Odoux E, Chauwin A, Brillouet JM. Purification and characterization of vanilla bean (Vanilla planifolia Andrews) beta-D-glucosidase.
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003;
51:3168-3173. [PMID:
12720410 DOI:
10.1021/jf0260388]
[Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Vanilla bean beta-D-glucosidase was purified to apparent homogeneity by successive anion exchange, hydrophobic interaction, and size-exclusion chromatography. The enzyme is a tetramer (201 kDa) made up of four identical subunits (50 kDa). The optimum pH was 6.5, and the optimum temperature was 40 degrees C at pH 7.0. K(m) values for p-nitrophenyl-beta-D-glucopyranoside and glucovanillin were 1.1 and 20.0 mM, respectively; V(max) values were 4.5 and 5.0 microkat.mg(-1). The beta-D-glucosidase was competitively inhibited by glucono-delta-lactone and 1-deoxynojirimycin, with respective K(i) values of 670 and 152 microM, and not inhibited by 2 M glucose. The beta-D-glucosidase was not inhibited by N-ethylmaleimide and DTNB and fully inhibited by 1.5-2 M 2-mercaptoethanol and 1,4-dithiothreitol. The enzyme showed decreasing activity on p-nitrophenyl-beta-D-fucopyranoside, p-nitrophenyl-beta-D-glucopyranoside, p-nitrophenyl-beta-D-galactopyranoside, and p-nitrophenyl-beta-D-xylopyranoside. The enzyme was also active on prunasin, esculin, and salicin and inactive on cellobiose, gentiobiose, amygdalin, phloridzin, indoxyl-beta-D-glucopyranoside, and quercetin-3-beta-D-glucopyranoside.
Collapse