.2007.00987.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chloroform is a carcinogen in rodents and its carcinogenicity is secondary to events associated with cytotoxicity and regenerative cell proliferation. In this study, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model that links the processes of chloroform metabolism, reparable cell damage, cell death, and regenerative cellular proliferation was developed to support a new cancer dose-response assessment for chloroform. Model parameters were estimated using Markov Chain Monte Carlo (MCMC) analysis in a two-step approach: (1) metabolism parameters for male and female mice and rats were estimated against available closed chamber gas uptake data; and (2) PD parameters for each of the four rodent groups were estimated from hepatic and renal labeling index data following inhalation exposures. Subsequently, the resulting rodent PD parameters together with literature values for human age-dependent physiological and metabolism parameters were used to scale up the rodent model to a human model. The human model was used to predict exposure conditions under which chloroform-mediated cytolethality is expected to occur in liver and kidney of adults and children. Using the human model, inhalation Reference Concentrations (RfCs) and oral Reference Doses (RfDs) were derived using an uncertainty factor of 10. Based on liver and kidney dose metrics, the respective RfCs were 0.9 and 0.09 ppm; and the respective RfDs were 0.4 and 3 mg/kg/day.
Collapse
Affiliation(s)
- Kai H Liao
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
This review summarizes the most recent developments in and applications of physiologically based pharmacokinetic (PBPK) modeling methodology originating from both the pharmaceutical and environmental toxicology areas. It focuses on works published in the last 5 years, although older seminal papers have also been referenced. After a brief introduction to the field and several essential definitions, the main body of the text is structured to follow the major steps of a typical PBPK modeling exercise. Various applications of the methodology are briefly described. The major future trends and perspectives are outlined. The main conclusion from the review of the available literature is that PBPK modeling, despite its obvious potential and recent incremental developments, has not taken the place it deserves, especially in pharmaceutical and drug development sciences.
Collapse
Affiliation(s)
- Ivan Nestorov
- Zymogenetics Inc., 1201 Eastlake Avenue East, Seattle, Washington 98102, USA.
| |
Collapse
|
18
|
Covington TR, Robinan Gentry P, Van Landingham CB, Andersen ME, Kester JE, Clewell HJ. The use of Markov chain Monte Carlo uncertainty analysis to support a Public Health Goal for perchloroethylene. Regul Toxicol Pharmacol 2007; 47:1-18. [PMID: 16901594 DOI: 10.1016/j.yrtph.2006.06.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Indexed: 11/21/2022]
Abstract
The current Public Health Goal (PHG) for perchloroethylene (PCE) was derived using upper-bound estimates of fractional PCE metabolism in humans. These estimates were in part obtained from a published evaluation of the uncertainty and variability in human PCE metabolism conducted using a physiologically-based pharmacokinetic (PBPK) model in a Markov chain Monte Carlo (MCMC) analysis; however, the data used in that analysis were limited to post-exposure PCE blood and exhaled air concentrations from a single study. A more recent study [Volkel, W., Friedewald, M., Lederer, E., Pahler, A., Parker, J., Dekant, W., 1998. Biotransformation of perchloroethene: dose-dependent excretion of trichloroacetic acid, dichloroacetic acid, and N-acetyl-S-(trichlorovinyl)-l-cysteine in rats and humans after inhalation. Toxicol. Appl. Pharmacol. 153(1), 20-27.] provides data on blood concentrations of PCE and its major metabolite, trichloroacetic acid (TCA), and urinary excretion of TCA following exposure of human subjects to lower concentrations of PCE (10-40ppm) than in previous studies. In the present effort, a new MCMC analysis was performed that focused on data from this study along with two others [Fernandez, J., Guberan, E., Caperos, J., 1976. Experimental human exposures to tetrachloroethylene vapor and elimination in breath after inhalation. Am. Ind. Hyg. Assoc. J. 37, 143-150; Monster, A., Boersma, G., Steenweg, H., 1979. Kinetics of tetrachloroethylene in volunteers; influence of exposure concentration and work load. Int. Arch. Occup. Environ. Health 42, 303-309.] providing data on PCE blood concentrations and urinary excretion of TCA. To provide an accurate prediction of TCA kinetics, the PBPK model used here includes a description of the metabolism of PCE to TCA in both the liver and kidney. The resulting upper 95th percentile estimates of fraction of PCE metabolized by inhalation and oral routes were 2.1 and 5.2%, respectively, compared to 58 and 79% used in the derivation of the PHG.
