1
|
Geelen IGP, Gullaksen SE, Ilander MM, Olssen-Strömberg U, Mustjoki S, Richter J, Blijlevens NMA, Smit WM, Gjertsen BT, Gedde-Dahl T, Markevärn B, Koppes MMA, Westerweel PE, Hjorth-Hansen H, Janssen JJWM. Switching from imatinib to nilotinib plus pegylated interferon-α2b in chronic phase CML failing to achieve deep molecular response: clinical and immunological effects. Ann Hematol 2023; 102:1395-1408. [PMID: 37119314 DOI: 10.1007/s00277-023-05199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/23/2023] [Indexed: 05/01/2023]
Abstract
In order to improve molecular response for a discontinuation attempt in chronic myeloid leukemia (CML) patients in chronic phase, who had not achieved at least a molecular response <0.01% BCR-ABL1IS (MR4.0) after at least 2 years of imatinib therapy, we prospectively evaluated whether they could attain MR4.0 after a switch to a combination of nilotinib and 9 months of pegylated interferon-α2b (PegIFN). The primary endpoint of confirmed MR4.0 at month 12 (a BCR-ABL1IS level ≤ 0.01% both at 12 and 15 months) was reached by 44% (7/16 patients, 95% confidence interval (CI): 23- 67%) of patients, with 81% (13/16 patients, 95% CI: 57-93%) of patients achieving an unconfirmed MR4.0. The scheduled combination was completed by 56% of the patients, with premature discontinuations, mainly due to mood disturbances after the introduction of PegIFN, questioning the feasibility of the combination of nilotinib and PegIFN for this patient population and treatment goal. A comprehensive clinical substudy program was implemented to characterize the impact of the treatment changes on the immunological profile. This trial was registered at www.clinicaltrials.gov as #NCT01866553.
Collapse
Affiliation(s)
- Inge G P Geelen
- Department of Internal Medicine / Hematology, Albert Schweitzer Hospital, Dordrecht, The Netherlands.
| | - Stein-Erik Gullaksen
- Centre of Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology section, Helse Bergen, Bergen, Norway
| | - Mette M Ilander
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer center, Helsinki, Finland
| | | | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Johan Richter
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | | | - Willem M Smit
- Department of Hematology, Medical Spectrum Twente, Enschede, The Netherlands
| | - Bjorn T Gjertsen
- Centre of Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology section, Helse Bergen, Bergen, Norway
| | - Tobias Gedde-Dahl
- Department of Hematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Berit Markevärn
- Department of Hematology, Umeå University Hospital, Umeå, Sweden
| | - Malika M A Koppes
- Department of Hematology, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands
| | - Peter E Westerweel
- Department of Internal Medicine / Hematology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Henrik Hjorth-Hansen
- Department of Hematology, St Olavs Hospital, Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jeroen J W M Janssen
- Department of Hematology, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Viano ME, Baez NS, Savid-Frontera C, Lidon NL, Hodge DL, Herbelin A, Gombert JM, Barbarin A, Rodriguez-Galan MC. Virtual Memory CD8 + T Cells: Origin and Beyond. J Interferon Cytokine Res 2022; 42:624-642. [PMID: 36083273 PMCID: PMC9835308 DOI: 10.1089/jir.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 01/21/2023] Open
Abstract
The presence of CD8+ T cells with a memory phenotype in nonimmunized mice has been noted for decades, but it was not until about 2 decades ago that they began to be studied in greater depth. Currently called virtual memory CD8+ T cells, they consist of a heterogeneous group of cells with memory characteristics, without any previous contact with their specific antigens. These cells were identified in mice, but a few years ago, a cell type with characteristics equivalent to the murine ones was described in healthy humans. In this review, we address the different aspects of its biology mainly developed in murine models and what is currently known about its cellular equivalent in humans.
