1
|
Liu X, Peng Y, Chen R, Zhou Y, Xia M, Wu X, Yu M. Nomilin Reversed Cardiotoxicity Caused by Co-exposure to Zearalenone and Deoxynivalenol via the Keap1/Nrf2 Signaling Pathway in Zebrafish. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:901-908. [PMID: 39269625 DOI: 10.1007/s11130-024-01228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
The contamination of food and feed by mycotoxins, particularly zearalenone (ZEA) and deoxynivalenol (DON), is a global issue. Prenatal exposure to ZEA and DON can result in congenital cardiac malformations in fetuses. Addressing the prevention and mitigation of embryonic cardiotoxicity caused by these toxins is crucial. Citrus limonoid nomilin (NOM) is an extract known for its pathological properties in various diseases. This study investigated the potential mechanism of NOM in mitigating cardiotoxicity caused by ZEA and DON co-exposure in a zebrafish model. The findings indicated that NOM pretreatment alleviated cardiac developmental toxicity induced by ZEA and DON and normalized the expression of key genes involved in heart development, including gata4, vmhc, nkx2.5, and sox9b. Co-exposure to NOM, ZEA, and DON enhanced SOD and catalase activity, increased glutathione levels, and reduced ROS and malondialdehyde production. Furthermore, NOM reduced cardiac oxidative damage by activating the Keap1/Nrf2 signaling pathway. In summary, this study offers new insights for preventive interventions against congenital heart disease caused by mycotoxin exposure.
Collapse
Affiliation(s)
- Xing Liu
- School of Public Health, Yangzhou University, Yangzhou, 225009, China.
| | - Yuting Peng
- School of Public Health, Yangzhou University, Yangzhou, 225009, China
| | - Ruobing Chen
- School of Public Health, Yangzhou University, Yangzhou, 225009, China
| | - Yueyue Zhou
- School of Public Health, Yangzhou University, Yangzhou, 225009, China
| | - Mingzhu Xia
- School of Public Health, Yangzhou University, Yangzhou, 225009, China
| | - Xinyi Wu
- School of Public Health, Yangzhou University, Yangzhou, 225009, China
| | - Meng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Krausová M, Ayeni KI, Gu Y, Borutzki Y, O'Bryan J, Perley L, Silasi M, Wisgrill L, Johnson CH, Warth B. Longitudinal biomonitoring of mycotoxin exposure during pregnancy in the Yale Pregnancy Outcome Prediction Study. ENVIRONMENT INTERNATIONAL 2024; 194:109081. [PMID: 39615253 DOI: 10.1016/j.envint.2024.109081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 12/22/2024]
Abstract
Mycotoxins are fungal toxins that may trigger adverse health effects in pregnant women and their unborn children. Yet, data is scarce on the dynamic exposure patterns of mycotoxins in pregnant women, especially in the United States. This study assessed mycotoxin exposure profiles in women (n = 50) from the Yale Pregnancy Outcome Prediction Study (YPOPS) cohort at four distinct time points. Multi-analyte human biomonitoring assays based on liquid chromatography tandem mass spectrometry (LC-MS/MS), were developed for human serum and plasma matrices. The serum method was applied, together with an established urine method, to quantify mycotoxin levels in longitudinally collected matched serum (n = 200) and spot urine (n = 200) samples throughout pregnancy. The serum samples were mostly contaminated by the potential carcinogen ochratoxin A (detection rate: 46 %; median: 0.09 ng/mL), the hepato- and nephrotoxic citrinin (detection rate: 32 %; median: 0.02 ng/mL) and two enniatins (EnnB; detection rate: 97 %; median: 0.01 ng/mL and EnnB1; detection rate: 12 %; median: 0.003 ng/mL) which may act as immunotoxins. The most prevalent mycotoxins quantified in urine included deoxynivalenol (detection rate: 99 %; median: 23 ng/mL), alternariol monomethyl ether (detection rate: 69 %; median: 0.04 ng/mL), and zearalenone (detection rate: 63 %; median: 0.16 ng/mL). Seven other biomarkers of exposure including the highly estrogenic α-zearalenol and genotoxic Alternaria toxins, were also determined. Carcinogenic aflatoxins were not detected in any of the samples. Exposure assessment was based on the urinary data and performed by calculating probable daily intakes and comparing the human biomonitoring guidance value (HBM-GV) for deoxynivalenol. The results showed that the individuals exceeded the tolerable daily intake for deoxynivalenol and zearalenone on average at 28 % and 2 % over the different time points. Using the HBM-GV approach, the average exceedances for deoxynivalenol increased to 48 % indicating high exposure. For all the samples in which ochratoxin A was quantified, the estimated margin of exposure for neoplastic effects was below 10,000, indicating possible health concerns. Overall, this study showed that pregnant women were exposed to several regulated and emerging mycotoxins and that exposome-scale assessment should be a future priority in susceptible populations to better characterize xenobiotic exposure.