Collapse
|
19
|
Chiang KC, Liao CM. Heavy incense burning in temples promotes exposure risk from airborne PMs and carcinogenic PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2006; 372:64-75. [PMID: 16979223 DOI: 10.1016/j.scitotenv.2006.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 06/13/2006] [Accepted: 08/06/2006] [Indexed: 05/11/2023]
Abstract
We present the mechanistic-based exposure and risk models, appraised with reported empirical data, to assess how the human exposure to airborne particulate matters (PMs) and carcinogenic polycyclic aromatic hydrocarbons (PAHs) during heavy incense burning episodes in temples. The models integrate size-dependent PM levels inside a temple from a published exploratory study associated with a human expiratory tract (HRT) model taking into account the personal exposure levels and size distributions in the HRT. The probabilistic exposure profiles of total-PAH levels inside a temple and internal PAHs doses are characterized by a physiologically based pharmacokinetic (PBPK) model with the reconstructed dose-response relationships based on an empirical three-parameter Hill equation model, describing PAHs toxicity for DNA adducts formation and lung tumor incidence responses in human white blood cells and lung. Results show that the alveolar-interstitial (AI) region has a lower mass median diameter (0.29 microm) than that in extrathoracic (ET(1), 0.37 microm), brochial (BB, 0.36 microm) and bronchiolar (bb, 0.32 microm) regions. The 50% probability (risk=0.5) of exceeding the DNA adducts frequency (DA(f)) ratio of 1.28 (95% CI: 0.55-2.40) and 1.78 (95% CI: 0.84-2.95) for external exposure of B[a]P and B[a]P(eq), respectively. The 10% (risk=0.1) probability or more of human affected by lung tumor is approximately 7.62x10(-5)% (95% CI: 3.39x10(-5)-1.71x10(-4)%) and 3.87x10(-4)% (95% CI: 1.72x10(-4)-8.69x10(-4)%) for internal exposure of B[a]P and B[a]P(eq), respectively. Our results implicate that exposure to smoke emitted from heavy incense burning may promote lung cancer risk. Our study provides a quantitative basis for objective risk prediction of heavy incense burning exposure in temples and for evaluating the effectiveness of management.
Collapse
Affiliation(s)
- Kuo-Chih Chiang
- Ecotoxicological Modeling Center, Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan 10617 ROC
| | | |
Collapse
|
20
|
Kim D, Ghanayem BI. Comparative metabolism and disposition of trichloroethylene in Cyp2e1-/-and wild-type mice. Drug Metab Dispos 2006; 34:2020-7. [PMID: 16959879 DOI: 10.1124/dmd.106.010538] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trichloroethylene (TCE)1 is an important environmental contaminant, a well established rodent carcinogen, and a "probable human carcinogen". Metabolism of TCE occurs primarily via cytochrome P450 (P450)-dependent oxidation. In vitro studies suggested that CYP2E1 is the principal high-affinity enzyme responsible for TCE metabolism. The objective of the present work is to more directly assess the role of CYP2E1 in the metabolism and disposition of 1,2-14C-TCE administered at 250 or 1000 mg/kg (gavage) using Cyp2e1-/-[knockout (KO)] versus wild-type (WT) mice. After dosing, animals were individually placed in glass metabolism cages that allowed the collection of expired air, urine, and feces. Exhalation of TCE-derived 14CO2 increased in a dose-dependent manner in mice of both genotypes and was significantly higher in WT versus KO mice. A significantly greater percentage of the dose was exhaled in KO versus WT mice as organic volatiles (mainly as TCE). Urinary excretion was the major route of TCE metabolism in WT mice, and the percentage of dose eliminated in urine was significantly higher at the 250 versus 1000 mg/kg dose. Furthermore, urinary excretion and CO2 exhalation significantly decreased in KO versus WT mice. Pretreatment with 1-aminobenzotriazole clearly inhibited TCE metabolism as evident from increased exhalation of parent TCE, and decreased urinary excretion and CO2 exhalation in mice of both genotypes. In conclusion, these data showed that whereas CYP2E1 plays an important role in TCE metabolism and disposition, other P450s also play a significant role and may explain earlier results showing that TCE causes lung damage in KO and WT mice.