Collapse
Affiliation(s)
- Maria Estefania Viano
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia Soledad Baez
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Leonel Lidon
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - André Herbelin
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
- Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Alice Barbarin
- Inserm U1313, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | | |
Collapse
|
3
|
Webster JA, Robinson TM, Blackford AL, Warlick E, Ferguson A, Borrello I, Zahurak M, Jones RJ, Smith BD. A randomized, phase II trial of adjuvant immunotherapy with durable TKI-free survival in patients with chronic phase CML. Leuk Res 2021; 111:106737. [PMID: 34768161 DOI: 10.1016/j.leukres.2021.106737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Chronic myeloid leukemia (CP-CML) patients can achieve undetectable minimal residual disease (UMRD) and discontinue tyrosine kinase inhibitors (TKIs). Cellular immunity plays an important role in CML disease control. We conducted a randomized, non-blinded phase II trial of adjuvant immunotherapy with TKIs to facilitate TKI discontinuation. METHODS TKI-treated patients with CP-CML were randomized to receive the K562/GM-CSF vaccine (vaccine) OR Interferon-α + Sargramostim (IFN). If UMRD was achieved, then all treatment was stopped. Patients who did not achieve UMRD within one year, had a molecular relapse, or discontinued therapy for toxicity could crossover. RESULTS Thirty-four patients were randomized to IFN (n = 18) or vaccine (n = 16), and 21 patients crossed over (IFN⟶vaccine: n = 9, vaccine⟶IFN, n = 12). TKIs at enrollment included imatinib (n = 31), nilotinib (n = 2), and dasatinib (n = 1). No patients discontinued vaccine due to side effects, while 33 % of IFN-treated patients discontinued treatment. More patients randomized to IFN (47.4 %, 95 % CI: 16.7-66.7 %) versus vaccine (25.0 %, 95 % CI: 0.5-43.5 %) achieved UMRD within one year. Seven patients randomized to IFN discontinued treatment with 28.6 % (95 % CI: 8.9-92.2 %) sustaining treatment-free remission (TFR) at 1 year, while three patients randomized to vaccine discontinued treatment with none sustaining TFR. Including crossover, there was a cumulative discontinuation success rate of 36.4 % (95 % CI: 16.6 %-79.5 %) after adjuvant IFN. Patients who sustained TFR received a median of 29 months of imatinib prior to discontinuation. CONCLUSION Adjuvant IFN led to durable TFRs with limited prior TKI exposure with comparable success to prior discontinuation trials, but many patients stopped IFN early.
Collapse
Affiliation(s)
- Jonathan A Webster
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of MedIcine, Baltimore, MD, United States.
| | | | - Amanda L Blackford
- Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erica Warlick
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Anna Ferguson
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of MedIcine, Baltimore, MD, United States
| | - Ivan Borrello
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of MedIcine, Baltimore, MD, United States
| | - Marianna Zahurak
- Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard J Jones
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of MedIcine, Baltimore, MD, United States
| | - B Douglas Smith
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of MedIcine, Baltimore, MD, United States
| |
Collapse
|
4
|
NK Cells in Myeloproliferative Neoplasms (MPN). Cancers (Basel) 2021; 13:cancers13174400. [PMID: 34503210 PMCID: PMC8431564 DOI: 10.3390/cancers13174400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary NK cells are important innate immune effectors that contribute substantially to tumor control, however the role of NK cells in haematological cancers is not as well understood. The aim of this review is to highlight the importance of the role of NK cells in the management of Ph+ Myeloproliferative Neoplasms, and emphasize the need and possible benefits of a more in-depth investigation into their role in classical MPNs and show potential strategies to harness the anti-tumoral capacities of NK cells. Abstract Myeloproliferative neoplasms (MPNs) comprise a heterogenous group of hematologic neoplasms which are divided into Philadelphia positive (Ph+), and Philadelphia negative (Ph−) or classical MPNs. A variety of immunological factors including inflammatory, as well as immunomodulatory processes, closely interact with the disease phenotypes in MPNs. NK cells are important innate immune effectors and substantially contribute to tumor control. Changes to the absolute and proportionate numbers of NK cell, as well as phenotypical and functional alterations are seen in MPNs. In addition to the disease itself, a variety of therapeutic options in MPNs may modify NK cell characteristics. Reports of suppressive effects of MPN treatment strategies on NK cell activity have led to intensive investigations into the respective compounds, to elucidate the possible negative effects of MPN therapy on control of the leukemic clones. We hereby review the available literature on NK cells in Ph+ and Ph− MPNs and summarize today’s knowledge on disease-related alterations in this cell compartment with particular focus on known therapy-associated changes. Furthermore, we critically evaluate conflicting data with possible implications for future projects. We also aim to highlight the relevance of full NK cell functionality for disease control in MPNs and the importance of considering specific changes related to therapy in order to avoid suppressive effects on immune surveillance.
Collapse
|
5
|
Mu H, Zhu X, Jia H, Zhou L, Liu H. Combination Therapies in Chronic Myeloid Leukemia for Potential Treatment-Free Remission: Focus on Leukemia Stem Cells and Immune Modulation. Front Oncol 2021; 11:643382. [PMID: 34055612 PMCID: PMC8155539 DOI: 10.3389/fonc.2021.643382] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Although tyrosine Kinase Inhibitors (TKI) has revolutionized the treatment of chronic myeloid leukemia (CML), patients are not cured with the current therapy modalities. Also, the more recent goal of CML treatment is to induce successful treatment-free remission (TFR) among patients achieving durable deep molecular response (DMR). Together, it is necessary to develop novel, curative treatment strategies. With advancements in understanding the biology of CML, such as dormant Leukemic Stem Cells (LSCs) and impaired immune modulation, a number of agents are now under investigation. This review updates such agents that target LSCs, and together with TKIs, have the potential to eradicate CML. Moreover, we describe the developing immunotherapy for controlling CML.
