1
|
He L, Xiao F, Dou CX, Zhou B, Chen ZH, Wang JY, Wang CG, Xie F. Integrated Comparative Transcriptome and Weighted Gene Co-Expression Network Analysis Provide Valuable Insights into the Mechanisms of Pinhead Initiation in Chinese Caterpillar Mushroom Ophiocordyceps sinensis (Ascomycota). Int J Med Mushrooms 2024; 26:41-54. [PMID: 39171630 DOI: 10.1615/intjmedmushrooms.2024054674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The initiation and formation of the "pinhead" is the key node in growth process of Ophiocordyceps sinensis (Chinese Cordyceps). The research on the mechanism of changes in this growth stage is the basis for realizing the industrialization of its artificial cultivation. Clarifying the mechanisms of pinhead initiation is essential for its further application. Here, we performed a comprehensive transcriptome analysis of pinhead initiation process in O. sinensis. Comparative transcriptome analysis revealed remarkable variation in gene expression and enriched pathways at different pinhead initiation stages. Gene co-expression network analysis by WGCNA identified 4 modules highly relevant to different pinhead initiation stages, and 23 hub genes. The biological function analysis and hub gene annotation of these identified modules demonstrated that transmembrane transport and nucleotide excision repair were the topmost enriched in pre-pinhead initiation stage, carbohydrate metabolism and protein glycosylation were specially enriched in pinhead initiation stage, nucleotide binding and DNA metabolic process were over-represented after pinhead stage. These key regulators are mainly involved in carbohydrate metabolism, synthesis of proteins and nucleic acids. This work excavated the candidate pathways and hub genes related to the pinhead initiation stage, which will serve as a reference for realizing the industrialization of artificial cultivation in O. sinensis.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fan Xiao
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Chen Xi Dou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Bo Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Jing Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Cheng Gang Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| |
Collapse
|
2
|
Nicholson R, Menezes AC, Azevedo A, Leckenby A, Davies S, Seedhouse C, Gilkes A, Knapper S, Tonks A, Darley RL. Protein Kinase C Epsilon Overexpression Is Associated With Poor Patient Outcomes in AML and Promotes Daunorubicin Resistance Through p-Glycoprotein-Mediated Drug Efflux. Front Oncol 2022; 12:840046. [PMID: 35707351 PMCID: PMC9191576 DOI: 10.3389/fonc.2022.840046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
The protein kinase C (PKC) family of serine/threonine kinases are pleiotropic signaling regulators and are implicated in hematopoietic signaling and development. Only one isoform however, PKCϵ, has oncogenic properties in solid cancers where it is associated with poor outcomes. Here we show that PKCϵ protein is significantly overexpressed in acute myeloid leukemia (AML; 37% of patients). In addition, PKCϵ expression in AML was associated with a significant reduction in complete remission induction and disease-free survival. Examination of the functional consequences of PKCϵ overexpression in normal human hematopoiesis, showed that PKCϵ promotes myeloid differentiation, particularly of the monocytic lineage, and decreased colony formation, suggesting that PKCϵ does not act as an oncogene in hematopoietic cells. Rather, in AML cell lines, PKCϵ overexpression selectively conferred resistance to the chemotherapeutic agent, daunorubicin, by reducing intracellular concentrations of this agent. Mechanistic analysis showed that PKCϵ promoted the expression of the efflux pump, P-GP (ABCB1), and that drug efflux mediated by this transporter fully accounted for the daunorubicin resistance associated with PKCϵ overexpression. Analysis of AML patient samples also showed a link between PKCϵ and P-GP protein expression suggesting that PKCϵ expression drives treatment resistance in AML by upregulating P-GP expression.
