1
|
Upadhyay R, Hammerich L, Peng P, Brown B, Merad M, Brody JD. Lymphoma: immune evasion strategies. Cancers (Basel) 2015; 7:736-62. [PMID: 25941795 PMCID: PMC4491682 DOI: 10.3390/cancers7020736] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/21/2023] Open
Abstract
While the cellular origin of lymphoma is often characterized by chromosomal translocations and other genetic aberrations, its growth and development into a malignant neoplasm is highly dependent upon its ability to escape natural host defenses. Neoplastic cells interact with a variety of non-malignant cells in the tumor milieu to create an immunosuppressive microenvironment. The resulting functional impairment and dysregulation of tumor-associated immune cells not only allows for passive growth of the malignancy but may even provide active growth signals upon which the tumor subsequently becomes dependent. In the past decade, the success of immune checkpoint blockade and adoptive cell transfer for relapsed or refractory lymphomas has validated immunotherapy as a possible treatment cornerstone. Here, we review the mechanisms by which lymphomas have been found to evade and even reprogram the immune system, including alterations in surface molecules, recruitment of immunosuppressive subpopulations, and secretion of anti-inflammatory factors. A fundamental understanding of the immune evasion strategies utilized by lymphomas may lead to better prognostic markers and guide the development of targeted interventions that are both safer and more effective than current standards of care.
Collapse
Affiliation(s)
- Ranjan Upadhyay
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Linda Hammerich
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Paul Peng
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Brian Brown
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Joshua D Brody
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Abstract
B cell lymphomas are cancers that arise from cells that depend on numerous highly orchestrated interactions with immune and stromal cells in the course of normal development. Despite the recent focus on dissecting the genetic aberrations within cancer cells, it has been increasingly recognized that tumour cells retain a range of dependence on interactions with the non-malignant cells and stromal elements that constitute the tumour microenvironment. A fundamental understanding of these interactions gives insight into the pathogenesis of most B cell lymphomas and, moreover, identifies novel therapeutic opportunities for targeting oncogenic pathways, both now and in the future.
Collapse
Affiliation(s)
- David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver V5Z 1L3, Canada
| | - Randy D Gascoyne
- 1] Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver V5Z 1L3, Canada. [2] Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver V6T 2B5, Canada
| |
Collapse
|
3
|
Denileukin diftitox (ONTAK) induces a tolerogenic phenotype in dendritic cells and stimulates survival of resting Treg. Blood 2013; 122:2185-94. [DOI: 10.1182/blood-2012-09-456988] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Key Points
ONTAK blocks DC maturation by coreceptor downmodulation and inhibition of Stat3 phosphorylation to induce a tolerogenic phenotype. ONTAK kills activated CD4 T cells but stimulates antiapoptosis in resting Treg by engagement and stimulation through CD25.
Collapse
|
4
|
Meyer A, Gruber A, Klopfleisch R. All Subunits of the Interleukin-2 Receptor are Expressed by Canine Cutaneous Mast Cell Tumours. J Comp Pathol 2013; 149:19-29. [DOI: 10.1016/j.jcpa.2012.11.232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/25/2012] [Accepted: 11/12/2012] [Indexed: 11/26/2022]
|
5
|
Janthur WD, Cantoni N, Mamot C. Drug conjugates such as Antibody Drug Conjugates (ADCs), immunotoxins and immunoliposomes challenge daily clinical practice. Int J Mol Sci 2012; 13:16020-45. [PMID: 23443108 PMCID: PMC3546676 DOI: 10.3390/ijms131216020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 12/13/2022] Open
Abstract
Drug conjugates have been studied extensively in preclinical in vitro and in vivo models but to date only a few compounds have progressed to the clinical setting. This situation is now changing with the publication of studies demonstrating a significant impact on clinical practice and highlighting the potential of this new class of targeted therapies. This review summarizes the pharmacological and molecular background of the main drug conjugation systems, namely antibody drug conjugates (ADCs), immunotoxins and immunoliposomes. All these compounds combine the specific targeting moiety of an antibody or similar construct with the efficacy of a toxic drug. The aim of this strategy is to target tumor cells specifically while sparing normal tissue, thus resulting in high efficacy and low toxicity. Recently, several strategies have been investigated in phase I clinical trials and some have entered phase III clinical development. This review provides a detailed overview of various strategies and critically discusses the most relevant achievements. Examples of the most advanced compounds include T-DM1 and brentuximab vedotin. However, additional promising strategies such as immunotoxins and immunoliposmes are already in clinical development. In summary, targeted drug delivery by drug conjugates is a new emerging class of anti-cancer therapy that may play a major role in the future.