Collapse
Affiliation(s)
- Hui Mu
- Medical School, Nantong University, Nantong, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Jia
- Medical School, Nantong University, Nantong, China
| | - Lu Zhou
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
6
|
BUNIMOVICH-MENDRAZITSKY SVETLANA, SHAIKHET LEONID. STABILITY ANALYSIS OF A MATHEMATICAL MODEL FOR CHRONIC MYELOID LEUKEMIA ERADICATION. J BIOL SYST 2021. [DOI: 10.1142/s0218339021500078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We analyze a mathematical model for the treatment of chronic myeloid leukemia (CML). The model is designed for complete recovery of CML patients after treatment. The model developed in the paper [Bunimovich-Mendrazitsky S, Kronik N, Vainstein V, Optimization of interferon-alpha and imatinib combination therapy for CML: A modeling approach, Adv Theory Simul 2(1):1800081, 2018] introduced a combined treatment of CML based on imatinib therapy and immunotherapy. Immunotherapy based on Interferon alpha-2a (IFN-[Formula: see text]) affects stem and mature cancer cell mortality, and leads to outcome improvements in the combined therapy. The qualitative character of our results shows that additional therapy for the complete cure of CML patients is required. This additional treatment is tumor infiltrating lymphocytes (TIL) along with a combination imatinib and IFN-[Formula: see text] treatment. The model examines the interaction between CML cancer cells and effector cells, using an ODE system. Stability analysis of the model defines conditions when imatinib treatment might lead to the eradication of CML with IFN-[Formula: see text] and TIL. Three equilibria are investigated for the proposed model. Stability conditions for equilibria are formulated in terms of the linear matrix inequalities (LMIs).
Collapse
Affiliation(s)
| | - LEONID SHAIKHET
- Department of Mathematics, Ariel University, Ariel 40700, Israel
| |
Collapse
|
7
|
Muselli F, Peyron JF, Mary D. Druggable Biochemical Pathways and Potential Therapeutic Alternatives to Target Leukemic Stem Cells and Eliminate the Residual Disease in Chronic Myeloid Leukemia. Int J Mol Sci 2019; 20:E5616. [PMID: 31717629 PMCID: PMC6888542 DOI: 10.3390/ijms20225616] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic Myeloid Leukemia (CML) is a disease arising in stem cells expressing the BCR-ABL oncogenic tyrosine kinase that transforms one Hematopoietic stem/progenitor Cell into a Leukemic Stem Cell (LSC) at the origin of differentiated and proliferating leukemic cells in the bone marrow (BM). CML-LSCs are recognized as being responsible for resistances and relapses that occur despite the advent of BCR-ABL-targeting therapies with Tyrosine Kinase Inhibitors (TKIs). LSCs share a lot of functional properties with Hematopoietic Stem Cells (HSCs) although some phenotypical and functional differences have been described during the last two decades. Subverted mechanisms affecting epigenetic processes, apoptosis, autophagy and more recently metabolism and immunology in the bone marrow microenvironment (BMM) have been reported. The aim of this review is to bring together the modifications and molecular mechanisms that are known to account for TKI resistance in primary CML-LSCs and to focus on the potential solutions that can circumvent these resistances, in particular those that have been, or will be tested in clinical trials.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplasm, Residual/drug therapy
- Neoplasm, Residual/metabolism
- Neoplasm, Residual/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Protein Kinase Inhibitors/therapeutic use
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
| | | | - Didier Mary
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Centre Méditerranéen de Médecine Moléculaire, CEDEX 3, 06204 Nice, France; (F.M.); (J.-F.P.)
| |
Collapse
|
8
|
Freund-Brown J, Chirino L, Kambayashi T. Strategies to enhance NK cell function for the treatment of tumors and infections. Crit Rev Immunol 2019; 38:105-130. [PMID: 29953390 DOI: 10.1615/critrevimmunol.2018025248] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cells are innate immune cells equipped with the ability to rapidly kill stressed cells that are neoplastic or virally infected. These cells are especially important in settings where these stressed cells downregulate MHC class I molecules and evade recognition by cytotoxic T cells. However, the activity of NK cells alone is often suboptimal to fully control tumor growth or to clear viral infections. Thus, the enhancement of NK cell function is necessary to fully harness their antitumor or antiviral potential. In this review, we discuss how NK cell function can be augmented by the modulation of signal transduction pathways, by the manipulation of inhibitory/activating receptors on NK cells, and by cytokine-induced activation. We also discuss how some of these strategies are currently impacting NK cells in the treatment of cancer and infections.