Collapse
Affiliation(s)
- Rachael Nicholson
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ana Catarina Menezes
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Aleksandra Azevedo
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Adam Leckenby
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sara Davies
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Claire Seedhouse
- Academic Haematology, Nottingham University Hospitals and University of Nottingham, Nottingham, United Kingdom
| | - Amanda Gilkes
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Steve Knapper
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Alex Tonks
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard L. Darley
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Zhang J, Peng Y, He Y, Xiao Y, Wang Q, Zhao Y, Zhang T, Wu C, Xie Y, Zhou J, Yu W, Lu D, Bai H, Chen T, Guo P, Zhang Q. GPX1-associated prognostic signature predicts poor survival in patients with acute myeloid leukemia and involves in immunosuppression. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166268. [PMID: 34536536 DOI: 10.1016/j.bbadis.2021.166268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/21/2021] [Accepted: 09/04/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Treatment of acute myeloid leukemia (AML) remains a challenge. It is urgent to understand the microenvironment to improve therapy and prognosis. METHODS Bioinformatics methods were used to analyze transcription expression profile of AML patient samples with complete clinical information from UCSC Xena TCGA-AML datasets and validate with GEO datasets. Western blot, qPCR, RNAi and CCK8 assay were used to assay the effect of GPX1 expression on AML cell viability and the expression of genes of interest. RESULTS Our analyses revealed that highly expressed GPX1 in AML patients links to unfavorable prognosis. GPX1 expression was positively associated with not only fraction levels of myeloid-derived suppressor cells (MDSCs), monocytes and T cell exhaustion, the expression levels of MDSC markers, MDSC-promoting CCR2 and immune inhibitory checkpoints (TIM3/Gal-9, SIRPα and VISTA), but also negatively with low fraction levels of CD4+ and CD8+ T cells. Silencing GPX1 expression reduced AML cell viability and CCR2 expression. Moreover, GPX1-targetd kinases were PKC family, SRC family, SYK and PAK1, which promote AML progression and the resistance to therapy. Furthermore, Additionally, GPX1-associated prognostic signature (GPS) is an independent risk factor with high area under curve (AUC) values of receiver operating characteristic (ROC) curves. High risk group based on GPS enriched not only with endocytosis which transfers mitochondria to favor AML cell survival in response to chemotherapy, but also NOTCH, WNT and TLR signaling which promote therapy resistance. CONCLUSION Our results revealed the significant involvement of GPX1 in AML immunosuppression via and provided a prognostic signature for AML patients.
Collapse
MESH Headings
- Aged
- Antigens, Differentiation/genetics
- B7 Antigens/genetics
- Female
- Gene Expression Regulation, Leukemic/genetics
- Glutathione Peroxidase/genetics
- Hepatitis A Virus Cellular Receptor 2
- Humans
- Immune Tolerance/genetics
- Immunosuppression Therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/pathology
- Prognosis
- Receptors, CCR2/genetics
- Receptors, Immunologic/genetics
- Receptors, Notch/genetics
- Risk Factors
- Syk Kinase/genetics
- Tumor Microenvironment/immunology
- Wnt Signaling Pathway/genetics
- p21-Activated Kinases/genetics
- Glutathione Peroxidase GPX1
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yuhui Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Tin Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Changxue Wu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Deqin Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hua Bai
- Medical Laboratory Center, the Third Affiliated Hospital of Guizhou Medical University, Duyun 558000, Guizhou, China.
| | - Tenxiang Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guiyang 550004, Guizhou, China.
| | - Penxiang Guo
- Department of Hematology, Guizhou Provincial People's Hospital, Guizhou University, Guiyang 550002, Guizhou, China.
