1
|
Kayani KF, Shatery OBA, Mohammed SJ, Ahmed HR, Hamarawf RF, Mustafa MS. Synthesis and applications of luminescent metal organic frameworks (MOFs) for sensing dipicolinic acid in biological and water samples: a review. NANOSCALE ADVANCES 2024; 7:13-41. [PMID: 39583129 PMCID: PMC11579904 DOI: 10.1039/d4na00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The detection of trace quantities of 2,6-dipicolinic acid (DPA) in real-world samples is crucial for early disease diagnosis and routine health monitoring. Metal-organic frameworks (MOFs), recognized for their diverse structural architectures, have emerged as advanced multifunctional hybrid materials. One of the most notable properties of MOFs is their luminescence (L), which can arise from structural ligands, guest molecules, and emissive metal ions. Luminescent MOFs have shown significant promise as platforms for sensor design. This review highlights the application of luminescent MOFs in the detection of DPA in biological and aqueous environments. It provides a comprehensive discussion of the various detection strategies employed in luminescent MOF-based DPA sensors. Additionally, it explores the origins of L in MOFs, their synthesis, and the mechanisms underlying their sensing capabilities. The article also addresses key challenges and limitations in this field, offering practical insights for the development of efficient luminescent MOFs for DPA detection.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Peshawa Street, Chamchamal Sulaimani City 46023 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Omer B A Shatery
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Sewara J Mohammed
- Department of Anesthesia, College of Health Sciences, Cihan University Sulaimaniya Sulaymaniyah City Kurdistan Iraq
- Research and Development Center, University of Sulaimani Qlyasan Street, Kurdistan Regional Government Sulaymaniyah 46001 Iraq
| | - Harez Rashid Ahmed
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Rebaz F Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Muhammad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| |
Collapse
|
2
|
Fussell ED, Kline ND, Bennin E, Hirschbeck SS, Darko A. Chromogenic Detection of the Organophosphorus Nerve Agent Simulant DCP Mediated by Rhodium(II,II) Paddlewheel Complexes. ACS Sens 2024; 9:2325-2333. [PMID: 38666660 DOI: 10.1021/acssensors.3c01993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Organophosphorus nerve agents (OPNAs) pose a great threat to humanity. Possessing extreme toxicity, rapid lethality, and an unassuming appearance, these chemical warfare agents must be quickly and selectively identified so that treatment can be administered to those affected. Chromogenic detection is the most convenient form of OPNA detection, but current methods suffer from false positives. Here, nitrogenous base adducts of dirhodium(II,II) acetate were synthesized and used as chromogenic detectors of diethyl chlorophosphate (DCP), an OPNA simulant. UV-vis spectrophotometry was used to evaluate the sensitivity and selectivity of the complexes in the detection of DCP. Visual limits of detection (LOD) for DCP were as low as 1.5 mM DCP, while UV-vis-based LODs were as low as 0.113 μM. The dirhodium(II,II) complexes were also tested with several potential interferents, none of which produced a visual color change that could be mistaken for OPNA response. Ultimately, the Rh2(OAc)4(1,8-diazabicyclo[5.4.0]undec-7-ene)2 complex showed the best combination of detection capability and interferent resistance. These results, when taken together, show that dirhodium(II,II) paddlewheel complexes with nitrogenous base adducts can produce instant, selective, and sensitive detection of DCP. It is our aim to further explore and apply this new motif to produce even more capable OPNA sensors.
Collapse
Affiliation(s)
- Eric D Fussell
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Neal D Kline
- Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010-5424, United States
| | - Ernest Bennin
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Sarah S Hirschbeck
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Ampofo Darko
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
3
|
Vyas T, Jaiswal S, Choudhary S, Kodgire P, Joshi A. Recombinant Organophosphorus acid anhydrolase (OPAA) enzyme-carbon quantum dot (CQDs)-immobilized thin film biosensors for the specific detection of Ethyl Paraoxon and Methyl Parathion in water resources. ENVIRONMENTAL RESEARCH 2024; 243:117855. [PMID: 38070850 DOI: 10.1016/j.envres.2023.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
Organophosphates pesticide (OP) toxicity through water resources is a large concern globally among all the emerging pollutants. Detection of OPs is a challenge which needs to be addressed considering the hazardous effects on the health of human beings. In the current research thin film biosensors of recombinant, Organophosphorus acid anhydrolase (OPAA) enzyme along with carbon quantum dots (CQDs) immobilized in thin films were developed. OPAA-CQDs thin film biosensors were used for the specific detection of two OPs Ethyl Paraoxon (EP) and Methyl Parathion (MP) in river water and household water supply. Recombinant OPAA enzyme was expressed in E. Coli, purified and immobilized on the CQD containing chitosan thin films. The CQDs used for this purpose were developed by a one-pot hydrothermal method from phthalic acid and Tri ethylene diamine. The properties of CQDs, OPAA and thin films were characterized using techniques like XPS, TEM, XRD, enzyme activity and CLSM measurements. Biosensing studies of EP and MP were performed by taking fluorescence measurements using a fiber optic spectrometer. The analytical parameters of biosensing were compared against an estimation carried out using the HPLC method. The biosensing performance indicates that the OPAA-CQDs thin film-based biosensors were able to detect both EP and MP in a range of 0-100 μM having a detection limit of 0.18 ppm/0.69 ppm for EP/MP, respectively with a response time of 5 min. The accuracy of estimation of EP/MP when spiked in water resources lie in the range of ∼100-102% which clearly indicates the OPAA-CQD based thin film biosensors can function as a point-of-use method for the detection of OP pesticides in complex water resources.