Collapse
Affiliation(s)
- Jacquelyn Freund-Brown
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Leilani Chirino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
9
|
Bunimovich‐Mendrazitsky S, Kronik N, Vainstein V. Optimization of Interferon–Alpha and Imatinib Combination Therapy for Chronic Myeloid Leukemia: A Modeling Approach. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Natalie Kronik
- Department of HaematologyHadassah Hospital Jerusalem 91120 Israel
| | | |
Collapse
|
10
|
Cayssials E, Guilhot F. Chronic Myeloid Leukemia: Immunobiology and Novel Immunotherapeutic Approaches. BioDrugs 2018; 31:143-149. [PMID: 28501913 DOI: 10.1007/s40259-017-0225-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Imatinib has revolutionized the treatment and prognosis of chronic myeloid leukemia (CML) with survival rates now approaching those of the age-matched healthy population. To be able to discontinue tyrosine kinase inhibitor (TKI) treatment, it is necessary to develop complementary therapies to target minimal residual disease. Recent findings by a number of investigators in both CML mouse models and CML patients offer evidence that many factors in the leukemic microenvironment can collectively contribute to immune escape, including expansion of myeloid-derived suppressor cells, programmed death-1/programmed death-1 ligand interactions resulting in T-cell impairment, expression of soluble suppressive factors such as soluble CD25, and down-regulation of MHC molecules by CML cells. Other investigators have studied the role of cytokines on the resistance to TKIs by leukemic stem cells (LSCs) and have highlighted the implication of the JAK/STAT pathway as well as the interleukin 1 (IL-1) signaling pathway. Distinct immunologic strategies have been considered to harness the immune system or trigger LSC death to allow more CML patients to discontinue TKI treatment (so-called functional cure). Successful immunotherapy and TKI combination and the optimal timing of immunotherapy determination represent major challenges for the future.
Collapse
|
11
|
Jo T, Noguchi K, Hayashi S, Irie S, Hayase R, Shioya H, Kaneko Y, Horio K, Taguchi J. Long-lasting memory of cellular immunity in a chronic myeloid leukemia patient maintains molecular response 5 after cessation of dasatinib. Oncol Lett 2017; 15:2935-2938. [PMID: 29435021 PMCID: PMC5778875 DOI: 10.3892/ol.2017.7720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/14/2017] [Indexed: 11/06/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs), including imatinib, dasatinib and nilotinib are primarily used in the initial treatment of chronic phase (CP)-chronic myeloid leukemia (CML), as CMLs harbor the BCR-ABL fusion product. An increased number of lymphocytes and large granular lymphocytes (LGLs) have been observed in patients treated with dasatinib, but not other TKIs. The LGLs have been reported to be primarily natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). In the present study, a CP-CML patient who has maintained molecular response 5 for >2.4 years after stopping dasatinib was reported. Memory and effector CTLs and NK cells, were observed after 2.4 years of treatment-free remission, despite the fact that lymphocyte counts are not elevated in the patient. These results suggest that dasatinib may induce cellular immunity, including NK cells and CTLs and this cellular immunity may be maintained for a long period following cessation of dasatinib. The results suggest that this cellular immunity may provide a long-term cure without the need for continued TKI treatment.
Collapse
Affiliation(s)
- Tatsuro Jo
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki 852-8511, Japan
| | - Kazuhiro Noguchi
- Department of Clinical Laboratory, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki 852-8511, Japan
| | - Shizuka Hayashi
- Department of Clinical Laboratory, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki 852-8511, Japan
| | - Sadaharu Irie
- Department of Pharmacy, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki 852-8511, Japan
| | - Risa Hayase
- Department of Clinical Laboratory, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki 852-8511, Japan
| | - Haruna Shioya
- Department of Clinical Laboratory, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki 852-8511, Japan
| | - Youhei Kaneko
- Department of Clinical Laboratory, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki 852-8511, Japan
| | - Kensuke Horio
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki 852-8511, Japan
| | - Jun Taguchi
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki 852-8511, Japan
| |
Collapse
|
12
|
Hughes A, Yong ASM. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission. Front Immunol 2017; 8:469. [PMID: 28484463 PMCID: PMC5402174 DOI: 10.3389/fimmu.2017.00469] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/05/2017] [Indexed: 01/22/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22)], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs) represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01%) in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR), which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK) cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important in mediating TFR success. However, a major goal remains in CML to identify the most effective pathways to target to maximize an advantageous immune response and promote TFR success.