Collapse
Affiliation(s)
- Wolf-Dieter Janthur
- Division of Hematology/Oncology, Cantonal Hospital of Aarau, CH-5001 Aarau, Switzerland; E-Mails: (W.-D.J.); (N.C.)
| | - Nathan Cantoni
- Division of Hematology/Oncology, Cantonal Hospital of Aarau, CH-5001 Aarau, Switzerland; E-Mails: (W.-D.J.); (N.C.)
| | - Christoph Mamot
- Division of Hematology/Oncology, Cantonal Hospital of Aarau, CH-5001 Aarau, Switzerland; E-Mails: (W.-D.J.); (N.C.)
| |
Collapse
|
6
|
Hollander N. Immunotherapy for B-cell lymphoma: current status and prospective advances. Front Immunol 2012; 3:3. [PMID: 22566889 PMCID: PMC3342070 DOI: 10.3389/fimmu.2012.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/05/2012] [Indexed: 11/13/2022] Open
Abstract
Therapy for non-Hodgkin's lymphoma has progressed significantly over the last decades. However, the majority of patients remain incurable, and novel therapies are needed. Because immunotherapy ideally offers target selectivity, an ever increasing number of immunotherapies, both passive and active, are undergoing development. The champion of passive immunotherapy to date is the anti-CD20 monoclonal antibody rituximab that revolutionized the standard of care for lymphoma. The great success of rituximab catalyzed the development of new passive immunotherapy strategies that are currently undergoing clinical evaluation. These include improvement of rituximab efficacy, newer generation anti-CD20 antibodies, drug-conjugated and radio labeled anti-CD20 antibodies, monoclonal antibodies targeting non-CD20 lymphoma antigens, and bispecific antibodies. Active immunotherapy aims at inducing long-lasting antitumor immunity, thereby limiting the likelihood of relapse. Current clinical studies of active immunotherapy for lymphoma consist largely of vaccination and immune checkpoint blockade. A variety of protein- and cell-based vaccines are being tested in ongoing clinical studies. Recently completed phase III clinical trials of an idiotype protein vaccine suggest that the vaccine may have clinical activity in a subset of patients. Efforts to enhance the efficacy of active immunotherapy are ongoing with an emphasis on optimization of antigen delivery and presentation of vaccines and modulation of the immune system toward counteracting immunosuppression, using antibodies against immune regulatory checkpoints. This article discusses results of the various immunotherapy approaches applied to date for B-cell lymphoma and the ongoing trials to improve their effect.
Collapse
Affiliation(s)
- Nurit Hollander
- Department of Clinical Microbiology and Immunology, Tel Aviv UniversityTel Aviv, Israel
| |
Collapse
|
7
|
FitzGerald DJ, Wayne AS, Kreitman RJ, Pastan I. Treatment of hematologic malignancies with immunotoxins and antibody-drug conjugates. Cancer Res 2011; 71:6300-9. [PMID: 21998010 PMCID: PMC3201758 DOI: 10.1158/0008-5472.can-11-1374] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To enable antibodies to function as cytotoxic anticancer agents, they are modified either via attachment to protein toxins or highly potent, low-molecular-weight drugs. Such molecules, termed immunotoxins and antibody-drug conjugates, respectively, represent a second revolution in antibody-mediated cancer therapy. Thus, highly toxic compounds are delivered to the interior of cancer cells based on antibody specificity for cell-surface target antigens.
Collapse
Affiliation(s)
- David J FitzGerald
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland 20892-4264, USA
| | | | | | | |
Collapse
|
8
|
Abstract
Cancer immunotherapy consists of approaches that modify the host immune system, and/or the utilization of components of the immune system, as cancer treatment. During the past 25 years, 17 immunologic products have received regulatory approval based on anticancer activity as single agents and/or in combination with chemotherapy. These include the nonspecific immune stimulants BCG and levamisole; the cytokines interferon-α and interleukin-2; the monoclonal antibodies rituximab, ofatumumab, alemtuzumab, trastuzumab, bevacizumab, cetuximab, and panitumumab; the radiolabeled antibodies Y-90 ibritumomab tiuxetan and I-131 tositumomab; the immunotoxins denileukin diftitox and gemtuzumab ozogamicin; nonmyeloablative allogeneic transplants with donor lymphocyte infusions; and the anti-prostate cancer cell-based therapy sipuleucel-T. All but two of these products are still regularly used to treat various B- and T-cell malignancies, and numerous solid tumors, including breast, lung, colorectal, prostate, melanoma, kidney, glioblastoma, bladder, and head and neck. Positive randomized trials have recently been reported for idiotype vaccines in lymphoma and a peptide vaccine in melanoma. The anti-CTLA-4 monoclonal antibody ipilumumab, which blocks regulatory T-cells, is expected to receive regulatory approval in the near future, based on a randomized trial in melanoma. As the fourth modality of cancer treatment, biotherapy/immunotherapy is an increasingly important component of the anticancer armamentarium.