Collapse
Affiliation(s)
- Dojung Kim
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
21
|
Kodell RL, Chen JJ, Delongchamp RR, Young JF. Hierarchical models for probabilistic dose–response assessment. Regul Toxicol Pharmacol 2006; 45:265-72. [PMID: 16769166 DOI: 10.1016/j.yrtph.2006.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Indexed: 11/29/2022]
Abstract
Probabilistic risk assessment is gaining acceptance as the most appropriate way to characterize and communicate uncertainties in estimates of human health risk and/or reference levels of exposure such as benchmark doses. Although probabilistic techniques are well established in the exposure-assessment component of the National Research Council's risk-assessment paradigm, they are less well developed in the dose-response-assessment component. This paper proposes the use of hierarchical statistical models as tools for implementing probabilistic dose-response assessments, in that such models provide a natural connection between the pharmacokinetic (PK) and pharmacodynamic (PD) components of dose-response models. The results show that incorporating internal dose information into dose-response assessments via the coupling of PK and PD models in a hierarchical structure can reduce the uncertainty in the dose-response assessment of risk. However, information on the mean of the internal dose distribution is sufficient; having information on the variance of internal dose does not affect the uncertainty in the resulting estimates of excess risks or benchmark doses. In addition, the complexity of a PK model of internal dose does not affect how the variability in risk is measured via the ultimate endpoint.
Collapse
Affiliation(s)
- R L Kodell
- Division of Biometry and Risk Assessment, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | | | | | | |
Collapse
|
22
|
Bronley-DeLancey A, McMillan DC, McMillan JM, Jollow DJ, Mohr LC, Hoel DG. Application of cryopreserved human hepatocytes in trichloroethylene risk assessment: relative disposition of chloral hydrate to trichloroacetate and trichloroethanol. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1237-42. [PMID: 16882532 PMCID: PMC1551986 DOI: 10.1289/ehp.9047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Trichloroethylene (TCE) is a suspected human carcinogen and a common groundwater contaminant. Chloral hydrate (CH) is the major metabolite of TCE formed in the liver by cytochrome P450 2E1. CH is metabolized to the hepatocarcinogen trichloroacetate (TCA) by aldehyde dehydrogenase (ALDH) and to the noncarcinogenic metabolite trichloroethanol (TCOH) by alcohol dehydrogenase (ADH). ALDH and ADH are polymorphic in humans, and these polymorphisms are known to affect the elimination of ethanol. It is therefore possible that polymorphisms in CH metabolism will yield subpopulations with greater than expected TCA formation with associated enhanced risk of liver tumors after TCE exposure. METHODS The present studies were undertaken to determine the feasibility of using commercially available, cryogenically preserved human hepatocytes to determine simultaneously the kinetics of CH metabolism and ALDH/ADH genotype. Thirteen human hepatocyte samples were examined. Linear reciprocal plots were obtained for 11 ADH and 12 ALDH determinations. RESULTS There was large interindividual variation in the Vmax values for both TCOH and TCA formation. Within this limited sample size, no correlation with ADH/ALDH genotype was apparent. Despite the large variation in Vmax values among individuals, disposition of CH into the two competing pathways was relatively constant. CONCLUSIONS These data support the use of cryopreserved human hepatocytes as an experimental system to generate metabolic and genomic information for incorporation into TCE cancer risk assessment models. The data are discussed with regard to cellular factors, other than genotype, that may contribute to the observed variability in metabolism of CH in human liver.