Collapse
Affiliation(s)
- Magdaléna Krausová
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Kolawole I Ayeni
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Yunyun Gu
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Yasmin Borutzki
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Jane O'Bryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lauren Perley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Michelle Silasi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mercy Hospital St. Louis, St. Louis, MO 63141, USA
| | - Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, United States of America
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria.
| |
Collapse
|
3
|
Bastos-Moreira Y, Argaw A, Di Palma G, Dailey-Chwalibóg T, El-Hafi J, Ouédraogo LO, Toe LC, De Saeger S, Lachat C, De Boevre M. Ochratoxin A Status at Birth Is Associated with Reduced Birth Weight and Ponderal Index in Rural Burkina Faso. J Nutr 2024:S0022-3166(24)01082-4. [PMID: 39393495 DOI: 10.1016/j.tjnut.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Mycotoxin exposure during pregnancy has been associated with adverse birth outcomes and poor infant growth. We assessed multiple biomarkers and metabolites of exposure to mycotoxins at birth and their associations with birth outcomes and infant growth in 274 newborns in rural Burkina Faso. METHODS Whole-blood microsamples were analyzed for mycotoxin concentrations in newborns in the Biospecimen substudy nested in the MIcronutriments pour la SAnté de la Mère et de l'Enfant-III trial using ultra-performance liquid chromatography coupled with tandem mass spectrometry. Unadjusted and adjusted associations between mycotoxin exposure, and birth outcomes and infant growth at 6 mo were estimated using linear regression models for continuous outcomes and linear probability models with robust variance estimation for binary outcomes. Infant growth trajectories from birth to 6 mo were compared by exposure status using mixed-effects models with a random intercept for the individual infant and a random slope for the infant's age. RESULTS Ochratoxin A (OTA) exposure was detected in 38.3% of newborns, with other mycotoxins being detected in the range of 0.36% and 4.01%. OTA exposure was significantly associated with adverse birth outcomes, such as lower birth weight [β (95% CI): -0.11 kg (-0.21, 0.00); P = 0.042] and ponderal index [β (95% CI): -0.62 gm/cm3 (-1.19, -0.05); P = 0.034], and a marginally significant lower length growth trajectories during the first 6 mo [β (95% CI): -0.08 cm/mo (-0.15, 0.0); P = 0.057]. CONCLUSIONS OTA exposure was prevalent among newborns and also associated with lower growth at birth and during the first 6 mo. The results emphasize the importance of nutrition-sensitive strategies to mitigate dietary OTA, as well as adopting food safety measures in Burkina Faso during the fetal period of development.