Collapse
Affiliation(s)
- Tanmay Vyas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Surbhi Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Sandeep Choudhary
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| |
Collapse
|
4
|
Zhang C, Li Y, Yang N, You M, Hao J, Wang J, Li J, Zhang M. Electrochemical sensors of neonicotinoid insecticides residues in food samples: From structure to analysis. Talanta 2024; 267:125254. [PMID: 37801927 DOI: 10.1016/j.talanta.2023.125254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Most food samples are detected positive for neonicotinoid insecticides, posing a severe threat to human health. Electrochemical sensors have been proven effective for monitoring the residues to guarantee food safety, but there needs to be more review to conclude the development status comprehensively. On the other hand, various modified materials were emphasized to improve the performance of electrochemical sensors in relevant reviews, rather than the reasons why they were selected. Therefore, this paper reviewed the electrochemical sensors of neonicotinoid insecticides according to bases and strategies. The fundamental basis is the molecular structure of neonicotinoid insecticides, which was disassembled into four functional groups: nitro group, saturated nitrogen ring system, aromatic heterocycle and chlorine substituent. Their relationships were established with strategies including direct sensing, enzyme sensors, aptasensors, immunosensors, and sample pretreatment, respectively. It is hoped to provide a reference for the effective design of electrochemical sensors for small molecule compounds.
Collapse
Affiliation(s)
- Changqiu Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Yanqing Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Ningxia Yang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Minghui You
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Jinhua Hao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Jiacheng Wang
- Medical College, Yangzhou University, No. 11 Huaihai Road, Yangzhou, Jiangsu, 225009, China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
5
|
Mali H, Shah C, Raghunandan BH, Prajapati AS, Patel DH, Trivedi U, Subramanian RB. Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. J Environ Sci (China) 2023; 127:234-250. [PMID: 36522056 DOI: 10.1016/j.jes.2022.04.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 06/17/2023]
Abstract
Organophosphates (OPs) are an integral part of modern agriculture; however, due to overexploitation, OPs pesticides residues are leaching and accumulating in the soil, and groundwater contaminated terrestrial and aquatic food webs. Acute exposure to OPs could produce toxicity in insects, plants, animals, and humans. OPs are known for covalent inhibition of acetylcholinesterase enzyme in pests and terrestrial/aquatic organisms, leading to nervous, respiratory, reproductive, and hepatic abnormalities. OPs pesticides also disrupt the growth-promoting machinery in plants by inhibiting key enzymes, permeability, and trans-cuticular diffusion, which is crucial for plant growth. Excessive use of OPs, directly/indirectly affecting human/environmental health, raise a thoughtful global concern. Developing a safe, reliable, economical, and eco-friendly methods for removing OPs pesticides from the environment is thus necessary. Bioremediation techniques coupled with microbes or microbial-biocatalysts are emerging as promising antidotes for OPs pesticides. Here, we comprehensively review the current scenario of OPs pollution, their toxicity (at a molecular level), and the recent advancements in biotechnology (modified biocatalytic systems) for detection, decontamination, and bioremediation of OP-pesticides in polluted environments. Furthermore, the review focuses on onsite applications of OPs degrading enzymes (immobilizations/biosensors/others), and it also highlights remaining challenges with future approaches.
Collapse
Affiliation(s)
- Himanshu Mali
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol 388 315, Gujarat, India
| | - Chandni Shah
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol 388 315, Gujarat, India
| | - B H Raghunandan
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol 388 315, Gujarat, India
| | - Anil S Prajapati
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol 388 315, Gujarat, India
| | - Darshan H Patel
- Charotar Institute of Paramedical Sciences, Charotar University of Science and Technology, (CHARUSAT), Changa 388421, Gujarat, India
| | - Ujjval Trivedi
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol 388 315, Gujarat, India
| | - R B Subramanian
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol 388 315, Gujarat, India.
