1
|
Javdani-Mallak A, Salahshoori I. Environmental pollutants and exosomes: A new paradigm in environmental health and disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171774. [PMID: 38508246 DOI: 10.1016/j.scitotenv.2024.171774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
This study investigates the intricate interplay between environmental pollutants and exosomes, shedding light on a novel paradigm in environmental health and disease. Cellular stress, induced by environmental toxicants or disease, significantly impacts the production and composition of exosomes, crucial mediators of intercellular communication. The heat shock response (HSR) and unfolded protein response (UPR) pathways, activated during cellular stress, profoundly influence exosome generation, cargo sorting, and function, shaping intercellular communication and stress responses. Environmental pollutants, particularly lipophilic ones, directly interact with exosome lipid bilayers, potentially affecting membrane stability, release, and cellular uptake. The study reveals that exposure to environmental contaminants induces significant changes in exosomal proteins, miRNAs, and lipids, impacting cellular function and health. Understanding the impact of environmental pollutants on exosomal cargo holds promise for biomarkers of exposure, enabling non-invasive sample collection and real-time insights into ongoing cellular responses. This research explores the potential of exosomal biomarkers for early detection of health effects, assessing treatment efficacy, and population-wide screening. Overcoming challenges requires advanced isolation techniques, standardized protocols, and machine learning for data analysis. Integration with omics technologies enhances comprehensive molecular analysis, offering a holistic understanding of the complex regulatory network influenced by environmental pollutants. The study underscores the capability of exosomes in circulation as promising biomarkers for assessing environmental exposure and systemic health effects, contributing to advancements in environmental health research and disease prevention.
Collapse
Affiliation(s)
- Afsaneh Javdani-Mallak
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Jiang Z, Luo K, Zeng H, Li J. Monitoring of Medical Wastewater by Sensitive, Convenient, and Low-Cost Determination of Small Extracellular Vesicles Using a Glycosyl-Imprinted Sensor. ACS Sens 2024; 9:1252-1260. [PMID: 38373338 DOI: 10.1021/acssensors.3c02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The monitoring of small extracellular vesicles (sEVs) in medical waste is of great significance for the prevention of the spread of infectious diseases and the treatment of environmental pollutants in medical waste. Highly sensitive and selective detection methods are urgently needed due to the low content of sEVs in waste samples and the complex sample composition. Herein, a glycosyl-imprinted electrochemical sensor was constructed and a novel strategy for rapid, sensitive, and selective sEVs detection was proposed. The characteristic trisaccharide at the end of the glycosyl chain of the glycoprotein carried on the surface of the sEVs was used as the template molecule. The glycosyl-imprinted polymer films was then prepared by electropolymerization with o-phenylenediamine (o-PD) and 3-aminophenylboronic acid (m-APBA) as functional monomers. sEVs were captured by the imprinted cavities through the recognition and adsorption of glycosyl chains of glycoproteins on sEVs. The m-APBA molecule also acted as a signal probe and was then attached on the immobilized glycoprotein on the surface of sEVs by boric acid affinity. The electrochemical signal of m-APBA was amplificated due to the abundant glycoproteins on the surface of sEVs. The detection range of the sensor was 2.1 × 104 to 8.7 × 107 particles/mL, and the limit of detection was 1.7 × 104 particles/mL. The sensor was then applied to the determination of sEVs in medical wastewater and urine, which showed good selectivity, low detection cost, and good sensitivity.
Collapse
Affiliation(s)
- Zejun Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Kui Luo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jianping Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
3
|
González-Ruíz J, A Baccarelli A, Cantu-de-Leon D, Prada D. Air Pollution and Lung Cancer: Contributions of Extracellular Vesicles as Pathogenic Mechanisms and Clinical Utility. Curr Environ Health Rep 2023; 10:478-489. [PMID: 38052753 PMCID: PMC10822800 DOI: 10.1007/s40572-023-00421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE OF REVIEW This review addresses the pressing issue of air pollution's threat to human health, focusing on its connection to non-small cell lung cancer (NSCLC) development. The aim is to explore the role of extracellular vesicles (EVs) as potential pathogenic mechanisms in lung cancer, including NSCLC, induced by air pollutants. RECENT FINDINGS Recent research highlights EVs as vital mediators of intercellular communication and key contributors to cancer progression. Notably, this review emphasizes the cargo of EVs released by both cancerous and non-cancerous lung cells, shedding light on their potential role in promoting various aspects of tumor development. The review underscores the importance of comprehending the intricate interplay between air pollution, biological damage mechanisms, and EV-mediated communication during NSCLC development. Major takeaways emphasize the significance of this understanding in addressing air pollution-related lung cancer. Future research avenues are also highlighted, aiming to enhance the applicability of EVs for diagnosis and targeted therapies, ultimately mitigating the inevitable impact of air pollution on NSCLC development and treatment.