Collapse
Affiliation(s)
- Robert O Dillman
- Hoag Cancer Institute of Hoag Hospital , Newport Beach, California 92658, USA.
| |
Collapse
|
9
|
Brody J, Kohrt H, Marabelle A, Levy R. Active and passive immunotherapy for lymphoma: proving principles and improving results. J Clin Oncol 2011; 29:1864-75. [PMID: 21482977 DOI: 10.1200/jco.2010.33.4623] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conventional chemotherapy for lymphoma has advanced greatly over the past 50 years, changing some lymphoma subtypes from uniformly lethal to curable; however, the majority of lymphomas in patients remain incurable, and there is a need for novel therapies with less toxicity and more specific targeting of tumor cells. The vertebrate immune system has evolved the capacity for such specific targeting through the B-cell and T-cell receptors; passive immunotherapies utilizing these receptors, such as monoclonal antibodies (mAbs) or T cells, have shown efficacy in treating lymphomas. The first generation of mAb-based therapies has transformed the standard of care for lymphoma, and newer antibodies may improve on this approach. Clinical activity has been shown by T cells bearing receptors that target viral antigens as well as T cells bearing re-engineered receptors that target antigens recognized by antibodies. Active immunotherapies, such as vaccines and immune checkpoint blockades, have prolonged survival in certain solid tumors and are being actively pursued to treat lymphoma. A variety of vaccines (eg, protein- and cell-based vaccines) are being tested in ongoing trials, and the most recent iterations show therapeutic activity. Newer trials are addressing the problem of tumor-induced immunosuppression by the use of antibodies against immunologic checkpoints or by the reinfusion of primed T cells after lymphodepletion, a process we refer to as immunotransplantation. Herein, we discuss results of the various immunotherapy strategies applied to lymphoma and the ongoing approaches for their improvement.
Collapse
Affiliation(s)
- Joshua Brody
- Division of Oncology, Department of Medicine, Stanford University Medical Center, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
10
|
Novel therapeutic agents for B-cell lymphoma: developing rational combinations. Blood 2010; 117:1453-62. [PMID: 20978267 DOI: 10.1182/blood-2010-06-255067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Several novel targeted therapies have recently emerged as active in the treatment of non-Hodgkin lymphoma, including small molecules that inhibit critical signaling pathways, promote apoptotic mechanisms, or modulate the tumor microenvironment. Other new agents target novel cell surface receptors or promote DNA damage. Although most of these drugs have single-agent activity, none have sufficient activity to be used alone. This article reviews the utility and potential role of these new agents in the treatment of non-Hodgkin lymphoma with a specific focus on data that highlight how these agents may be incorporated into current standard treatment approaches.
Collapse
|
11
|
Nizar S, Meyer B, Galustian C, Kumar D, Dalgleish A. T regulatory cells, the evolution of targeted immunotherapy. Biochim Biophys Acta Rev Cancer 2010; 1806:7-17. [PMID: 20188145 DOI: 10.1016/j.bbcan.2010.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 01/09/2023]
Abstract
T regulatory cells are able to suppress anti-tumour immunity in pre-clinical models and in patients. This review highlights the important discoveries in Treg immunology critical to the evolution of targeted immunotherapy. We also describe the therapeutic applications that are currently being assessed and their future potential.
