1
|
Ravi Y, Vethamoni IP, Saxena SN, Velmurugan S, Santanakrishnan VP, Raveendran M, Bariya H, Harsh M. Guesstimate of thymoquinone diversity in Nigella sativa L. genotypes and elite varieties collected from Indian states using HPTLC technique. Open Life Sci 2023; 18:20220536. [PMID: 36816805 PMCID: PMC9922057 DOI: 10.1515/biol-2022-0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 02/10/2023] Open
Abstract
Thymoquinone is a valuable metabolite derived from the Nigella sativa L. seeds and has a variety of therapeutic properties. Thymoquinone was estimated using n-hexane:ethyl acetate (8:2, v/v) green solvent system and computed at a wavelength of 254 nm using the high-performance thin-layer chromatography densitometry method in distinct varieties and genotypes congregated from different geographical regions. Genotype Ajmer Nigella-13 has the paramount thymoquinone content (247.60 µg/100 mg seed) followed by Ajmer Nigella 19 (244.5 µg/100 mg seed), while the lowest amount of thymoquinone was recorded in the genotype Ajmer Nigella-6 (42.88 µg/100 mg seed). The hierarchical cluster analysis found that the collected genotypes and elite varieties were classified into four broad clusters, and the identified chemotypes with elevated thymoquinone proportion were positioned in cluster D. Significant genotypic variation in thymoquinone content is available, that can be used in exploiting pharmaceutical applications of N. sativa L. as well as a breeding programme for specific metabolite improvement perspective.
Collapse
Affiliation(s)
- Y. Ravi
- Department of Spices, Plantation, Medicinal and Aromatic Crops, Horticulture College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641003, India,Division of Crop Improvement, Indian Council of Agricultural Research, National Research Centre on Seed Spices, Ajmer, Rajasthan, 305206, India
| | - Irene P. Vethamoni
- Department of Spices and Plantation crops, Horticulture College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Shailendra N. Saxena
- Division of Crop Improvement, Indian Council of Agricultural Research, National Research Centre on Seed Spices, Ajmer, Rajasthan, 305206, India
| | - S. Velmurugan
- Department of Spices and Plantation crops, Horticulture College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - V. P. Santanakrishnan
- Department of Biochemistry, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - M. Raveendran
- Department of Biochemistry, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Himanshu Bariya
- Department of Bio-Technology, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
| | - Mistry Harsh
- Department of Bio-Technology, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
| |
Collapse
|
2
|
Benazzouz-Smail L, Achat S, Brahmi F, Bachir-Bey M, Arab R, Lorenzo JM, Benbouriche A, Boudiab K, Hauchard D, Boulekbache L, Madani K. Biological Properties, Phenolic Profile, and Botanical Aspect of Nigella sativa L. and Nigella damascena L. Seeds: A Comparative Study. Molecules 2023; 28:molecules28020571. [PMID: 36677629 PMCID: PMC9863492 DOI: 10.3390/molecules28020571] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
The use of Nigella seeds in the food, pharmaceutical, and cosmetic fields is common, since the iniquity and the virtues of these plants are directly related to their characteristic phytochemical composition. This investigation focused on the comparative study of the botanical aspect, phenolic profile, and in vitro and in vivo biological activities of Nigella sativa L. (NS) and Nigella damascena L. (ND) seeds. The macro- and micro-morphological properties of these seeds were studied, and the key dissimilarities between them were clearly illustrated. The phytochemical contents and phenolic profiles were determined, and the in vitro antioxidant activity was assessed using four methods. The in vivo antioxidant and biochemical parameters of the blood of supplemented mice were determined. The results of the macro- and micro-structure analysis revealed differences between the two plants. Here, ND is characterized by higher phytochemical contents and the best antioxidant activities. The HPLC analysis indicated the presence of nine compounds, namely seven phenolic acids, particularly hydroxybenzoic and caffeic acids, and two flavonoids. The administration of ND extract to mice for 21 days at a concentration of 500 mg/kg allowed a substantial amelioration of plasma antioxidant properties. In addition, the extracts ameliorate blood parameters (cholesterol, triglycerides, glycemia, and urea). Furthermore, the antimicrobial activity of extracts demonstrated their effects on Staphylococcus and Aspergillus. Nigella seeds, in particular ND, expressed considerable in vitro antioxidant properties and demonstrated significant amelioration of mice blood properties. Consequently, these species can serve as a valuable source of compounds with various applications.
