1
|
Liao H, Ji F, Helleday T, Ying S. Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. EMBO Rep 2018; 19:embr.201846263. [PMID: 30108055 DOI: 10.15252/embr.201846263] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/06/2018] [Accepted: 07/20/2018] [Indexed: 01/24/2023] Open
Abstract
Timely and faithful duplication of the entire genome depends on completion of replication. Replication forks frequently encounter obstacles that may cause genotoxic fork stalling. Nevertheless, failure to complete replication rarely occurs under normal conditions, which is attributed to an intricate network of proteins that serves to stabilize, repair and restart stalled forks. Indeed, many of the components in this network are encoded by tumour suppressor genes, and their loss of function by mutation or deletion generates genomic instability, a hallmark of cancer. Paradoxically, the same fork-protective network also confers resistance of cancer cells to chemotherapeutic drugs that induce high-level replication stress. Here, we review the mechanisms and major pathways rescuing stalled replication forks, with a focus on fork stabilization preventing fork collapse. A coherent understanding of how cells protect their replication forks will not only provide insight into how cells maintain genome stability, but also unravel potential therapeutic targets for cancers refractory to conventional chemotherapies.
Collapse
Affiliation(s)
- Hongwei Liao
- Department of Pharmacology & Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Ji
- Department of Pharmacology & Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden .,Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Songmin Ying
- Department of Pharmacology & Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Barthelemy J, Hanenberg H, Leffak M. FANCJ is essential to maintain microsatellite structure genome-wide during replication stress. Nucleic Acids Res 2016; 44:6803-16. [PMID: 27179029 PMCID: PMC5001596 DOI: 10.1093/nar/gkw433] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/06/2016] [Indexed: 12/15/2022] Open
Abstract
Microsatellite DNAs that form non-B structures are implicated in replication fork stalling, DNA double strand breaks (DSBs) and human disease. Fanconi anemia (FA) is an inherited disorder in which mutations in at least nineteen genes are responsible for the phenotypes of genome instability and cancer predisposition. FA pathway proteins are active in the resolution of non-B DNA structures including interstrand crosslinks, G quadruplexes and DNA triplexes. In FANCJ helicase depleted cells, we show that hydroxyurea or aphidicolin treatment leads to loss of microsatellite polymerase chain reaction signals and to chromosome recombination at an ectopic hairpin forming CTG/CAG repeat in the HeLa genome. Moreover, diverse endogenous microsatellite signals were also lost upon replication stress after FANCJ depletion, and in FANCJ null patient cells. The phenotype of microsatellite signal instability is specific for FANCJ apart from the intact FA pathway, and is consistent with DSBs at microsatellites genome-wide in FANCJ depleted cells following replication stress.
Collapse
Affiliation(s)
- Joanna Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany Department of Otorhinolaryngology & Head/Neck Surgery, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
3
|
Higgs MR, Reynolds JJ, Winczura A, Blackford AN, Borel V, Miller ES, Zlatanou A, Nieminuszczy J, Ryan EL, Davies NJ, Stankovic T, Boulton SJ, Niedzwiedz W, Stewart GS. BOD1L Is Required to Suppress Deleterious Resection of Stressed Replication Forks. Mol Cell 2015; 59:462-77. [PMID: 26166705 DOI: 10.1016/j.molcel.2015.06.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/15/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
Abstract
Recognition and repair of damaged replication forks are essential to maintain genome stability and are coordinated by the combined action of the Fanconi anemia and homologous recombination pathways. These pathways are vital to protect stalled replication forks from uncontrolled nucleolytic activity, which otherwise causes irreparable genomic damage. Here, we identify BOD1L as a component of this fork protection pathway, which safeguards genome stability after replication stress. Loss of BOD1L confers exquisite cellular sensitivity to replication stress and uncontrolled resection of damaged replication forks, due to a failure to stabilize RAD51 at these forks. Blocking DNA2-dependent resection, or downregulation of the helicases BLM and FBH1, suppresses both catastrophic fork processing and the accumulation of chromosomal damage in BOD1L-deficient cells. Thus, our work implicates BOD1L as a critical regulator of genome integrity that restrains nucleolytic degradation of damaged replication forks.