| |
Collapse
|
6
|
Wu Y, Wang J, Xia Y, Tang K, Xu J, Wang A, Hu S, Wen L, Wang B, Yao W, Wang J. Toxic effects of isofenphos-methyl on zebrafish embryonic development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114723. [PMID: 36871354 DOI: 10.1016/j.ecoenv.2023.114723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Isofenphos-methyl (IFP) is widely used as an organophosphorus for controlling underground insects and nematodes. However, excessive use of IFP may pose potential risks to the environment and humans, but little information is available on its sublethal toxicity to aquatic organisms. To address this knowledge gap, the current study exposed zebrafish embryos to 2, 4, and 8 mg/L IFP within 6-96 h past fertilization (hpf) and measured mortality, hatching, developmental abnormalities, oxidative stress, gene expressions, and locomotor activity. The results showed that IFP exposure reduced the rates of heart and survival rate, hatchability, and body length of embryos and induced uninflated swim bladder and developmental malformations. Reduction in locomotive behavior and inhibition of AChE activity indicated that IFP exposure may induce behavioral defects and neurotoxicity in zebrafish larvae. IFP exposure also led to pericardial edema, longer venous sinus-arterial bulb (SV-BA) distance, and apoptosis of the heart cells. Moreover, IFP exposure increased the accumulation of reactive oxygen species (ROS) and the content of malonaldehyde (MDA), also elevated the levels of antioxidant enzymes of superoxide dismutase (SOD) and catalase (CAT), but decreased glutathione (GSH) levels in zebrafish embryos. The relative expressions of heart development-related genes (nkx2.5, nppa, gata4, and tbx2b), apoptosis-related genes (bcl2, p53, bax, and puma), and swim bladder development-related genes (foxA3, anxa5b, mnx1, and has2) were significantly altered by IFP exposure. Collectively, our results indicated that IFP induced developmental toxicity and neurotoxicity to zebrafish embryos and the mechanisms may be relevant to the activation of oxidative stress and reduction of acetylcholinesterase (AChE) content.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jiawen Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Yumei Xia
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Kaiqin Tang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jincheng Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Anli Wang
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, Zhejiang, China
| | - Shundi Hu
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China.
| |
Collapse
|
7
|
Zhu C, Liu X, Li Y, Yu D, Gao Q, Chen L. Dual-ratiometric electrochemical aptasensor based on carbon nanohorns/anthraquinone-2-carboxylic acid/Au nanoparticles for simultaneous detection of malathion and omethoate. Talanta 2023; 253:123966. [PMID: 36182706 DOI: 10.1016/j.talanta.2022.123966] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022]
Abstract
Organophosphorus pesticides (OPs) are one of the most frequently used pesticides in agriculture, and their residues in environment have caused serious human health and environmental concerns. In this work, we reported a dual-ratiometric electrochemical aptasensor based on carbon nanohorns/anthraquinone-2-carboxylic acid/Au nanoparticles (CNHs/AQ/AuNPs) for simultaneous detection of malathion (MAL) and omethoate (OMT). Here, CNHs/AQ/AuNPs composites were synthesized by a simple room temperature method, and used as a substrate to generate a reference signal (IAQ) and enlarge response signals. Hairpin DNA was then immobilized, offering independent and specific binding sites to further adsorb MB-labelled MAL aptamer (MB-Apt1) and Fc-labelled OMT aptamer (Fc-Apt2). Upon the addition of MAL or OMT, the formation of aptamer-target complex caused the release of MB-Apt1 or Fc-Apt2 from the electrode, resulting in a decrease in IMB or IFc, while IAQ kept unchanged. Based on this principle, the ratiometric signals of IMB/IAQ and IFc/IAQ were used to simultaneously detect MAL and OMT, offering a linear range of 3 pg mL-1 to 3 ng mL-1 for MAL and 10 pg mL-1 to 10 ng mL-1 for OMT, and no significant cross-reactivity existed. By taking advantage of the excellent conductivity and large specific area of CNHs/AQ/AuNPs and the stable two-dimensional structure of hairpin DNA, the aptasensor exhibited high sensitivity, selectivity and reliability. Our work has offered a novel way for simultaneous detection of multiple OPs.
Collapse
Affiliation(s)
- Chengxi Zhu
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dongmei Yu
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Qian Gao
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Lixing Chen
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| |
Collapse
|
8
|
Efremenko E, Lyagin I, Aslanli A, Stepanov N, Maslova O, Senko O. Carrier Variety Used in Immobilization of His 6-OPH Extends Its Application Areas. Polymers (Basel) 2023; 15:591. [PMID: 36771892 PMCID: PMC9920489 DOI: 10.3390/polym15030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Organophosphorus hydrolase, containing a genetically introduced hexahistidine sequence (His6-OPH), attracts the attention of researchers by its promiscuous activity in hydrolytic reactions with various substrates, such as organophosphorus pesticides and chemical warfare agents, mycotoxins, and N-acyl homoserine lactones. The application of various carrier materials (metal-organic frameworks, polypeptides, bacterial cellulose, polyhydroxybutyrate, succinylated gelatin, etc.) for the immobilization and stabilization of His6-OPH by various methods, enables creation of biocatalysts with various properties and potential uses, in particular, as antidotes, recognition elements of biosensors, in fibers with chemical and biological protection, dressings with antimicrobial properties, highly porous sorbents for the degradation of toxicants, including in flow systems, etc. The use of computer modeling methods in the development of immobilized His6-OPH samples provides in silico prediction of emerging interactions between the enzyme and immobilizing polymer, which may have negative effects on the catalytic properties of the enzyme, and selection of the best options for experiments in vitro and in vivo. This review is aimed at analysis of known developments with immobilized His6-OPH, which allows to recognize existing recent trends in this field of research, as well as to identify the reasons limiting the use of a number of polymer molecules for the immobilization of this enzyme.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | | | | | | | | | | |
Collapse
|
9
|
Chen T, Chen H, Wang A, Yao W, Xu Z, Wang B, Wang J, Wu Y. Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos. TOXICS 2023; 11:84. [PMID: 36668810 PMCID: PMC9866970 DOI: 10.3390/toxics11010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Methyl parathion (MP) has been widely used as an organophosphorus pesticide for food preservation and pest management, resulting in its accumulation in the aquatic environment. However, the early developmental toxicity of MP to non-target species, especially aquatic vertebrates, has not been thoroughly investigated. In this study, zebrafish embryos were treated with 2.5, 5, or 10 mg/L of MP solution until 72 h post-fertilization (hpf). The results showed that MP exposure reduced spontaneous movement, hatching, and survival rates of zebrafish embryos and induced developmental abnormalities such as shortened body length, yolk edema, and spinal curvature. Notably, MP was found to induce cardiac abnormalities, including pericardial edema and decreased heart rate. Exposure to MP resulted in the accumulation of reactive oxygen species (ROS), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, elevated malondialdehyde (MDA) levels, and caused cardiac apoptosis in zebrafish embryos. Moreover, MP affected the transcription of cardiac development-related genes (vmhc, sox9b, nppa, tnnt2, bmp2b, bmp4) and apoptosis-related genes (p53, bax, bcl2). Astaxanthin could rescue MP-induced heart development defects by down-regulating oxidative stress. These findings suggest that MP induces cardiac developmental toxicity and provides additional evidence of MP toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Tianyi Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Haoze Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Anli Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| |
Collapse
|
10
|
He J, Wang Z, Zhen F, Wang Z, Song Z, Chen J, Hrynsphan D, Tatsiana S. Mechanisms of flame retardant tris (2-ethylhexyl) phosphate biodegradation via novel bacterial strain Ochrobactrum tritici WX3-8. CHEMOSPHERE 2023; 311:137071. [PMID: 36328323 DOI: 10.1016/j.chemosphere.2022.137071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Tris (2-ethylhexyl) phosphate (TEHP) is a common organophosphorus flame retardant analog with considerable ecological toxicity. Here, novel strain Ochrobactrum tritici WX3-8 capable of degrading TEHP as the sole C source was isolated. Our results show that the strain's TEHP degradation efficiency reached 75% after 104 h under optimal conditions, i.e., 30 °C, pH 7, bacterial inoculum 3%, and
Collapse
Affiliation(s)
- Jiamei He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Fengzhen Zhen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Zhaoyun Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
11
|
Zangiabadi M, Mehrabi F, Nasiripur P, Baghersad MH. Visible-light-driven photocatalytic degradation of methyl parathion as chemical warfare agent simulant by NiO/Bi2MoO6 heterojunction photocatalyst. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Research progress of acetylcholinesterase bioelectrochemical sensor based on carbon nanotube composite material in the detection of organophosphorus pesticides. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Mali H, Shah C, Patel DH, Trivedi U, Subramanian RB. Bio-catalytic system of metallohydrolases for remediation of neurotoxin organophosphates and applications with a future vision. J Inorg Biochem 2022; 231:111771. [DOI: 10.1016/j.jinorgbio.2022.111771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022]
|
14
|
Gong C, Fan Y, Zhao H. Recent advances and perspectives of enzyme-based optical biosensing for organophosphorus pesticides detection. Talanta 2021; 240:123145. [PMID: 34968808 DOI: 10.1016/j.talanta.2021.123145] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 02/01/2023]
Abstract
The overuse or abuse of organophosphorus pesticides (OPs) can bring about severe contamination problems in foodstuff and the environment, which will seriously threaten human health and the ecosystem's cycle. Hence, it is in high demand to establish sensitive, portable, specific, and cost-effective methods for monitoring OPs to control food safety, protect the ecosystem, and prevent disease. The optical biosensor with enzyme as bio-recognition elements has been an effective alternative for OPs detection. Herein, we firstly introduce various enzymes, sensing mechanisms, advantages and disadvantages used as bio-recognition elements in optical sensing for OPs detection. Then, we review various optical biosensing strategies based on enzymes as recognition elements that were ingeniously designed and successfully utilized for OPs detection, with a particular emphasis on photoluminescence (PL), chemiluminescence (CL), electrochemiluminescence (ECL), and colorimetric (CM) biosensing strategies. We not only highlight the state-of-art developments and the construction strategies of the enzyme-based optical biosensing method but also summarize the existing deficiencies, current challenges, and the future perspectives of OPs detection.