Collapse
Affiliation(s)
- Amy Hughes
- Department of Haematology, SA Pathology, Adelaide, SA, Australia.,Cancer Theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Agnes S M Yong
- Department of Haematology, SA Pathology, Adelaide, SA, Australia.,Cancer Theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
13
|
Interferon-α Revisited: Individualized Treatment Management Eased the Selective Pressure of Tyrosine Kinase Inhibitors on BCR-ABL1 Mutations Resulting in a Molecular Response in High-Risk CML Patients. PLoS One 2016; 11:e0155959. [PMID: 27214026 PMCID: PMC4877000 DOI: 10.1371/journal.pone.0155959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/06/2016] [Indexed: 01/13/2023] Open
Abstract
Bone marrow transplantation or ponatinib treatment are currently recommended strategies for management of patients with chronic myeloid leukemia (CML) harboring the T315I mutation and compound or polyclonal mutations. However, in some individual cases, these treatment scenarios cannot be applied. We used an alternative treatment strategy with interferon-α (IFN-α) given solo, sequentially or together with TKI in a group of 6 cases of high risk CML patients, assuming that the TKI-independent mechanism of action may lead to mutant clone repression. IFN-α based individualized therapy decreases of T315I or compound mutations to undetectable levels as assessed by next-generation deep sequencing, which was associated with a molecular response in 4/6 patients. Based on the observed results from immune profiling, we assumed that the principal mechanism leading to the success of the treatment was the immune activation induced with dasatinib pre-treatment followed by restoration of immunological surveillance after application of IFN-α therapy. Moreover, we showed that sensitive measurement of mutated BCR-ABL1 transcript levels augments the safety of this individualized treatment strategy.
Collapse
|
14
|
Abstract
Chronic myeloid leukemia (CML) is a clonal bone marrow stem cell neoplasia known to be responsive to immunotherapy. Despite the success of tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL1 oncokinase, patients are not considered to be cured with the current therapy modalities. However, there have been recent advancements in understanding the immunobiology of the disease (such as tumor specific antigens and immunostimulatory agents), and this may lead to the development of novel, curative treatment strategies. Already there are promising results showing that a small proportion of CML patients are able to discontinue the therapy although they have a minimal amount of residual leukemia cells left. This implies that the immune system is able to restrain the tumor cell expansion. In this review, we aim to give a brief update of the novel aspects of the immune system in CML patients and of the developing strategies for controlling CML by the means of immunotherapy.
Collapse
|
15
|
Ilander M, Kreutzman A, Rohon P, Melo T, Faber E, Porkka K, Vakkila J, Mustjoki S. Enlarged memory T-cell pool and enhanced Th1-type responses in chronic myeloid leukemia patients who have successfully discontinued IFN-α monotherapy. PLoS One 2014; 9:e87794. [PMID: 24498197 PMCID: PMC3909235 DOI: 10.1371/journal.pone.0087794] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/02/2014] [Indexed: 01/01/2023] Open
Abstract
A small proportion of chronic myeloid leukemia patients treated with interferon-α (IFN-α) monotherapy are able to discontinue the treatment without disease relapse although residual leukemia cells are present. Recently, we showed that these patients have increased amount of NK-cells and a distinct blood cytokine profile. We now aimed to study the function of NK- and T-cells in order to understand the role of the immune system in maintaining the treatment response after IFN-α discontinuation. The study included 13 patients: 5 patients were still treated with IFN-α monotherapy (IFN-ON, median treatment time 163 months) and 8 had stopped the treatment successfully (IFN-OFF, median time without therapy 42 months). Detailed immunophenotype and cytokine production of NK- and T-cells was analyzed with flow cytometry. In addition, the cytotoxicity of NK-cells was studied using K562 as target cells and both the degranulation and direct killing was measured. Compared to healthy controls, IFN-OFF patients had increased proportion of CD4+ effector memory (CCR7−CD45RA−; median 23% vs. healthy 16%, p = 0.009) and CD8+ central memory T-cells (CCR7+CD45RA−; median 26% vs. healthy 14%, p = 0.004). Further, upon stimulation the IFN-γ/TNF-α cytokine secretion by CD4+ T-cells was significantly enhanced in IFN-OFF patients (median 13.7% vs. healthy 7.8%, p = 0.01), and CD4+ effector and central memory cells were the main cytokine producers. No similar increase was observed in IFN-ON group (6.5%). In addition, the proportion of NK-cells was significantly increased in IFN-OFF patients (median IFN-OFF 24%, healthy 13%, p = 0.04), but their direct killing of K562 cells was impaired. The cytotoxicity of NK-cells was also diminished in IFN-ON patients. To conclude, in addition to elevated NK-cell count, IFN-OFF patients have increased amount of memory T-cells, which are able to induce strong cytokine response upon stimulation. This activity may contribute to the maintenance of prolonged remission after successful IFN-α discontinuation.