Collapse
Affiliation(s)
- Martin R Higgs
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - John J Reynolds
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alicja Winczura
- The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Andrew N Blackford
- The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Valérie Borel
- The Francis Crick Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | - Edward S Miller
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Anastasia Zlatanou
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jadwiga Nieminuszczy
- The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ellis L Ryan
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Nicholas J Davies
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Tatjana Stankovic
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Simon J Boulton
- The Francis Crick Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | - Wojciech Niedzwiedz
- The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Grant S Stewart
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
Gao L, Li D, Ma K, Zhang W, Xu T, Fu C, Jing C, Jia X, Wu S, Sun X, Dong M, Deng M, Chen Y, Zhu W, Peng J, Wan F, Zhou Y, Zon LI, Pan W. TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis. PLoS Genet 2015; 11:e1005346. [PMID: 26131719 PMCID: PMC4488437 DOI: 10.1371/journal.pgen.1005346] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022] Open
Abstract
In vertebrate definitive hematopoiesis, nascent hematopoietic stem/progenitor cells (HSPCs) migrate to and reside in proliferative hematopoietic microenvironment for transitory expansion. In this process, well-established DNA damage response pathways are vital to resolve the replication stress, which is deleterious for genome stability and cell survival. However, the detailed mechanism on the response and repair of the replication stress-induced DNA damage during hematopoietic progenitor expansion remains elusive. Here we report that a novel zebrafish mutantcas003 with nonsense mutation in topbp1 gene encoding topoisomerase II β binding protein 1 (TopBP1) exhibits severe definitive hematopoiesis failure. Homozygous topbp1cas003 mutants manifest reduced number of HSPCs during definitive hematopoietic cell expansion, without affecting the formation and migration of HSPCs. Moreover, HSPCs in the caudal hematopoietic tissue (an equivalent of the fetal liver in mammals) in topbp1cas003 mutant embryos are more sensitive to hydroxyurea (HU) treatment. Mechanistically, subcellular mislocalization of TopBP1cas003 protein results in ATR/Chk1 activation failure and DNA damage accumulation in HSPCs, and eventually induces the p53-dependent apoptosis of HSPCs. Collectively, this study demonstrates a novel and vital role of TopBP1 in the maintenance of HSPCs genome integrity and survival during hematopoietic progenitor expansion.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dantong Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Ma
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Xu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Fu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changbin Jing
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoe Jia
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Wu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Sun
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mei Dong
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Deng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenge Zhu
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D.C., United States of America
| | - Jinrong Peng
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Yi Zhou
- Stem Cell Program, Hematology/Oncology Program at Children's Hospital Boston and Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leonard I. Zon
- Stem Cell Program, Hematology/Oncology Program at Children's Hospital Boston and Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Weijun Pan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
5
|
Huang J, Liu S, Bellani MA, Thazhathveetil AK, Ling C, de Winter JP, Wang Y, Wang W, Seidman MM. The DNA translocase FANCM/MHF promotes replication traverse of DNA interstrand crosslinks. Mol Cell 2013; 52:434-46. [PMID: 24207054 DOI: 10.1016/j.molcel.2013.09.021] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/09/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
The replicative machinery encounters many impediments, some of which can be overcome by lesion bypass or replication restart pathways, leaving repair for a later time. However, interstrand crosslinks (ICLs), which preclude DNA unwinding, are considered absolute blocks to replication. Current models suggest that fork collisions, either from one or both sides of an ICL, initiate repair processes required for resumption of replication. To test these proposals, we developed a single-molecule technique for visualizing encounters of replication forks with ICLs as they occur in living cells. Surprisingly, the most frequent patterns were consistent with replication traverse of an ICL, without lesion repair. The traverse frequency was strongly reduced by inactivation of the translocase and DNA binding activities of the FANCM/MHF complex. The results indicate that translocase-based mechanisms enable DNA synthesis to continue past ICLs and that these lesions are not always absolute blocks to replication.
Collapse
Affiliation(s)
- Jing Huang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ghosal G, Leung JWC, Nair BC, Fong KW, Chen J. Proliferating cell nuclear antigen (PCNA)-binding protein C1orf124 is a regulator of translesion synthesis. J Biol Chem 2012; 287:34225-33. [PMID: 22902628 DOI: 10.1074/jbc.m112.400135] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage-induced proliferating cell nuclear antigen (PCNA) ubiquitination serves as the key event mediating post-replication repair. Post-replication repair involves either translesion synthesis (TLS) or damage avoidance via template switching. In this study, we have identified and characterized C1orf124 as a regulator of TLS. C1orf124 co-localizes and interacts with unmodified and mono-ubiquitinated PCNA at UV light-induced damage sites, which require the PIP box and UBZ domain of C1orf124. C1orf124 also binds to the AAA-ATPase valosin-containing protein via its SHP domain, and cellular resistance to UV radiation mediated by C1orf124 requires its interactions with valosin-containing protein and PCNA. Interestingly, C1orf124 binds to replicative DNA polymerase POLD3 and PDIP1 under normal conditions but preferentially associates with TLS polymerase η (POLH) upon UV damage. Depletion of C1orf124 compromises PCNA monoubiquitination, RAD18 chromatin association, and RAD18 localization to UV damage sites. Thus, C1orf124 acts at multiple steps in TLS, stabilizes RAD18 and ubiquitinated PCNA at damage sites, and facilitates the switch from replicative to TLS polymerase to bypass DNA lesion.