Collapse
Affiliation(s)
- Changbao Gong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yaofang Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
15
|
Liang B, Liu Y, Zhao Y, Xia T, Chen R, Yang J. Development of bacterial biosensor for sensitive and selective detection of acetaldehyde. Biosens Bioelectron 2021; 193:113566. [PMID: 34416430 DOI: 10.1016/j.bios.2021.113566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/17/2023]
Abstract
Acetaldehyde is a human carcinogen and widely existed in alcoholic beverages and polluted air. In this study, a simple, fast, convenient and sensitive acetaldehyde biosensor was developed based on an acetaldehyde dehydrogenase (AldDH) bacteria surface display system. The whole-cell catalyst facilitated the dehydrogenation of acetaldehyde, while coenzyme NAD+ was reduced and the resultant NADH can be detected spectrometrically at 340 nm. The correct location of AldDH on the bacteria surface was confirmed by the subcellular fraction and immunofluorescence analysis. By comparing the fusion protein expression level and whole-cell activity, the proper display system for anchoring AldDH on the cell surface was obtained. The results of kinetics analysis towards both surface-displayed AldDH and intracellular expressed AldDH demonstrated that the mass-transport resistance was dramatically alleviated by cell-surface display strategy. Under optimal conditions, AldDH-surface display strain with the highest whole-cell activity (3.41 ± 0.3 mU/OD600) was applied to spectrophotometry acetaldehyde detection system. An excellent linear relationship between the increases of absorbance at 340 nm and acetaldehyde concentration over the range from 1 μM to 300 μM was reached. The proposed approach offered adequate sensitivity for the detection of acetaldehyde at 0.33 μM. Most importantly, the developed biosensor showed the narrowest substrate specificity towards acetaldehyde, which has been employed for quick determination of acetaldehyde in real samples with good accuracy. The total detection time was within 20 min. The method reported here provided a simple, rapid, and low-cost strategy for the sensitive and selective measurement of acetaldehyde. Therefore, genetically engineered cells may find broad application in biosensors and biocatalysts.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Yunhui Liu
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Tianyu Xia
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Ruofei Chen
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
16
|
Zhu Y, Xie Z, Li J, Liu Y, Li C, Liang W, Huang W, Kang J, Cheng F, Kang L, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Xu J, Li D, Zhang H. From phosphorus to phosphorene: Applications in disease theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214110] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Overview of a bioremediation tool: organophosphorus hydrolase and its significant application in the food, environmental, and therapy fields. Appl Microbiol Biotechnol 2021; 105:8241-8253. [PMID: 34665276 DOI: 10.1007/s00253-021-11633-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022]
Abstract
In the past decades, the organophosphorus compounds had been widely used in the environment and food industries as pesticides. Owing to the life-threatening and long-lasting problems of organophosphorus insecticide (OPs), an effective detection and removal of OPs have garnered growing attention both in the scientific and practical fields in recent years. Bacterial organophosphorus hydrolases (OPHs) have been extensively studied due to their high specific activity against OPs. OPH could efficiently hydrolyze a broad range of substrates both including the OP pesticides and some nerve agents, suggesting a great potential for the remediation of OPs. In this review, the microbial identification, molecular modification, and practical application of OPHs were comprehensively discussed.Key points• Microbial OPH is a significant bioremediation tool against OPs.• Identification and molecular modification of OPH was discussed in detail.• The applications of OPH in food, environmental, and therapy fields are presented.
Collapse
|
18
|
Esimbekova EN, Kalyabina VP, Kopylova KV, Torgashina IG, Kratasyuk VA. Design of bioluminescent biosensors for assessing contamination of complex matrices. Talanta 2021; 233:122509. [PMID: 34215124 DOI: 10.1016/j.talanta.2021.122509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 01/29/2023]
Abstract
The presence of potentially toxic xenobiotics in complex matrices has become rather the rule than the exception. Therefore, there is a need for highly sensitive inexpensive techniques for analyzing environmental and food matrices for toxicants. Enzymes are selectively sensitive to various toxic compounds, and, thus, they can be used as the basis for detection of contaminants in complex matrices. There are, however, a number of difficulties associated with the analysis of complex matrices using enzyme assays, including the necessity to take into account properties and effects of the natural components of the test media for accurate interpretation of results. The present study describes the six-stage procedure for designing new enzyme sensors intended for assessing the quality of complex matrices. This procedure should be followed both to achieve the highest possible sensitivity of the biosensor to potentially toxic substances and to minimize the effect of the uncontaminated components of complex mixtures on the activity of the biosensor. The proposed strategy has been tested in designing a bioluminescent biosensor for integrated rapid assessment of the safety of fruits and vegetables. The biosensor is based on the coupled enzyme system NAD(P)H:FMN-oxidoreductase and luciferase as the biorecognition element. The study describes methods and techniques for attaining the desired result in each stage. The proposed six-stage procedure for designing bioluminescent enzyme biosensors can be used to design the enzymatic biosensors based on other enzymes.
Collapse
Affiliation(s)
- Elena N Esimbekova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia; Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia.