Collapse
Affiliation(s)
- S Nizar
- Department of Cellular and Molecular Medicine, St George's University of London, UK
| | | | | | | | | |
Collapse
|
12
|
Kreitman RJ. Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies. BioDrugs 2009; 23:1-13. [PMID: 19344187 DOI: 10.2165/00063030-200923010-00001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Immunotoxins are molecules that contain a protein toxin and a ligand that is either an antibody or a growth factor. The ligand binds to a target cell antigen, and the target cell internalizes the immunotoxin, allowing the toxin to migrate to the cytoplasm where it can kill the cell. In the case of recombinant immunotoxins, the ligand and toxin are encoded in DNA that is then expressed in bacteria, and the purified immunotoxin contains the ligand and toxin fused together. Among the most active recombinant immunotoxins clinically tested are those that are targeted to hematologic malignancies. One agent, containing human interleukin-2 and truncated diphtheria toxin (denileukin diftitox), has been approved for use in cutaneous T-cell lymphoma, and has shown activity in other hematologic malignancies, including leukemias and lymphomas. Diphtheria toxin has also been targeted by other ligands, including granulocyte-macrophage colony-stimulating factor and interleukin-3, to target myelogenous leukemia cells. Single-chain antibodies containing variable heavy and light antibody domains have been fused to truncated Pseudomonas exotoxin to target lymphomas and lymphocytic leukemias. Recombinant immunotoxins anti-Tac(Fv)-PE38 (LMB-2), targeting CD25, and RFB4(dsFv)-PE38 (BL22, CAT-3888), targeting CD22, have each been tested in patients. Major responses have been observed after failure of standard chemotherapy. The most successful application of recombinant immunotoxins today is in hairy cell leukemia, where BL22 has induced complete remissions in most patients who were previously treated with optimal chemotherapy.
Collapse
Affiliation(s)
- Robert J Kreitman
- Clinical Immunotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Nizar S, Copier J, Meyer B, Bodman-Smith M, Galustian C, Kumar D, Dalgleish A. T-regulatory cell modulation: the future of cancer immunotherapy? Br J Cancer 2009; 100:1697-703. [PMID: 19384299 PMCID: PMC2695683 DOI: 10.1038/sj.bjc.6605040] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
T-regulatory cells suppress anti-tumour immunity in cancer patients and in murine tumour models. Furthermore, their activity is likely to have an effect on the effectiveness of immunotherapeutic treatments for cancer. Here we describe the current status of developing clinical strategies for modulating Treg activity in cancer patients.
Collapse
Affiliation(s)
- S Nizar
- Department of Cellular and Molecular Medicine, St George's University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Recombinant immunotoxins are proteins composed of fragments of monoclonal antibodies fused to truncated protein toxins. No agents of this class are approved yet for medical use, although a related molecule, denileukin diftitox, composed of interleukin-2 fused to truncated diphtheria toxin, is approved for relapsed/refractory cutaneous T-cell lymphoma. Recombinant immunotoxins which have been tested in patients with chemotherapy-pretreated hematologic malignancies include LMB-2 (anti-CD25), BL22 (CAT-3888, anti-CD22) and HA22 (CAT-8015, anti-CD22), each containing an Fv fragment fused to truncated Pseudomonas exotoxin. Major responses were observed with LMB-2 in adult T-cell leukemia, chronic lymphocytic leukemia (CLL), cutaneous T-cell lymphoma, Hodgkin's disease, and hairy cell leukemia (HCL). BL22 resulted in a high complete remission rate in patients with HCL, particularly those without excessive tumor burden. HA22, an improved version of BL22 with higher affinity to CD22, is now undergoing phase I testing in HCL, CLL, non-Hodgkin's lymphoma, and pediatric acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Robert J Kreitman
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37/5124b, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Current Awareness in Hematological Oncology. Hematol Oncol 2008. [DOI: 10.1002/hon.832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Abstract
Denileukin diftitox (Ontak®) is a novel recombinant fusion protein consisting of peptide sequences for the enzymatically active and membrane translocation domain of diphtheria toxin linked to human IL-2. Denileukin diftitox specifically binds to IL-2 receptors on the cell membrane, is internalized via receptor-mediated endocytosis and inhibits protein synthesis by ADP ribosylation of elongation factor 2, resulting in cell death. This article focuses on the clinical trial that led to the US FDA approval of the drug for cutaneous T-cell lymphoma in 1999, and other investigational studies for hematologic malignancies, recurrent and refractory chronic lymphocytic leukemia, non-Hodgkin B-cell lymphoma, graft-versus-host disease and autoimmune disease, demonstrating the activity and adverse effects of the drug.
Collapse
Affiliation(s)
- Madeleine Duvic
- The University of Texas MD Anderson Cancer Center, Division of Internal Medicine, Department of Dermatology, 1515 Holcombe Blvd, Unit 1452, Houston, TX 77030, USA
| | - Rakhshandra Talpur
- The University of Texas MD Anderson Cancer Center, Division of Internal Medicine, Department of Dermatology, 1515 Holcombe Blvd, Unit 1452, Houston, TX 77030, USA
| |
Collapse
|