Collapse
Affiliation(s)
- Yuri Bastos-Moreira
- Center of Excellence in Mycotoxicology and Public Health, MYTOX-SOUTH® Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Alemayehu Argaw
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Trenton Dailey-Chwalibóg
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jasmin El-Hafi
- Center of Excellence in Mycotoxicology and Public Health, MYTOX-SOUTH® Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Lionel Olivier Ouédraogo
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Laboratoire de Biologie Clinique, Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Laeticia Celine Toe
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Unité Nutrition et Maladies Métaboliques, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, MYTOX-SOUTH® Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa
| | - Carl Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marthe De Boevre
- Center of Excellence in Mycotoxicology and Public Health, MYTOX-SOUTH® Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Yao F, Du Y, Wang Y, Wang L, Zhu R, Cai C, Shao S, Zhou T. Acute toxicity of deoxynivalenol and bioremediation of a highly effective deoxynivalenol degrading Achromobacter spanius P-9 on zebrafish embryos and adults. CHEMOSPHERE 2024; 364:143111. [PMID: 39151582 DOI: 10.1016/j.chemosphere.2024.143111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Deoxynivalenol (DON) is one of the mostly concerned mycotoxins and several microbes showed bioremediation effects on DON toxic effects. In this study, the acute toxicity of a new DON degrading strain Achromobacter spanius P-9 with DON on zebrafish embryos and adults were firstly performed. For zebrafish embryos, bacterial concentrations of 2.5 × 107 CFU/mL and 5.0 × 107 CFU/mL had no significant effects on growth and development. However, at 7.5 × 107 CFU/mL, some effects were observed, and at 10.0 × 107 CFU/mL, the embryo survival rate decreased to 70%, with 3.3% teratogenicity. Higher bacterial concentrations correlated with faster heart rates. DON (100 μg/mL) significantly reduced embryo survival to 36.7% in 96 h. Bacterial solutions at 7.5 × 107 CFU/mL and 10.0 × 107 CFU/mL expanded the zebrafish intestinal tissue wall, while DON at 100 μg/mL negatively impacted intestinal morphology. Liver tissue in zebrafish exposed to Achromobacter spanius P-9 showed no significant differences from the control group. However, exposure to DON solution increased liver fluorescence intensity and caused liver cell changes, including edema, vacuolization, and blurred boundaries. For adult zebrafish, the ROS and 8-OHdG contents in the exposure group increased with the increase of bacterial solution concentration, the SOD enzyme activity, CAT enzyme activity, GST enzyme activity and MDA was not significantly different with the control group. Compared with the control group, the content of ROS, GST enzyme activity, MDA and 8-OHdG after DON treatment showed an upward trend, SOD and CAT enzyme activities showed a decreasing trend. Achromobacter spanius P-9 has no obvious inhibitory effect on the growth and development of zebrafish embryos and has no obvious death and toxicity during the growth of adult fish, providing data support for the future application of this strain in the biodegradation of DON.
Collapse
Affiliation(s)
- Feng Yao
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Yaowen Du
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Yuxiang Wang
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Luhan Wang
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Ruiyu Zhu
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Chenggang Cai
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| |
Collapse
|
5
|
Fakhri Y, Mahdavi V, Ranaei V, Pilevar Z, Sarafraz M, Mahmudiono T, Khaneghah AM. Ochratoxin A in coffee and coffee-based products: a global systematic review, meta-analysis, and probabilistic risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:211-220. [PMID: 36372738 DOI: 10.1515/reveh-2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Contamination of food with mycotoxins can pose harmful effects on the health of consumers in the long term. Coffee contamination with mycotoxins has become a global concern. This study attempted to meta-analyze the concentration and prevalence of ochratoxin A (OTA) in coffee products and estimate consumers' health risks. The search was conducted among international databases, including Scopus, PubMed, Embase, and Web