| | - Valeriya P Kalyabina
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia; Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Kseniya V Kopylova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
| | - Irina G Torgashina
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
| | - Valentina A Kratasyuk
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia; Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
19
|
Saket P, Kashyap M, Bala K, Joshi A. Microalgae and bio-polymeric adsorbents: an integrative approach giving new directions to wastewater treatment. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:536-556. [PMID: 34340616 DOI: 10.1080/15226514.2021.1952925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This review analyses the account of biological (microalgae) and synthetic (bio-polymeric adsorbents) elements to compass the treatment efficiencies of various water pollutants and mechanisms behind them. While considering pollutant removal, both techniques have their own merits and demerits. Microalgal-based methods have been dominantly used as a biological method for pollutant removal. The main limitations of microalgal methods are capacity, scale, dependence on variables of environment and duration of the process. Biopolymers on the other hand are naturally produced, abundant in nature, environmentally safe and biocompatible with cells and many times biodegradable. Algal immobilization in biopolymers has promoted the reuse of cells for further treatment and protected cells from toxic environment monitoring and controlling the external factors like pH, temperature and salinity can promote the removal process while working with the mentioned technologies. In this review, a mechanistic view of both these techniques along with integrated approaches emphasizing on their loopholes and possibilities of improvement in these techniques is represented. In addition to these, the review also discusses the post-treatment effect on algal cells which are specifically dependent on pollutant type and their concentration. All these insights will aid in developing integrated solutions to improve removal efficiencies in an environmentally safe and cost-effective manner.Novelty statement The main objective of this review is to thoroughly understand the role of micro-algal cells and synthetic adsorbents individually as well as their integrative effect in the removal of pollutants from wastewater. Many reviews have been published containing information related to either removal mechanism by algae or synthetic adsorbents. While in this review we have discussed the agents, algae and synthetic adsorbents along with their limitations and explained how these limitations can be overcome with the integration of both the moieties together in process of immobilization. We have covered both the analytical and mechanistic parts of these technologies. Along with this, the post-treatment effects on algae have been discussed which can give us a critical understanding of algal response to pollutants and by-products obtained after treatment. This review contains three different sections, their importance and also explained how these technologies can be improved in the future aspects.
Collapse
Affiliation(s)
- Palak Saket
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore
| | - Mrinal Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore
| |
Collapse
|
20
|
An Enzyme-Based Biosensor for the Detection of Organophosphate Compounds Using Mutant Phosphotriesterase Immobilized onto Reduced Graphene Oxide. J CHEM-NY 2021. [DOI: 10.1155/2021/2231089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Enzymatic detection of organophosphate (OP) compounds can be tailored using highly sensitive and selective enzymes in the development of biosensors. Previously, mutant (YT) phosphotriesterase (PTE) was reported to efficiently hydrolyze Sp and Rp enantiomers of phosphotriester. This study reports the use of phosphotriesterase mutant YT (YT-PTE) immobilized onto reduced graphene oxide (rGO) and fabricated onto a screen-printed carbon electrode (SPCE) for electrochemical detection of OP compounds. Immobilization of YT-PTE onto rGO was secured using N-hydroxysuccinimide (NHS) and N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC) cross-linker, and the resulting immobilized enzyme was able to retain up to 90% of its activity. Electrochemical analysis of the SPCE/rGO/YT-PTE showed detection of paraoxon in a linear range of 1 mM–0.005 μM with its limit of detection as low as 0.11 μM. SPCE/rGO/YT-PTE exhibited high selectivity towards paraoxon and parathion and have good reproducibility. Furthermore, detection of paraoxon was also possible in a real water sample with only minor interferences.
Collapse
|
21
|
Esimbekova EN, Torgashina IG, Kalyabina VP, Kratasyuk VA. Enzymatic Biotesting: Scientific Basis and Application. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521030069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Jain M, Yadav P, Joshi B, Joshi A, Kodgire P. Recombinant organophosphorus hydrolase (OPH) expression in E. coli for the effective detection of organophosphate pesticides. Protein Expr Purif 2021; 186:105929. [PMID: 34139322 DOI: 10.1016/j.pep.2021.105929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Accumulation and exposure of organophosphate pesticides are of great concern today owing to their abundant usage and potential health hazards. Harmful effects of organophosphate pesticide exposure and limitations of the available treatment methods necessitate the development of reliable, selective, cost-effective, and sensitive methods of detection. We developed a novel biosensor based on the enzymatic action of recombinant organophosphorus hydrolase (OPH) expressed in E. coli. We report the development of colorimetric biosensors made of His-Nus-OPH as well as His-Nus-OPH loaded alginate microspheres. The colorimetric detection method developed using solution-phase and alginate-encapsulated His-Nus-OPH exhibited detection limits of 0.045 and 0.039 mM, respectively, for ethyl paraoxon, and 0.101 and 0.049 mM, respectively, for methyl parathion. Additionally, fluorescence measurement using pH-sensitive fluorescein isothiocyanate (FITC) was used to sense the quantity of organophosphorus pesticides. The fluorometric detection method using solution-phase His-Nus-OPH, with ethyl paraoxon and methyl parathion as the substrate, reveals the lower limit of detection as 0.014 mM and 0.044 mM, respectively. Our results demonstrate the viability of His-Nus-OPH for OP detection with good sensitivity, LOD, and linear range. We report the first use of N-terminal His-NusA-tagged OPH, which enhances solubility significantly and presents a significant advance for the scientific community.