Collapse
MESH Headings
- Adult
- CD4 Lymphocyte Count
- Female
- Humans
- Immunologic Factors/administration & dosage
- Immunologic Memory/drug effects
- Interferon-alpha/administration & dosage
- K562 Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/pathology
Collapse
Affiliation(s)
- Mette Ilander
- Hematology Research Unit Helsinki, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Anna Kreutzman
- Hematology Research Unit Helsinki, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Peter Rohon
- Department of Hemato-Oncology, Faculty Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | | | - Edgar Faber
- Department of Hemato-Oncology, Faculty Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kimmo Porkka
- Hematology Research Unit Helsinki, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Jukka Vakkila
- Hematology Research Unit Helsinki, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- * E-mail:
| |
Collapse
|
16
|
Ilander M, Koskenvesa P, Hernesniemi S, Lion T, Porkka K, Mustjoki S. Induction of sustained deep molecular response in a patient with chronic-phase T315I-mutated chronic myeloid leukemia with interferon-α monotherapy. Leuk Lymphoma 2013; 55:934-7. [PMID: 23777365 DOI: 10.3109/10428194.2013.812788] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mette Ilander
- Hematology Research Unit Helsinki, Department of Medicine, University of Helsinki and Helsinki University Central Hospital , Helsinki , Finland
| | | | | | | | | | | |
Collapse
|
17
|
Skov V, Riley CH, Thomassen M, Larsen TS, Jensen MK, Bjerrum OW, Kruse TA, Hasselbalch HC. Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis. Leuk Lymphoma 2013; 54:2269-73. [DOI: 10.3109/10428194.2013.764417] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Novel immunotherapeutic strategies of gastric cancer treatment. J Biomed Biotechnol 2011; 2011:437348. [PMID: 22253528 PMCID: PMC3255571 DOI: 10.1155/2011/437348] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/26/2011] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer and the second most frequent cause of cancer-related deaths, accounting for 10.4% of cancer deaths worldwide. Despite the improvements, estimated cure rates for patients with advanced stages remain poor, and in the metastatic setting, chemotherapy is the mainstay of palliative therapy and results in objective response rates (ORRs) of only 20-40% and median overall survivals (OS) of 8-10 months. Therefore, many investigators believe that the potential for making significant progress lies in understanding and exploiting the molecular biology of these tumors to investigate new therapeutic strategies to combat GC, such as specific immunotherapy. In this paper, we analyze the different approaches used for immune-based (especially dendritic and T cells) therapies to gastric cancer treatment and discuss the results obtained in preclinical models as in clinical trials.
Collapse
|
19
|
Abstract
Initially described as effectors of natural cytotoxicity and critical players for the control of viral infections and tumor growth, recent investigations unraveled more widespread functions for the natural killer (NK) cells. Through the establishment of a crosstalk with dendritic cells, NK cells promote T helper-1- and cytotoxic T lymphocyte-mediated immunity, whereas through the establishment of a crosstalk with macrophages, NK cells contribute to the activation of their microbicidal functions. Recent evidence has shown that NK cells also display memory, a characteristic thought to be privative of T and B cells, and that NK cells acquire their mature phenotype during a complex ontogeny program which tunes their activation threshold. Cytokines play critical roles in regulating all aspects of immune responses, including lymphoid development, homeostasis, differentiation, tolerance, and memory. Cytokines such as interleukin (IL)-2, IL-12, IL-15, IL-18, IL-21, and type I interferons constitute pivotal factors involved in the maturation, activation, and survival of NK cells. In addition, the discovery of novel cytokines is increasing the spectrum of soluble mediators that regulate NK cell immunobiology. In this review, we summarize and integrate novel concepts about the role of different cytokines in the regulation of NK cell function. We believe that a full understanding of how NK cells become activated and develop their effector functions in response to cytokines and other stimuli may lead to the development of novel immunotherapeutic strategies for the treatment of different types of cancer, viral infections, and chronic autoimmune diseases.