Collapse
Affiliation(s)
| | - Andrea A Baccarelli
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York City, NY, 10032, USA
| | | | - Diddier Prada
- Department of Population Health Science and Policy and the Department of Environmental Medicine and Public Health, Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl · (212) 241-6500, Room L2-38, New York City, NY, 10029, USA.
| |
Collapse
|
4
|
Monti P, Solazzo G, Bollati V. Effect of environmental exposures on cancer risk: Emerging role of non-coding RNA shuttled by extracellular vesicles. ENVIRONMENT INTERNATIONAL 2023; 181:108255. [PMID: 37839267 DOI: 10.1016/j.envint.2023.108255] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental and lifestyle exposures have a huge impact on cancer risk; nevertheless, the biological mechanisms underlying this association remain poorly understood. Extracellular vesicles (EVs) are membrane-enclosed particles actively released by all living cells, which play a key role in intercellular communication. EVs transport a variegate cargo of biomolecules, including non-coding RNA (ncRNA), which are well-known regulators of gene expression. Once delivered to recipient cells, EV-borne ncRNAs modulate a plethora of cancer-related biological processes, including cell proliferation, differentiation, and motility. In addition, the ncRNA content of EVs can be altered in response to outer stimuli. Such changes can occur either as an active attempt to adapt to the changing environment or as an uncontrolled consequence of cell homeostasis loss. In either case, such environmentally-driven alterations in EV ncRNA might affect the complex crosstalk between malignant cells and the tumor microenvironment, thus modulating the risk of cancer initiation and progression. In this review, we summarize the current knowledge about EV ncRNAs at the interface between environmental and lifestyle determinants and cancer. In particular, we focus on the effect of smoking, air and water pollution, diet, exercise, and electromagnetic radiation. In addition, we have conducted a bioinformatic analysis to investigate the biological functions of the genes targeted by environmentally-regulated EV microRNAs. Overall, we draw a comprehensive picture of the role of EV ncRNA at the interface between external factors and cancer, which could be of great interest to the development of novel strategies for cancer prevention, diagnosis, and therapy.
Collapse
Affiliation(s)
- Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; CRC, Center for Environmental Health, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
5
|
Tinè M, Padrin Y, Bonato M, Semenzato U, Bazzan E, Conti M, Saetta M, Turato G, Baraldo S. Extracellular Vesicles (EVs) as Crucial Mediators of Cell-Cell Interaction in Asthma. Int J Mol Sci 2023; 24:ijms24054645. [PMID: 36902079 PMCID: PMC10003413 DOI: 10.3390/ijms24054645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Asthma is the most common chronic respiratory disorder worldwide and accounts for a huge health and economic burden. Its incidence is rapidly increasing but, in parallel, novel personalized approaches have emerged. Indeed, the improved knowledge of cells and molecules mediating asthma pathogenesis has led to the development of targeted therapies that significantly increased our ability to treat asthma patients, especially in severe stages of disease. In such complex scenarios, extracellular vesicles (EVs i.e., anucleated particles transporting nucleic acids, cytokines, and lipids) have gained the spotlight, being considered key sensors and mediators of the mechanisms controlling cell-to-cell interplay. We will herein first revise the existing evidence, mainly by mechanistic studies in vitro and in animal models, that EV content and release is strongly influenced by the specific triggers of asthma. Current studies indicate that EVs are released by potentially all cell subtypes in the asthmatic airways, particularly by bronchial epithelial cells (with different cargoes in the apical and basolateral side) and inflammatory cells. Such studies largely suggest a pro-inflammatory and pro-remodelling role of EVs, whereas a minority of reports indicate protective effects, particularly by mesenchymal cells. The co-existence of several confounding factors-including technical pitfalls and host and environmental confounders-is still a major challenge in human studies. Technical standardization in isolating EVs from different body fluids and careful selection of patients will provide the basis for obtaining reliable results and extend their application as effective biomarkers in asthma.