Collapse
Affiliation(s)
- Monika Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Priyanka Yadav
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Bhavana Joshi
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Abhijeet Joshi
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India.
| | - Prashant Kodgire
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India.
| |
Collapse
|
23
|
Wang L, Sun Y. Engineering organophosphate hydrolase for enhanced biocatalytic performance: A review. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S, Chen S. New insights into the degradation of synthetic pollutants in contaminated environments. CHEMOSPHERE 2021; 268:128827. [PMID: 33162154 DOI: 10.1016/j.chemosphere.2020.128827] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 05/11/2023]
Abstract
The environment is contaminated by synthetic contaminants owing to their extensive applications globally. Hence, the removal of synthetic pollutants (SPs) from the environment has received widespread attention. Different remediation technologies have been investigated for their abilities to eliminate SPs from the ecosystem; these include photocatalysis, sonochemical techniques, nanoremediation, and bioremediation. SPs, which can be organic or inorganic, can be degraded by microbial metabolism at contaminated sites. Owing to their diverse metabolisms, microbes can adapt to a wide variety of environments. Several microbial strains have been reported for their bioremediation potential concerning synthetic chemical compounds. The selection of potential strains for large-scale removal of organic pollutants is an important research priority. Additionally, novel microbial consortia have been found to be capable of efficient degradation owing to their combined and co-metabolic activities. Microbial engineering is one of the most prominent and promising techniques for providing new opportunities to develop proficient microorganisms for various biological processes; here, we have targeted the SP-degrading mechanisms of microorganisms. This review provides an in-depth discussion of microbial engineering techniques that are used to enhance the removal of both organic and inorganic pollutants from different contaminated environments and under different conditions. The degradation of these pollutants is investigated using abiotic and biotic approaches; interestingly, biotic approaches based on microbial methods are preferable owing to their high potential for pollutant removal and cost-effectiveness.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University, Dehradun, 248161, Uttarakhand, India
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology, Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among the many biological entities employed in the development of biosensors, enzymes have attracted the most attention. Nanotechnology has been fostering excellent prospects in the development of enzymatic biosensors, since enzyme immobilization onto conductive nanostructures can improve characteristics that are crucial in biosensor transduction, such as surface-to-volume ratio, signal response, selectivity, sensitivity, conductivity, and biocatalytic activity, among others. These and other advantages of nanomaterial-based enzymatic biosensors are discussed in this work via the compilation of several reports on their applications in different industrial segments. To provide detailed insights into the state of the art of this technology, all the relevant concepts around the topic are discussed, including the properties of enzymes, the mechanisms involved in their immobilization, and the application of different enzyme-derived biosensors and nanomaterials. Finally, there is a discussion around the pressing challenges in this technology, which will be useful for guiding the development of future research in the area.
Collapse
|
26
|
Review of recent developments (2018–2020) on acetylcholinesterase inhibition based biosensors for organophosphorus pesticides detection. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105779] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
MPH-GST sensing microplate for easy detection of organophosphate insecticides. Biotechnol Lett 2021; 43:933-944. [PMID: 33512614 DOI: 10.1007/s10529-021-03078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To develop a convenient and efficient means for organophosphate (OP) insecticide detection, a simple, cost-effective, and easy-to-use absorbance-based sensing device was generated using methyl parathion hydrolase fused with glutathione-S-transferase (MPH-GST) covalently immobilized onto a chitosan film-coated microplate. RESULTS With methyl parathion (MP) as a representative substrate, this MPH-GST sensing microplate had the detection limit of 0.1 µM and the linear range of 0.1-50 µM. Despite its highest stability at 4 °C, it was considerably stable at 25 °C with high activity for 30 days. It was also most stable at pH 8.0 and could be efficiently reused up to 100 rounds. The device revealed a high percentage of recovery for tap water spiked with a known concentration of MP, which was also comparable to the result obtained from gas chromatography-mass spectrometry. It also showed a high recovery of 82-100% with MP spiked agricultural products and satisfactory results with non-spiked samples. This immobilized enzyme sensing system was more sensitive and efficient than the whole cell system from our previous work. CONCLUSIONS All of the advantages of the MPH-GST sensing microplate developed have rendered it suitable for rapid and convenient OP screening, and for being a bio-element for fabricating a potential optical biosensor in the future.
Collapse
|
28
|
A visual bio-barcode immunoassay for sensitive detection of triazophos based on biochip silver staining signal amplification. Food Chem 2021; 347:129024. [PMID: 33461115 DOI: 10.1016/j.foodchem.2021.129024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/25/2022]
Abstract
Herein, a novel visual method for detecting triazophos based on competitive bio-barcode immunoassay was described. The competitive immunoassay was established by gold nanoparticles (AuNPs), magnetic microparticle (MMPs) and triazophos, combined with biochip hybridization system to detect the residual of triazophos in water and apple. Because AuNPs carried many bio-barcodes, which hybridized with labeled DNA on the biochip, catalyzed signal amplification using silver staining was detected by grayscale values as well as the naked eye. Notably, the grayscale values decreases with increasing the concentrations of triazophos, and the color change weakened gradually. The detection range was in between 0.05 and 10 ng/mL and the minimum detection limit was set at 0.04 ng/mL. Percent recovery calculated from spiked water and apple samples ranged between 55.4 and 107.8% with relative standard deviations (RSDs) of 12.4-24.9%. It has therefore been shown that this protocol provides a new insight for rapid detection of small molecule pesticides in various matrices.