Collapse
|
20
|
ICSBP-mediated immune protection against BCR-ABL-induced leukemia requires the CCL6 and CCL9 chemokines. Blood 2009; 113:3813-20. [PMID: 19171873 DOI: 10.1182/blood-2008-07-167189] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferon (IFN) is effective at inducing complete remissions in patients with chronic myelogenous leukemia (CML), and evidence supports an immune mechanism. Here we show that the type I IFNs (alpha and beta) regulate expression of the IFN consensus sequence-binding protein (ICSBP) in BCR-ABL-transformed cells and as shown previously for ICSBP, induce a vaccine-like immunoprotective effect in a murine model of BCR-ABL-induced leukemia. We identify the chemokines CCL6 and CCL9 as genes prominently induced by the type I IFNs and ICSBP, and demonstrate that these immunomodulators are required for the immunoprotective effect of ICSBP expression. Insights into the role of these chemokines in the antileukemic response of IFNs suggest new strategies for immunotherapy of CML.
Collapse
|
21
|
Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat Immunol 2008; 9:486-94. [PMID: 18425105 DOI: 10.1038/ni1580] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cells influence innate and adaptive immune host defenses. Existing data indicate that manipulating the balance between inhibitory and activating NK receptor signals, the sensitivity of target cells to NK cell-mediated apoptosis, and NK cell cross-talk with dendritic cells might hold therapeutic promise. Efforts to modulate NK cell trafficking into inflamed tissues and/or lymph nodes, and to counteract NK cell suppressors, might also prove fruitful in the clinic. However, deeper investigation into the benefits of combination therapy, greater understanding of the functional distinctions between NK cell subsets, and design of new tools to monitor NK cell activity are needed to strengthen our ability to harness the power of NK cells for therapeutic aims.
Collapse
|
22
|
Meng J, Yan Z, Wu Y, Gao M, Li W, Gao F, Wang H, Han W, Zhang Y. Preclinical safety evaluation of IFNα2a-NGR. Regul Toxicol Pharmacol 2008; 50:294-302. [DOI: 10.1016/j.yrtph.2007.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 10/24/2007] [Accepted: 10/27/2007] [Indexed: 01/01/2023]
|
23
|
Kujawski LA, Talpaz M. The role of interferon-alpha in the treatment of chronic myeloid leukemia. Cytokine Growth Factor Rev 2007; 18:459-71. [PMID: 17703986 DOI: 10.1016/j.cytogfr.2007.06.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Biological agents have long been used in the treatment of cancer, and interferon-alpha was the first human cytokine to be widely studied in this setting. Chronic myeloid leukemia (CML) is a hematopoietic stem cell disorder for which interferon-alpha has demonstrated substantial activity. In the 1980s interferon-alpha became first-line therapy for patients with chronic-phase CML, not eligible for allogeneic stem cell transplantation. Following the discovery of the leukemic oncogene BCR/ABL and its causal association with CML, the potent BCR/ABL tyrosine kinase inhibitor imatinib mesylate was developed. Imatinib proved to be superior to interferon-alpha in all outcome measures, making imatinib the new standard of care for patients with CML. There is both clinical and laboratory evidence suggesting imatinib therapy alone is not curative in CML, whereas IFN has induced a low but reproducible curative effect in some patients. This unique activity may be the basis for the reincorporation of IFN into the management of CML. These observations may be best explained by imatinib's negligible activity against the leukemic stem cell (LSC) population. This review discusses the history of interferon-alpha in the treatment of CML, the evolution of molecularly targeted therapies, and some of the lessons we have learned from years of informative research in CML. It also explores the new challenge of managing minimal residual disease in the imatinib era, and addresses the promising role for LSC-directed therapies in the future treatment of CML.
Collapse
Affiliation(s)
- Lisa A Kujawski
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
24
|
Benjamin R, Khwaja A, Singh N, McIntosh J, Meager A, Wadhwa M, Streck C, Ng C, Davidoff AM, Nathwani AC. Continuous delivery of human type I interferons (α/β) has significant activity against acute myeloid leukemia cells in vitro and in a xenograft model. Blood 2006; 109:1244-7. [PMID: 17047156 DOI: 10.1182/blood-2006-02-002915] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn this study, we focused primarily on the antileukemic activity of interferon-β (IFN-β) in a murine xenograft model of acute myeloid leukemia (AML). Bolus administration of recombinant IFN-β via the subcutaneous or intravenous route failed to show efficacy in mice injected with AML cells despite achieving peak plasma IFN-β levels of more than 200 IU/mL. In contrast, stable expression of IFN-β following adeno-associated virus (AAV) vector–mediated gene transfer resulted in significant antileukemic activity against primary AML cells derived from patients with poor prognostic markers. An almost linear relationship was observed with stable plasma levels of IFN-β and antileukemic activity in mice. Even levels below 10 IU/mL were able to reduce tumor load by 50-fold when compared with control animals. These levels of IFN-β are likely to be nontoxic in humans. Therefore, approaches capable of maintaining stable plasma levels of IFN-β merit further clinical evaluation in patients with AML.