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
4
|
Ruiz-Aparicio PF, Vanegas NDP, Uribe GI, Ortiz-Montero P, Cadavid-Cortés C, Lagos J, Flechas-Afanador J, Linares-Ballesteros A, Vernot JP. Dual Targeting of Stromal Cell Support and Leukemic Cell Growth by a Peptidic PKC Inhibitor Shows Effectiveness against B-ALL. Int J Mol Sci 2020; 21:ijms21103705. [PMID: 32466311 PMCID: PMC7279155 DOI: 10.3390/ijms21103705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) favour a scenario where leukemic cells survive. The protein kinase C (PKC) is essential to confer MSC support to leukemic cells and may be responsible for the intrinsic leukemic cell growth. Here we have evaluated the capacity of a chimeric peptide (HKPS), directed against classical PKC isoforms, to inhibit leukemic cell growth. HKPS was able to strongly inhibit viability of different leukemic cell lines, while control HK and PS peptides had no effect. Further testing showed that 30% of primary samples from paediatric B-cell acute lymphoblastic leukaemia (B-ALL) were also strongly affected by HKPS. We showed that HKPS disrupted the supportive effect of MSC that promote leukemic cell survival. Interestingly, ICAM-1 and VLA-5 expression increased in MSC during the co-cultures with B-ALL cells, and we found that HKPS inhibited the interaction between MSC and B-ALL cells due to a reduction in the expression of these adhesion molecules. Of note, the susceptibility of B-ALL cells to dexamethasone increased when MSC were treated with HKPS. These results show the relevance of these molecular interactions in the leukemic niche. The use of HKPS may be a new strategy to disrupt intercellular communications, increasing susceptibility to therapy, and at the same time, directly affecting the growth of PKC-dependent leukemic cells.
Collapse
Affiliation(s)
- Paola Fernanda Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
| | - Natalia-Del Pilar Vanegas
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
| | - Gloria Inés Uribe
- Grupo de Investigación Oncohematología Pediátrica, Fundación Hospital de la Misericordia, Universidad Nacional de Colombia, Bogotá D. C. 111071, Colombia; (G.I.U.); (J.L.); (J.F.-A); (A.L.-B.)
- Servicio de Patología, Laboratorio de Hematología Especial y Citometría de flujo, Fundación Hospital de la Misericordia, Bogotá D. C. 111071, Colombia
| | - Paola Ortiz-Montero
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
| | - Camila Cadavid-Cortés
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
| | - Jimmy Lagos
- Grupo de Investigación Oncohematología Pediátrica, Fundación Hospital de la Misericordia, Universidad Nacional de Colombia, Bogotá D. C. 111071, Colombia; (G.I.U.); (J.L.); (J.F.-A); (A.L.-B.)
| | - Jessica Flechas-Afanador
- Grupo de Investigación Oncohematología Pediátrica, Fundación Hospital de la Misericordia, Universidad Nacional de Colombia, Bogotá D. C. 111071, Colombia; (G.I.U.); (J.L.); (J.F.-A); (A.L.-B.)
| | - Adriana Linares-Ballesteros
- Grupo de Investigación Oncohematología Pediátrica, Fundación Hospital de la Misericordia, Universidad Nacional de Colombia, Bogotá D. C. 111071, Colombia; (G.I.U.); (J.L.); (J.F.-A); (A.L.-B.)
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia
- Correspondence: ; Tel.: +571-316-5000 (ext. 15057); Fax: +571-316-5466
| |
Collapse
|
5
|
Clutton GT, Jones RB. Diverse Impacts of HIV Latency-Reversing Agents on CD8+ T-Cell Function: Implications for HIV Cure. Front Immunol 2018; 9:1452. [PMID: 29988382 PMCID: PMC6023971 DOI: 10.3389/fimmu.2018.01452] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Antiretroviral therapy regimens durably suppress HIV replication, but do not cure infection. This is partially attributable to the persistence of long-lived pools of resting CD4+ T-cells harboring latent replication-competent virus. Substantial clinical and pre-clinical research is currently being directed at purging this viral reservoir by combining pharmacological latency reversal with immune effectors, such as HIV-specific CD8+ T-cells, capable of eliminating reactivated targets-the so-called "shock-and-kill" approach. However, several studies indicate that the latency-reversing agents (LRAs) may affect CD8+ T-cell function. The current review aims to frame recent advances, and ongoing challenges, in implementing "shock-and-kill" strategies from the perspective of effectively harnessing CD8+ T-cells. We review and contextualize findings indicating that LRAs often have unintended impacts on CD8+ T-cell function, both detrimental and beneficial. We identify and attempt to bridge the gap between viral reactivation, as measured by the detection of RNA or protein, and bona fide presentation of viral antigens to CD8+ T-cells. Finally, we highlight factors on the effector (CD8+) and target (CD4+) cell sides that contribute to whether or not infected-cell recognition results in killing/elimination. These perspectives may contribute to an integrated view of "shock-and-kill," with implications for therapeutic development.
