1
|
Li N, Cheng Y, Li Z, Yue T, Yuan Y. An alginate-based edible coating containing lactic acid bacteria extends the shelf life of fresh strawberry (Fragaria × ananassa Duch.). Int J Biol Macromol 2024; 274:133273. [PMID: 38906346 DOI: 10.1016/j.ijbiomac.2024.133273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Edible coatings, formulated with sodium alginate and various strains of lactic acid bacteria, were evaluated for their effectiveness in extending the shelf life and mitigating microbial risks associated with strawberries. This study specifically employed strains of Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, and Lacticaseibacillus plantarum as antimicrobial agents. Through physicochemical property analysis, the alginate-based antimicrobial coating proved most effective in reducing the strawberry weight loss rate, decay index, and ascorbic acid degradation. Over time, all treatments exhibited increased fungal growth. However, strawberries treated with alginate and lactic acid bacteria recorded lower final colony formation counts-6.82 log CFU/g for SA + LPC, 6.04 log CFU/g for SA + LGG, and 6.26 log CFU/g for SA + LP-compared to 8.73 log CFU/g in the control group. In terms of bacterial resistance under gastrointestinal conditions, L. paracasei demonstrated the highest survival rate post-simulated gastric fluid exposure, while L. plantarum showed the greatest resilience post-simulated intestinal fluid exposure. These findings underscore the efficacy of alginate-based antimicrobial coatings in not only enhancing the storage quality of strawberries but also ensuring microbial safety and potential benefits for gut health.
Collapse
Affiliation(s)
- Nanyang Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Cheng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zhao Li
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, Gansu 741000, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
2
|
Nadon S, Leksawasdi N, Jantanasakulwong K, Rachtanapun P, Ruksiriwanich W, Sommano SR, Khaneghah AM, Castagnini JM, Barba FJ, Phimolsiripol Y. Antioxidant and Antimicrobial Properties and GC-MS Chemical Compositions of Makwaen Pepper (Zanthoxylum myriacanthum) Extracted Using Supercritical Carbon Dioxide. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112211. [PMID: 37299190 DOI: 10.3390/plants12112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
This research aimed to optimize pressure (10-20 MPa) and temperature (45-60 °C) conditions for supercritical fluid extraction (SFE) of Makwaen pepper (Zanthoxylum myriacanthum) extract (ME) in comparison to conventional hydro-distillation extraction. Various quality parameters, including yield, total phenolic compounds, antioxidants, and antimicrobial activities of the extracts, were assessed and optimized using a central composite design. The optimal SFE conditions were found to be 20 MPa at 60 °C, which resulted in the highest yield (19%) and a total phenolic compound content of 31.54 mg GAE/mL extract. IC50 values for DPPH and ABTS assays were determined to be 26.06 and 19.90 μg/mL extract, respectively. Overall, the ME obtained through SFE exhibited significantly better physicochemical and antioxidant properties compared to ME obtained through hydro-distillation extraction. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that beta-pinene was the major component in the ME obtained through SFE (23.10%), followed by d-limonene, alpha-pinene, and terpinen-4-ol at concentrations of 16.08, 7.47, and 6.34%, respectively. On the other hand, the hydro-distillation-extracted ME showed stronger antimicrobial properties than the SFE-extracted ME. These findings suggest that both SFE and hydro-distillation have the potential for extracting Makwaen pepper, depending on the intended purpose of use.
Collapse
Affiliation(s)
- Sudarut Nadon
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Noppol Leksawasdi
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Warintorn Ruksiriwanich
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, 36 Rakowiecka St., 02-532 Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, 16/21 Azadliq Ave, AZ1010 Baku, Azerbaijan
| | - Juan M Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
3
|
Celaya LS, Le Vraux MA, Heit CI, Viturro CI, Martina PF. Phytochemical and Biological Profile of Essential Oils of Elionurus muticus (Spreng.) Growing in Northeastern Argentina. Chem Biodivers 2023:e202201105. [PMID: 37183955 DOI: 10.1002/cbdv.202201105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
The purpose of this study was to investigate essential oils (EOs) from leaves of Elionurus muticus growing in Northeastern Argentina regarding their physicochemical profiles as well as their biological potential. Roots of a selected E. muticus population were investigated too. For this purpose, EOs of fresh materials were obtained by steam distillation and the chemical composition was characterized by gas chromatography GC/MS-FID. Antibacterial, antioxidant and eco-toxicity activities of the essential oils (EOs) were tested by in vitro assays. The EOs showed three E. muticus chemotypes: citral (neral+geranial), acorenone+bisabolone, acorenone+geranial. EO of roots of citral population contains mainly acorenone derivatives. EOs have high antibacterial effect against Staphylococcus aureus, being found minor antibacterial effect against Gram-negative bacteria. The half-maximal inhibitory concentration of EOs against DPPH⋅ were 7.1-30.0 mg/mL and the eco-toxicity was high with LD50 <39 μg/mL. Based on the findings, given the high variability in their chemical composition and biological activity of E. muticus EO and the promising yields, it could be potentially chosen for industrial applications.