Collapse
Affiliation(s)
- Reuben Benjamin
- Department of Haematology, University College London, UK, and Division of Experimental Hematology, Department of Surgery, St. Jude's Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Brin E, Atencio I, Helmich BK, Maneval D, Laface D. Adenovirus delivery provides extended interferon-alpha exposure and augments treatment of metastatic carcinoma. Cancer Gene Ther 2006; 13:664-75. [PMID: 16514422 DOI: 10.1038/sj.cgt.7700942] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Type I interferons (e.g. IFNalpha2b) have been successfully used to treat a variety of hematological malignancies, but have not been efficacious for treatment of most solid tumors. We tested the hypothesis that delivery of type I interferon utilizing recombinant adenovirus (rAd) vectors may improve treatment efficacy of metastatic carcinomas by providing increased interferon exposure resulting from continuous transgene expression. Treatment of mice with a rAd-vector expressing hybrid-IFN (rAd-IFNalpha2alpha1) inhibited 4T1 mammary carcinoma tumor growth and induced tumor regression in a dose-dependent manner. Moreover, rAd-IFNalpha2alpha1 treatment reduced hepatic and pulmonary metastatic burden. A comparison of local and systemic routes of administration demonstrated that intratumoral delivery of rAd-IFNalpha2alpha1 was sufficient for inhibition of tumor growth. Moreover, it reduced toxicity associated with high-dose systemic IFNalpha2alpha1 exposure. Interestingly, antitumor activity following intratumoral treatment was due, in part, to the immunostimulatory capacity of the rAd vector component. Furthermore, systemic administration of rAd-IFNalpha2alpha1 potentiated the immunotherapeutic effect induced by local intralesional delivery of empty-rAd vector. These results suggest continuous interferon-alpha exposure may provide improved antitumor responses for metastatic carcinomas. Additionally, immunostimulatory responses induced by rAd-IFNalpha2alpha1 may mitigate the immune-evasive tumor microenvironment.
Collapse
Affiliation(s)
- E Brin
- Canji Inc., San Diego, CA, USA
| | | | | | | | | |
Collapse
|
26
|
Copland M, Fraser AR, Harrison SJ, Holyoake TL. Targeting the silent minority: emerging immunotherapeutic strategies for eradication of malignant stem cells in chronic myeloid leukaemia. Cancer Immunol Immunother 2005; 54:297-306. [PMID: 15692843 PMCID: PMC11032986 DOI: 10.1007/s00262-004-0573-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 05/30/2004] [Indexed: 10/26/2022]
Abstract
Standard allogeneic stem cell transplantation (alloSCT) has provided a cure for chronic myeloid leukaemia (CML) over the last 25 years, but is only an option for a minority of patients. It was hoped that the introduction of imatinib mesylate (IM), a specific tyrosine kinase inhibitor that targets the Bcr-Abl oncogene product, would provide long-term remission or even cure for those patients without a donor, but studies have shown that IM does not eliminate leukaemic stem cells in CML patients. To overcome this problem of molecular persistence, research is underway to combine reduced intensity stem cell transplant or non-donor-dependent immunotherapies with IM with the aim of increasing cure rate, reducing toxicity and improving quality of life. The alternative approach is to combine IM or second-generation agents with other novel drugs that interrupt key signalling pathways activated by Bcr-Abl. This article will focus on the latest immunotherapy and molecularly targeted therapeutic options in CML and how they may be combined to improve the outcome for CML patients in the future.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Benzamides
- Dendritic Cells/immunology
- Fusion Proteins, bcr-abl/genetics
- Hematopoietic Stem Cell Transplantation
- Humans
- Imatinib Mesylate
- Immunotherapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Piperazines/therapeutic use
- Pyrimidines/therapeutic use
- Stem Cells/immunology
- Stem Cells/metabolism
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- M. Copland
- ATMU, Section of Experimental Haematology, University Faculty of Medicine, Glasgow Royal Infirmary, 10 Alexandra Parade, Glasgow, G31 2ER UK
| | - A. R. Fraser
- ATMU, Section of Experimental Haematology, University Faculty of Medicine, Glasgow Royal Infirmary, 10 Alexandra Parade, Glasgow, G31 2ER UK
| | - S. J. Harrison
- ATMU, Section of Experimental Haematology, University Faculty of Medicine, Glasgow Royal Infirmary, 10 Alexandra Parade, Glasgow, G31 2ER UK
| | - T. L. Holyoake
- ATMU, Section of Experimental Haematology, University Faculty of Medicine, Glasgow Royal Infirmary, 10 Alexandra Parade, Glasgow, G31 2ER UK
| |
Collapse
|