Collapse
Affiliation(s)
- Gargi Ghosal
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
7
|
Sareen A, Chaudhury I, Adams N, Sobeck A. Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase. Nucleic Acids Res 2012; 40:8425-39. [PMID: 22753026 PMCID: PMC3458572 DOI: 10.1093/nar/gks638] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fanconi anemia (FA) pathway members, FANCD2 and FANCI, contribute to the repair of replication-stalling DNA lesions. FA pathway activation relies on phosphorylation of FANCI by the ataxia telangiectasia and Rad3-related (ATR) kinase, followed by monoubiquitination of FANCD2 and FANCI by the FA core complex. FANCD2 and FANCI are thought to form a functional heterodimer during DNA repair, but it is unclear how dimer formation is regulated or what the functions of the FANCD2–FANCI complex versus the monomeric proteins are. We show that the FANCD2–FANCI complex forms independently of ATR and FA core complex, and represents the inactive form of both proteins. DNA damage-induced FA pathway activation triggers dissociation of FANCD2 from FANCI. Dissociation coincides with FANCD2 monoubiquitination, which significantly precedes monoubiquitination of FANCI; moreover, monoubiquitination responses of FANCD2 and FANCI exhibit distinct DNA substrate specificities. A phosphodead FANCI mutant fails to dissociate from FANCD2, whereas phosphomimetic FANCI cannot interact with FANCD2, indicating that FANCI phosphorylation is the molecular trigger for FANCD2–FANCI dissociation. Following dissociation, FANCD2 binds replicating chromatin prior to—and independently of—FANCI. Moreover, the concentration of chromatin-bound FANCD2 exceeds that of FANCI throughout replication. Our results suggest that FANCD2 and FANCI function separately at consecutive steps during DNA repair in S-phase.
Collapse
Affiliation(s)
- Archana Sareen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
8
|
Abstract
Genomic DNA displays a non canonical structure prone to be damaged and modified by genotoxic stresses, which are induced either by the endogenous metabolism or attacks from environment or therapeutic pressure. Several molecular pathways allow cells to repair such DNA lesions. Additional mechanisms have been selected to bypass such damage at the price of mutations. The maintenance of the genome is thus mediated by the respect of a balance between accurate and inaccurate DNA transactions. This review deals with the tumor suppressor role of such equilibrium, as well as the impact of an unbalance on carcinogenesis.
Collapse
|
9
|
Wilson JB, Blom E, Cunningham R, Xiao Y, Kupfer GM, Jones NJ. Several tetratricopeptide repeat (TPR) motifs of FANCG are required for assembly of the BRCA2/D1-D2-G-X3 complex, FANCD2 monoubiquitylation and phleomycin resistance. Mutat Res 2010; 689:12-20. [PMID: 20450923 DOI: 10.1016/j.mrfmmm.2010.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 04/02/2010] [Accepted: 04/28/2010] [Indexed: 11/26/2022]
Abstract
The Fanconi anaemia (FA) FANCG protein is an integral component of the FA nuclear core complex that is required for monoubiquitylation of FANCD2. FANCG is also part of another protein complex termed D1-D2-G-X3 that contains FANCD2 and the homologous recombination repair proteins BRCA2 (FANCD1) and XRCC3. Formation of the D1-D2-G-X3 complex is mediated by serine-7 phosphorylation of FANCG and occurs independently of the FA core complex and FANCD2 monoubiquitylation. FANCG contains seven tetratricopeptide repeat (TPR) motifs that mediate protein-protein interactions and here we show that mutation of several of the TPR motifs at a conserved consensus residue ablates the in vivo binding activity of FANCG. Expression of mutated TPR1, TPR2, TPR5 and TPR6 in Chinese hamster fancg mutant NM3 fails to functionally complement its hypersensitivities to mitomycin C (MMC) and phleomycin and fails to restore FANCD2 monoubiquitylation. Using co-immunoprecipitation analysis, we demonstrate that these TPR-mutated FANCG proteins fail to interact with BRCA2, XRCC3, FANCA or FANCF. The interactions of other proteins in the D1-D2-G-X3 complex are also absent, including the interaction of BRCA2 with both the monoubiquitylated (FANCD2-L) and non-ubiquitylated (FANCD2-S) isoforms of FANCD2. Interestingly, a mutation of TPR7 (R563E), that complements the MMC and phleomycin hypersensitivity of human FA-G EUFA316 cells, fails to complement NM3, despite the mutated FANCG protein co-precipitating with FANCA, BRCA2 and XRCC3. Whilst interaction of TPR7-mutated FANCG with FANCF does appear to be reduced in NM3, FANCD2 is monoubiquitylated suggesting that sub-optimal interactions of FANCG in the core complex and the D1-D2-G-X3 complex are responsible for the observed MMC- and phleomycin-hypersensitivity, rather than a defect in FANCD2 monoubiquitylation. Our data demonstrate that FANCG functions as a mediator of protein-protein interactions and is vital for the assembly of multi-protein complexes including the FA core complex and the D1-D2-G-X3 complex.
Collapse
Affiliation(s)
- James B Wilson
- Molecular Oncology and Stem Cell Research Group, School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | | | | | |
Collapse
|