Collapse
Affiliation(s)
- Mariaenrica Tinè
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Ylenia Padrin
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Matteo Bonato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
- Pulmonology Unit, Ospedale Cà Foncello, Azienda Unità Locale Socio-Sanitaria 2 Marca Trevigiana, 31100 Treviso, Italy
| | - Umberto Semenzato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Maria Conti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Graziella Turato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Simonetta Baraldo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
- Correspondence:
| |
Collapse
|
6
|
Urrata V, Trapani M, Franza M, Moschella F, Di Stefano AB, Toia F. Analysis of MSCs' secretome and EVs cargo: Evaluation of functions and applications. Life Sci 2022; 308:120990. [PMID: 36155182 DOI: 10.1016/j.lfs.2022.120990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Valentina Urrata
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marco Trapani
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy
| | - Mara Franza
- Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Francesco Moschella
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Anna Barbara Di Stefano
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Francesca Toia
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
7
|
Nicholson S, Baccarelli A, Prada D. Role of brain extracellular vesicles in air pollution-related cognitive impairment and neurodegeneration. ENVIRONMENTAL RESEARCH 2022; 204:112316. [PMID: 34728237 PMCID: PMC8671239 DOI: 10.1016/j.envres.2021.112316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 05/07/2023]
Abstract
A relationship between environmental exposure to air pollution and cognitive impairment and neurological disorders has been described. Previous literature has focused on the direct effects of the air pollution components on neuronal and glial cells, as well as on involvement of oxidative stress and neuroinflammation on microglia and astrocyte reactivity. However, other mechanisms involved in the air pollution effects on central nervous system (CNS) toxicity can be playing critical roles. Increasingly, extracellular vesicle's (EVs) mediated intercellular communication is being recognized as impacting the development of cognitive impairment and neurological disorders like Alzheimer's disease and others. Here we describe the available evidence about toxic air pollutants and its components on brain, an involvement of brain cells specific and EVs types (based in the origin or in the size of EVs) in the initiation, exacerbation, and propagation of the neurotoxic effects (inflammation, neurodegeneration, and accumulation of neurotoxic proteins) induced by air pollution in the CNS. Additionally, we discuss the identification and isolation of neural-derived EVs from human plasma, the most common markers for neural-derived EVs, and their potential for use as diagnostic or therapeutic molecules for air pollution-related cognitive impairment and neurodegeneration.
Collapse
Affiliation(s)
- Stacia Nicholson
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA; Instituto Nacional de Cancerología, Mexico City, 14080, Mexico.
| |
Collapse
|
8
|
Martin PJ, Billet S, Landkocz Y, Fougère B. Inflammation at the Crossroads: the Combined Effects of COVID-19, Ageing, and Air Pollution. J Frailty Aging 2021; 10:281-285. [PMID: 34105713 PMCID: PMC7948651 DOI: 10.14283/jfa.2021.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The global COVID-19 pandemic has highlighted different vulnerability profiles among individuals. With the highest mortality rate, the elderly are a very sensitive group. With regard to the main symptoms, a failure of the respiratory system, associated with deregulation of the immune system, has been observed. These symptoms may also be encountered in chronic exposure of susceptible populations to air pollution, including exacerbation of the inflammatory response. Is there a relationship between age, pollution exposure and the severity of COVID-19? Although it is unclear how these parameters are related, the same pathways can be activated and appear to find a common mechanism of action in inflammation.
Collapse
Affiliation(s)
- P J Martin
- Dr. Sylvain Billet, Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Maison de la Recherche en Environnement Industriel 2, 189A, Avenue Maurice Schumann, 59140 Dunkerque, France. Phone: +33-3 28 23 76 41, E-mail:
| | | | | | | |
Collapse
|
9
|
Hallmarks of environmental insults. Cell 2021; 184:1455-1468. [PMID: 33657411 DOI: 10.1016/j.cell.2021.01.043] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Environmental insults impair human health around the world. Contaminated air, water, soil, food, and occupational and household settings expose humans of all ages to a plethora of chemicals and environmental stressors. We propose eight hallmarks of environmental insults that jointly underpin the damaging impact of environmental exposures during the lifespan. Specifically, they include oxidative stress and inflammation, genomic alterations and mutations, epigenetic alterations, mitochondrial dysfunction, endocrine disruption, altered intercellular communication, altered microbiome communities, and impaired nervous system function. They provide a framework to understand why complex mixtures of environmental exposures induce severe health effects even at relatively modest concentrations.
Collapse
|
10
|
INSIDE Project: Individual Air Pollution Exposure, Extracellular Vesicles Signaling and Hypertensive Disorder Development in Pregnancy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17239046. [PMID: 33561039 PMCID: PMC7731194 DOI: 10.3390/ijerph17239046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022]
Abstract
Hypertensive disorders are common complications during pregnancy (HDP) with substantial public health impact. Acute and chronic particulate matter (PM) exposure during pregnancy increases the risk of HDP, although the underlying molecular mechanisms remain unclear. Extracellular vesicles (EVs) may be the ideal candidates for mediating the effects of PM exposure in pregnancy as they are released in response to environmental stimuli. The INSIDE project aims to investigate this mechanism in pregnancy outcomes. The study population is enrolled at the Fetal Medicine Unit of Fondazione IRCCS Ca’Granda—Ospedale Maggiore Policlinico at 10–14 weeks of gestation. Exposure to PM10 and PM2.5 is assessed using the flexible air quality regional model (FARM) and Bayesian geostatistical models. Each woman provides a blood sample for EV analysis and circulating biomarker assessment. Moreover, a subgroup of recruited women (n = 85) is asked to participate in a cardiovascular screening program including a standard clinical evaluation, a non-invasive assessment of right ventricular function, and pulmonary circulation at rest and during exercise. These subjects are also asked to wear a personal particulate sampler, to measure PM10, PM2.5, and PM1. The INSIDE study is expected to identify the health impacts of PM exposure on pregnancy outcomes.
Collapse
|