Collapse
Affiliation(s)
- Liliana S Celaya
- Laboratorio Central, Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, 3300, Posadas, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNaM), Félix de Azara 1552, 3300, Posadas, Argentina
| | - María A Le Vraux
- Laboratorio Central, Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, 3300, Posadas, Argentina
| | - Cecilia I Heit
- Instituto LAnaRT, Universidad Nacional de Jujuy, Av. Bolivia 1349, 4600, San Salvador de Jujuy, Argentina
| | - Carmen I Viturro
- Laboratorio PRONOA, CIITeD-CONICET Universidad Nacional de Jujuy, 4600, San Salvador de Jujuy, Argentina
| | - Pablo F Martina
- Laboratorio Central, Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, 3300, Posadas, Argentina
- Instituto de Biología Subtropical (IBS), CONICET-UNaM, Jujuy 1745, 3300, Posadas, Argentina
| |
Collapse
|
4
|
Toazza CEB, Leal FC, Marques C, Oliveira G, Farias FO, Belan ALD, Leite NF, Mafra MR, Igarashi‐Mafra L, Masson ML. Bioactive compounds extraction from different lemongrass species: Strategies and deep eutectic solvents evaluation. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carlos E. B. Toazza
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Paraná Brazil
| | - Fernando C. Leal
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Paraná Brazil
| | - Caroline Marques
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Paraná Brazil
| | - Grazielle Oliveira
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Paraná Brazil
| | - Fabiane O. Farias
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Paraná Brazil
| | | | | | - Marcos R. Mafra
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Paraná Brazil
| | - Luciana Igarashi‐Mafra
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Paraná Brazil
| | - Maria Lucia Masson
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Paraná Brazil
| |
Collapse
|
5
|
Immobilization Techniques on Bioprocesses: Current Applications Regarding Enzymes, Microorganisms, and Essential Oils. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Liu L, Zhu L, Zhang S, Ma Y, Wang L, Wang H, Niu X. Preparation and properties of chitosan-based bacteriostatic agents and their application in strawberry bacteriostatic preservation. J Food Sci 2021; 86:4611-4627. [PMID: 34533217 DOI: 10.1111/1750-3841.15912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/25/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022]
Abstract
The purpose of this study is to develop a green and safe chitosan-based preservative which can be applied in strawberry preservation. Chitosan (CS) was treated by 2,2,6,6-tetramethylpiperidine oxygen radical/laccase oxidation system (TEMPO/laccase oxidation system), which was mainly used to prepare TEMPO/laccase chitosan (TLCS). Furthermore, on this basis, the structure and performance of TLCS were also studied. The results showed that compared with CS, the solubility of TLCS improved, and the kinetic viscosity reduced significantly. Next, a cinnamaldehyde-TEMPO/laccase chitosan (CIN-TLCS) antibacterial agent was prepared by covalently combining the aldehyde group in cinnamaldehyde (CIN) and the amino group in CS. It was found that CIN combined with TLCS through covalent bonds, which changed the structure and crystallinity of TLCS. In addition, the total antioxidant capacity of CIN-TLCS also improved, which was necessary for the application of CIN-TLCS in extending shelf life. Cytotoxicity experiments showed that CIN-TLCS had no cytotoxicity. Furthermore, strawberries were used to explore the actual bacteriostatic and fresh-keeping effects of CIN-TLCS. The experiment found that CIN-TLCS could maintain the freshness of strawberries at room temperature (23 ± 1°C) for 5 days and had positive effects on strawberry color, loss-weight rate, hardness and pH. These results showed that CIN-TLCS could be used as a potential preserving agent for fruit storage. PRACTICAL APPLICATION: To obtain a green, safe and effective food preservative, chitosan (CS) was modified by a 2,2,6,6-tetramethylpiperidine oxygen radical/laccase oxidation system (TEMPO/laccase oxidation system) to get TEMPO/laccase chitosan (TLCS) and cinnamic aldehyde-TEMPO/laccase chitosan (CIN-TLCS). At the same time, the structure and antibacterial properties of TLCS and CIN-TLCS were analyzed, and their possibility as a new green and safe strawberry preservative was studied. Compared with oxazolidine, imidazole and triazole commercial drugs, CIN-TLCS has the advantages of low price, no pollution, no cytotoxicity and no drug resistance.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Li Zhu
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Shaoqi Zhang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Yongliang Ma
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Li Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| |
Collapse
|