Collapse
|
29
|
On-spot biosensing device for organophosphate pesticide residue detection in fruits and vegetables. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
30
|
Jain M, Yadav P, Joshi B, Joshi A, Kodgire P. A novel biosensor for the detection of organophosphorus (OP)-based pesticides using organophosphorus acid anhydrolase (OPAA)-FL variant. Appl Microbiol Biotechnol 2020; 105:389-400. [PMID: 33191461 DOI: 10.1007/s00253-020-11008-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/28/2020] [Accepted: 11/08/2020] [Indexed: 11/25/2022]
Abstract
Indiscriminate use of organophosphorus (OP)-based insecticides is a great concern to human health because of bioaccumulation-induced health hazards. Potentially fatal consequences and limited treatment methods of OP poisoning necessitate the need for the development of reliable, selective, cost-effective, and sensitive methods of OP detection. To tackle this issue, the development of effective devices and methods is required to sensitively detect as well as degrade OPs. Enzymatic sensor systems have gained popularity due to high catalytic activity, enhanced detection limits, and high sensitivity with the environmentally benign operation. Organophosphorus acid anhydrolase (OPAA) from Alteromonas sp. JD6.5 is capable of hydrolyzing the P-F, P-O, P-S, and P-CN bonds, in OPs, including nerve agents of the G/V-series. Several mutants of OPAA are reported which have greater activity against various OPs. In this study, recombinant expression of the OPAA-FL variant in Escherichia coli was performed, purified, and subsequently tested for activity against ethyl paraoxon. OPAA-FL variant showed its optimum activity at pH 8.5 and 50 °C. Colorimetric and fluorometric assays were used for estimation of ethyl paraoxon based on p-nitrophenol and fluorescein isothiocyanate (FITC) fluorescence intensity, respectively. Colorimetric and fluorometric assay estimation indicates that ethyl paraoxon can be estimated in the linear range of 0.01 to 1 mM and 0.1 to 0.5 mM, with LOD values 0.04 mM and 0.056 mM, respectively. Furthermore, the OPAA-FL variant was immobilized into alginate microspheres for colorimetric detection of ethyl paraoxon and displayed a linear range of 0.025 to 1 mM with a LOD value of 0.06 mM. KEY POINTS: • Biosensing of paraoxon with purified and encapsulated OPAA-FL variant. • Colorimetric and fluorometric biosensing assay developed using OPAA-FL variant for paraoxon. • First report on alginate encapsulation of OPAA-FL variant for biosensing of paraoxon. Graphical abstract.
Collapse
Affiliation(s)
- Monika Jain
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, India
| | - Priyanka Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, India
| | - Bhavana Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, India.
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, India.
| |
Collapse
|
31
|
Easy-to-use and reliable absorbance-based MPH-GST biosensor for the detection of methyl parathion pesticide. ACTA ACUST UNITED AC 2020; 27:e00495. [PMID: 32642456 PMCID: PMC7334298 DOI: 10.1016/j.btre.2020.e00495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
Simple, inexpensive, high-efficiency absorbance-based OP biosensor was fabricated. Covalently immobilized methyl parathion hydrolase was used as a biomolecule. The biosensor can be used at room temperature for 100 rounds repetitively. The biosensor could detect MP with the detection limit of 0.1 μM. The biosensor showed high reliability for detecting MP in real samples.
Due to high contamination of organophosphate (OP) insecticides in agricultural products and the environment, efficient and convenient devices for their monitoring are necessary. Here, a simple, inexpensive, efficient, and easy-to-use absorbance-based biosensor was fabricated utilizing recombinant methyl parathion hydrolase fused with glutathione-S-transferase (MPH-GST), covalently immobilized onto a chitosan film-coated polystyrene microplate, for the detection of methyl parathion (MP) as a representative of OPs. Having been connected to the transducer system designed to work through an Arduino microcontroller, the biosensor could detect MP as efficiently as the conventional methods, with the detection limit of 0.1 μM, the lowest value ever reported for this method. It was stable at 25 °C for 30 days, could function 100 rounds repetitively, and yielded high recovery with real samples. Hence, this simply designed MPH-GST biosensor could be an easy and inexpensive alternative for efficient OP screening at site to help control its contamination.
Collapse
|
32
|
Bhatt P, Bhatt K, Huang Y, Lin Z, Chen S. Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. CHEMOSPHERE 2020; 244:125507. [PMID: 31835049 DOI: 10.1016/j.chemosphere.2019.125507] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Agricultural and household applications of pyrethroid insecticides have significantly increased residual concentrations in living cells and environments. The enhanced concentration is toxic for living beings. Pyrethroid hydrolase enzyme (pyrethroid catalyzing esterase) regulates pyrethroid degradation, and has been well reported in various organisms (bacteria, fungi, insects and animals). Hydrolysis mechanisms of these esterases are different from others and properly function at factors viz., optimum temperature, pH and physicochemical environment. Active site of the enzyme contains common amino acids that play important role in pyrethroid catalysis. Immobilization technology emphasizes the development of better reusable efficiency of pyrethroid hydrolases to carry out large-scale applications for complete degradation of pyrethroids from the environments. In this review we have attempted to provide insights of pyrethroid-degrading esterases in different living systems along with complete mechanisms.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar 249404, Uttarakhand, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|