of Science, for 1 January 2010 to 1 May 2022. The concentration and prevalence of OTA in coffee products were meta-analyzed according to country subgroups. Health risk assessment was conducted based on Margin of Exposures (MOEs) using the Monte Carlo simulation (MCS) technique. The three countries that had the highest Pooled concentration of OTA in coffee were observed in Chile (100.00%), Kuwait (100.00%), and France (100.00%). The overall prevalence of OTA in coffee products was 58.01%, 95% CI (48.37-67.39). The three countries that had the highest concentration of OTA were Philippines (39.55 μg/kg) > Turkey (39.32 μg/kg) > and Panama (21.33 μg/kg). The mean of MOEs in the adult consumers in Panama (9,526) and the Philippines (8,873) was lower than 10,000, while the mean of MOEs in other countries was higher than 10,000. Therefore, monitoring and control plans should be carried out in different countries.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Vahid Ranaei
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Mansour Sarafraz
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
6
|
McKeon HP, Schepens MAA, van den Brand AD, de Jong MH, van Gelder MMHJ, Hesselink ML, Sopel MM, Mengelers MJB. Assessment of Mycotoxin Exposure and Associated Risk in Pregnant Dutch Women: The Human Biomonitoring Approach. Toxins (Basel) 2024; 16:278. [PMID: 38922172 PMCID: PMC11209130 DOI: 10.3390/toxins16060278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by various fungi that can contaminate food crops, which, in turn, may lead to human exposure. Chronic exposure to mycotoxins can cause adverse health effects including reproductive and developmental toxicity. Pregnant women and their foetuses present a vulnerable group for exposure to mycotoxins that can cross the placenta. Human biomonitoring of mycotoxins provides a real-life approach to estimate internal exposure. In this pilot study, 24-h urine samples from 36 pregnant Dutch women were analysed for aflatoxin M1 (AFM1), total deoxynivalenol (DON), de-epoxy-deoxynivalenol (DOM-1), total zearalenone (ZEN), total α-zearalenol (α-ZEL), total β-zearalenol (β-ZEL) and total zearalanone (ZAN), where 'total' refers to mycotoxins and their conjugated forms. Serum samples from these women were analysed for fumonisin B1 (FB1) and ochratoxin A (OTA). All samples were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The most prevalent mycotoxins were total DON, total ZEN and OTA, with a detection frequency of 100%. DOM-1, total α-ZEL and total β-ZEL were detected but to a lesser extent, while AFM1, total ZAN and FB1 were undetected. Median concentrations were 4.75 μg total DON/L, 0.0350 μg DOM-1/L, 0.0413 μg total ZEN/L, 0.0379 μg total α-ZEL/L, 0.0189 μg total β-ZEL/L, and 0.121 μg OTA/L. The calculated median concentration for total ZEN and its metabolites was 0.105 μg/L. Based on two separate risk assessment approaches, total DON exposure in this group was considered to be of low concern. Similarly, exposure to total ZEN and its metabolites in this group was of low concern. For OTA, the risk of non-neoplastic effects was of low concern based on exposure in this group, and the risk of neoplastic effects was of low concern in the majority of participants in this group. The findings of this pilot study confirm the presence of mycotoxins in the urine and serum of pregnant Dutch women, with total DON, total ZEN, and OTA most frequently detected. Exposure to all measured mycotoxins was considered to be of low concern in this group, except for exposure to OTA, which was of low concern for the majority of participants. The study's findings offer valuable insights but should be confirmed using a larger and more diverse sample of the Dutch general population.
Collapse
Affiliation(s)
- Hannah P. McKeon
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands (M.J.B.M.)
| | - Marloes A. A. Schepens
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands (M.J.B.M.)
| | - Annick D. van den Brand
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands (M.J.B.M.)
| | - Marjolein H. de Jong
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands (M.J.B.M.)
| | | | - Marijn L. Hesselink
- Department of Paediatrics, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands;
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Marta M. Sopel
- Wageningen Food Safety Research (WSFR), 6708 WB Wageningen, The Netherlands;
| | - Marcel J. B. Mengelers
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands (M.J.B.M.)