Collapse
Affiliation(s)
- Leila Benazzouz-Smail
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Sabiha Achat
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Fatiha Brahmi
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Mostapha Bachir-Bey
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Radia Arab
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibraodas Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence:
| | - Aicha Benbouriche
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Kahina Boudiab
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Didier Hauchard
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 13 Allée de Beaulieu, CS 50837, CEDEX 7, 35708 Rennes, France
| | - Lila Boulekbache
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Khodir Madani
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
- Centre de Recherche en Technologies Agro-Alimentaires, Route de Targa Ouzemour, Bejaia 06000, Algeria
| |
Collapse
|
3
|
Hussain MK, Aziz A, Ditta HMA, Azhar MF, El-Shehawi AM, Hussain S, Mehboob N, Hussain M, Farooq S. Foliar application of seed water extract of Nigella sativa improved maize growth in cadmium-contaminated soil. PLoS One 2021; 16:e0254602. [PMID: 34252121 PMCID: PMC8274843 DOI: 10.1371/journal.pone.0254602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Cadmium (Cd) is a widespread heavy metal, which commonly exert negative impacts on agricultural soils and living organisms. Foliar application of seed water extract of black cumin (Nigella sativa L.) can mitigate the adverse impacts of Cd-toxicity in plants through its rich antioxidants. This study examined the role of seed water extracts of N. sativa (NSE) in mitigating the adverse impacts of Cd-toxicity on maize growth. Two maize genotypes (synthetic ‘Neelum’ and hybrid ‘P1543’) were grown under 0, 4, 8 and 12 mg Cd kg-1 soil. The NSE was applied at three different concentrations (i.e., 0, 10 and 20%) as foliar spray at 25 and 45 days after sowing. All Cd concentrations had no effect on germination percentage of both genotypes. Increasing Cd concentration linearly decreased root and allometric attributes, gas exchange traits and relative water contents of hybrid genotype. However, gas exchange traits of synthetic genotype remained unaffected by Cd-toxicity. Overall, hybrid genotype showed better tolerance to Cd-toxicity than synthetic genotype with better germination and allometric attributes and less Cd accumulation. Foliar application of NSE lowered negative effects of Cd-toxicity on all studied traits, except relative water contents. In conclusion, foliar application of NSE seemed a viable option to improve maize growth in Cd-contaminated soil.
Collapse
Affiliation(s)
| | - Abida Aziz
- Department of Botany, The Women University, Multan, Pakistan
| | | | | | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Sajjad Hussain
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Noman Mehboob
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
- * E-mail:
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Şanlıurfa, Turkey
| |
Collapse
|
4
|
Allah Ditta HM, Aziz A, Hussain MK, Mehboob N, Hussain M, Farooq S, Azhar MF. Exogenous application of black cumin ( Nigella sativa) seed extract improves maize growth under chromium (Cr) stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1231-1243. [PMID: 33631090 DOI: 10.1080/15226514.2021.1889965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accumulation of non-essential heavy metals like chromium (Cr) is among major abiotic stresses, which adversely affect crop growth. Hexavalent chromium [Cr(VI)] is the most dangerous form negatively affecting the growth and productivity of crops. This study evaluated the role of black cumin extracts (BCE) in improving growth and productivity of maize genotypes under different concentrations of Cr(VI). Two maize genotypes ("Neelum" and "P1543") were grown under 0, 4, 8 and 12 mg Cr(VI) kg-1 concentrations. The BCE was applied as foliar spray at three concentrations (0, 10 and 20%) at 25 and 45 days after sowing. Increasing Cr(VI) concentration significantly (p < 0.05) reduced seed germination, root and allometric traits, gas exchange attributes and relative water contents of tested genotypes. Hybrid maize genotype better tolerated tested Cr(VI) concentrations than synthetic genotype with lower Cr accumulation and better allometric and gas exchange traits. Exogenous application of 20% BCE proved effective in lowering the adverse effects of Cr(VI) toxicity on maize genotypes. It is concluded that 20% BCE could be used to improve maize performance through better allometric and gas exchange traits under different Cr(VI) concentrations. Nonetheless, actual mechanisms involved in improved Cr(VI)-tolerance of maize with BCE application must be explored. Novelty statement Black cumin has been widely used to reduce Cr toxicity in animals. However, the role of black cumin in reducing Cr toxicity in plants has never been studied. The present study was conducted to infer the role of different concentrations of black cumin extract in improving the growth of synthetic and hybrid maize genotypes under different levels of Cr stress. It is concluded that black cumin extract could be used to lower Cr toxicity in maize grown under Cr-contaminated soils.
Collapse
Affiliation(s)
| | - Abida Aziz
- Department of Botany, The Women University, Multan, Pakistan
| | | | - Noman Mehboob
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Şanlıurfa, Turkey
| | | |
Collapse
|