Collapse
Affiliation(s)
| | | | | | | | - Lawrence C. Mohr
- Department of Biostatistics, Bioinformatics and Epidemiology
- Department of Medicine, Medical University of South Carolina, Charleston, South
Carolina, USA
| | - David G. Hoel
- Department of Biostatistics, Bioinformatics and Epidemiology
- Address correspondence to D.G. Hoel, Department of Biostatistics, Bioinformatics
and Epidemiology, Medical University of South Carolina, 135 Cannon
St., Suite 303, P.O. Box 250835, Charleston, SC 29425 USA. Telephone: (843) 876-1109. Fax: (843) 876-1126. E-mail:
| |
Collapse
|
23
|
Pohl HR, van Engelen JGM, Wilson J, Sips AJAM. Risk assessment of chemicals and pharmaceuticals in the pediatric population: a workshop report. Regul Toxicol Pharmacol 2005; 42:83-95. [PMID: 15896447 DOI: 10.1016/j.yrtph.2005.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/01/2005] [Indexed: 11/19/2022]
Abstract
ATSDR and RIVM organized an Expert Panel Workshop on the Differences Between Children and Adults and Their Relevance to Risk Assessment. The workshop was held in June 2003, in Brussels, Belgium. The purpose of the workshop was to identify data gaps in current scientific knowledge related to children's health and to recognize areas of mutual interest that would serve as the basis for upcoming ATSDR/RIVM cooperative projects. The aim for both agencies is a better understanding of the issues related to children's health, and the improvement of scientifically based (chemical) risk assessment in children. Topics discussed included clinical trials/toxicity studies, testing in juvenile animals, PBPK modeling in children, and children's risk assessment.
Collapse
Affiliation(s)
- H R Pohl
- Agency for Toxic Substances and Disease Registry (ATSDR), US Department of Health and Human Services, Atlanta, GA 30333, USA.
| | | | | | | |
Collapse
|
24
|
Clewell H. Use of mode of action in risk assessment: past, present, and future. Regul Toxicol Pharmacol 2005; 42:3-14. [PMID: 15896438 DOI: 10.1016/j.yrtph.2005.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 01/14/2005] [Accepted: 01/23/2005] [Indexed: 11/30/2022]
Abstract
The evolution of chemical risk assessment has been marked by a steadily increasing expectation for the use of chemical-specific dosimetric and mechanistic information to tailor the risk assessment approach. The information to be used can range from the broad physical properties of the chemical to detailed information on the mechanism by which it causes a particular toxic outcome, and the risk assessment decisions effected can in turn range from how to define equivalent exposures across species to whether a particular animal outcome is relevant to a human health assessment. A concept that has proven useful in support of these considerations is the "mode of action," a term coined by the USEPA in their new guidelines for carcinogen risk assessment. This paper describes the increasing use of mode-of-action considerations in risk assessment, beginning with early examples involving quantitative dosimetry on the one hand, and qualitative relevance on the other, which foreshadowed the current interest in mode of action. It then describes more recent developments regarding the use of the mode-of-action concept for the selection of a low-dose extrapolation approach, for harmonization of cancer and noncancer risk assessment approaches, and for cross-chemical evaluations. Finally, examples of recent controversies associated with the use of mode-of-action information in risk assessment are provided to demonstrate the challenges that must be overcome to assure the continued viability of the mode-of-action approach.
Collapse
Affiliation(s)
- Harvey Clewell
- ENVIRON Health Sciences Institute, 602 East Georgia Avenue, Ruston, LA 71270, USA.
| |
Collapse
|