| |
Collapse
|
7
|
Cang T, Wu C, Chen C, Liu C, Song W, Yu Y, Wang Y. Impacts of co-exposure to zearalenone and trifloxystrobin on the enzymatic activity and gene expression in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114860. [PMID: 37011514 DOI: 10.1016/j.ecoenv.2023.114860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/26/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Although humans and animals are usually exposed to combinations of toxic substances, little is known about the interactive toxicity of mycotoxins and farm chemicals. Therefore, we can not precisely evaluate the health risks of combined exposure. In the present work, using different approaches, we examined the toxic impacts of zearalenone and trifloxystrobin on zebrafish (Danio rerio). Our findings showed that the lethal toxicity of zearalenone to embryonic fish with a 10-day LC50 of 0.59 mg L-1 was lower than trifloxystrobin (0.037 mg L-1). Besides, the mixture of zearalenone and trifloxystrobin triggered acute synergetic toxicity to embryonic fish. Moreover, the contents of CAT, CYP450, and VTG were distinctly altered in most single and combined exposures. Transcriptional levels of 23 genes involved in the oxidative response, apoptosis, immune, and endocrine systems were determined. Our results implied that eight genes (cas9, apaf-1, bcl-2, il-8, trb, vtg1, erβ1, and tg) displayed greater changes when exposed to the mixture of zearalenone and trifloxystrobin compared with the corresponding individual chemicals. Our findings indicated that performing the risk assessment based on the combined impact rather than the individual dosage response of these chemicals was more accurate. Nevertheless, further investigations are still necessary to reveal the modes of action of mycotoxin and pesticide combinations and alleviate their effects on human health.
Collapse
Affiliation(s)
- Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Changxing Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Chen Chen
- School of Public Health, Shandong University, Jinan 250012, Shandong, China
| | - Caixiu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Wen Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Yijun Yu
- Administration for Farmland Quality and Fertilizer of Zhejiang Province, Hangzhou 310020, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| |
Collapse
|
8
|
Muacevic A, Adler JR. Effects of Pollution on Pregnancy and Infants. Cureus 2023; 15:e33906. [PMID: 36819435 PMCID: PMC9937639 DOI: 10.7759/cureus.33906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
The fetus is particularly susceptible to environmental contaminants as it is developing at the time of pregnancy and is, therefore, more susceptible to their effects. Pregnancy loss, which includes stillbirth and spontaneous abortion (miscarriage), preterm labor and delivery, and neonatal death, is the worst pregnancy outcome. Stunting and its related health and developmental effects are particularly common in populations living in underdeveloped countries or those exposed to high levels of particle pollution. Several environmental toxins can affect an embryo, fetus, or infant as they are developing. This study explores the following questions: What part do pesticides, heavy metals, dioxin derivatives, and polychlorinated diphenyl compounds play as macroenvironmental pollutants in mutagenesis and teratogenesis? What effects do substances that exposed persons have considerable control over, such as alcohol, narcotics, and tobacco smoke, have on the microenvironment? What consequences should practitioners be aware of these toxins in terms of ethics and the law? This study seeks to assess pertinent primary scientific studies on how pollution affects the health of the fetus and newborn during pregnancy.
Collapse
|
9
|
Lu Q, Guo P, Li H, Liu Y, Yuan L, Zhang B, Wu Q, Wang X. Targeting the lncMST-EPRS/HSP90AB1 complex as novel therapeutic strategy for T-2 toxin-induced growth retardation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114243. [PMID: 36332407 DOI: 10.1016/j.ecoenv.2022.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Growth retardation is a global public health problem that is highly prevalent especially in low-and middle-income countries, which is closely related to the consumption of grains contaminated with T-2 toxin, a risk for human and animal health. However, the possible targets that can relieve T-2 toxin-induced growth retardation still need to be explored. In the present study, T-2 toxin was used as an environmental exposure factor to induce growth retardation and further explore the regulatory role of lncRNA in growth retardation. The present study systematically characterised the expression profiles of lncRNAs and identified a lncRNA lncMST that is related to growth retardation in T-2 toxin-administered rats. Functionally, lncMST could alleviate cell cycle arrest and apoptosis in T-2 toxin-treated GH3 cells. Mechanistically, lncMST, serve as an inducible chaperone RNA, involved in the paradigm "Chemical-induced stress related growth retardation", through recruiting the EPRS/HSP90AB1 complex to increase HDAC6 expression, thus further alleviating T-2 toxin-induced growth retardation. These findings for the first time demonstrate that the probable therapeutic relationship between lncMST and growth retardation, providing an explanation and therapeutic targets for the pathogenesis of growth retardation.
Collapse
Affiliation(s)
- Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Pu Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Houpeng Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Yanan Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Ling Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Boyue Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China.
| |
Collapse
|
10
|
Toutounchi NS, Braber S, Land BV, Thijssen S, Garssen J, Folkerts G, Hogenkamp A. Deoxynivalenol exposure during pregnancy has adverse effects on placental structure and immunity in mice model. Reprod Toxicol 2022; 112:109-118. [PMID: 35840118 DOI: 10.1016/j.reprotox.2022.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/10/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Deoxynivalenol (DON), a highly prevalent food contaminant, is known to induce reproductive and immunotoxicity in humans upon exposure. The present study focused on the consequences of exposure to DON during pregnancy for placental barrier and immune function, as well as fetal survival. Female mice received diets contaminated with DON (6.25 and 12.5 mg/kg of diet), starting immediately after mating until the end of the experiment. On day 17 of pregnancy the animals were killed, and maternal and fetal samples were collected for further analysis. Feeding on DON-contaminated diets decreased fetal survival, and DON was detected at significant levels in the fetus. Placentae from DON-exposed mice revealed a reduction in expression of junctional proteins, ZO-1, E-cadherin and claudins, upregulation of AHR mRNA expressions, and increase in IFN-ꝩ, IL-6 and IL-4 production. In conclusion, results of this study demonstrate harmful effects of DON on the course of pregnancy and fetal survival, which might be due to immunological changes in maternal immune organs and placenta. Altogether, these data underline the importance of the quality of maternal diet during pregnancy as they clearly demonstrate the potential harmful effects of a commonly present food-contaminant.
Collapse
Affiliation(s)
- Negisa Seyed Toutounchi
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Belinda Van't Land
- Department of Immunology, Danone Nutricia Research, Utrecht, the Netherlands; Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Department of Immunology, Danone Nutricia Research, Utrecht, the Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
11
|
González-López NM, Huertas-Ortiz KA, Leguizamon-Guerrero JE, Arias-Cortés MM, Tere-Peña CP, García-Castañeda JE, Rivera-Monroy ZJ. Omics in the detection and identification of biosynthetic pathways related to mycotoxin synthesis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4038-4054. [PMID: 34486583 DOI: 10.1039/d1ay01017d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mycotoxins are secondary metabolites that are known to be toxic to humans and animals. On the other hand, some mycotoxins and their analogues possess antioxidant as well as antitumor properties, which could be relevant in the fields of pharmaceutical analysis and food research. Omics techniques are a group of analytical tools applied in the biological sciences in order to study genes (genomics), mRNA (transcriptomics), proteins (proteomics), and metabolites (metabolomics). Omics have become a vital tool in the field of mycotoxins, especially contributing to the identification of biomarkers with potential use for the detection of mycotoxigenic species and the gathering of information about the biosynthetic pathways of mycotoxins in different environments. This approach has provided tools for the development of prevention strategies and control measures for different mycotoxins. Additionally, research has revealed important information about the impact of global warming and climate change on the prevalence of mycotoxin issues in society. In the context of foodomics, the aim is to apply omics techniques in order to ensure food safety. The objective of the present review is to determine the state of the art regarding the development of analytical techniques based on omics in the identification of biosynthetic pathways related to mycotoxin synthesis.
Collapse
Affiliation(s)
| | - Kevin Andrey Huertas-Ortiz
- Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Bogotá, Colombia.
| | | | | | | | | | - Zuly Jenny Rivera-Monroy
- Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Bogotá, Colombia.
| |
Collapse
|