Collapse
Affiliation(s)
- Genevieve Tyndale Clutton
- Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - R. Brad Jones
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
- Infectious Disease Division, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
6
|
Roy M, Sarkar R, Mukherjee A, Mukherjee S. Inhibition of crosstalk between Bcr-Abl and PKC signaling by PEITC, augments imatinib sensitivity in chronic myelogenous leukemia cells. Chem Biol Interact 2015; 242:195-201. [PMID: 26456889 DOI: 10.1016/j.cbi.2015.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/05/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Abstract
Chronic myelogenous leukemia (CML), a clonal hyperproliferation of immature blood cells accounts for 20% of adult leukemia cases. Reciprocal translocation of chromosomes 9 and 22, results into Bcr-Abl fusion and is responsible for expression of a tyrosine kinase protein p210(bcr/abl), which mediates several survival pathways and confer therapeutic resistance. Protein kinase C (PKC), a family of serine threonine kinases play an important role in the process of leukemogenesis. A crosstalk between Bcr-Abl and PKC signaling has been documented. Therefore, targeting p210(bcr/abl) and its associated signaling proteins using non-toxic natural means will be an effective strategy for antileukemic therapy. Aim of the present study is to investigate whether PEITC, a natural isothiocyanate in combination with imatinib mesylate (IM), a tyrosine kinase inhibitor could increase the therapeutic efficacy of IM by modulating the expression of p210(bcr/abl). Enhanced cytotoxic efficacy of IM by PEITC was further validated using another myelogenous leukemia cell line, KU812. It was observed that PEITC in combination with IM efficiently downregulated the expression of p210(bcr/abl) in chronic myelogenous leukemia cell lines (K-562). PEITC inhibited the expressions of PKCα, PKCβII and PKCζ (both phosphorylated and total form). Expression of Raf1 and ERK1/2, two important target proteins in PKC signaling cascade was diminished. The result indicated that PEITC ultimately reduced expression of Raf1 and ERK1/2 through Bcr-Abl and PKC inhibition. This result was further confirmed by UCN-01, a selective PKC inhibitor and IM; indicating an association between p210(bcr/abl) and PKC with Raf1 and ERK1/2. PEITC thus may have enormous potential in synergistic therapy of leukemia by enhancing drug efficacy.
Collapse
Affiliation(s)
- Madhumita Roy
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S P Mukherjee Road, Kolkata, 700 026, India.
| | - Ruma Sarkar
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S P Mukherjee Road, Kolkata, 700 026, India
| | - Apurba Mukherjee
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S P Mukherjee Road, Kolkata, 700 026, India
| | - Sutapa Mukherjee
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S P Mukherjee Road, Kolkata, 700 026, India
| |
Collapse
|
7
|
Abstract
DNA methylation and histone modification are epigenetic mechanisms that result in altered gene expression and cellular phenotype. The exact role of methylation in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) remains unclear. However, aberrations (e.g. loss-/gain-of-function or up-/down-regulation) in components of epigenetic transcriptional regulation in general, and of the methylation machinery in particular, have been implicated in the pathogenesis of these diseases. In addition, many of these components have been identified as therapeutic targets for patients with MDS/AML, and are also being assessed as potential biomarkers of response or resistance to hypomethylating agents (HMAs). The HMAs 5-azacitidine (AZA) and 2'-deoxy-5-azacitidine (decitabine, DAC) inhibit DNA methylation and have shown significant clinical benefits in patients with myeloid malignancies. Despite being viewed as mechanistically similar drugs, AZA and DAC have differing mechanisms of action. DAC is incorporated 100% into DNA, whereas AZA is incorporated into RNA (80-90%) as well as DNA (10-20%). As such, both drugs inhibit DNA methyltransferases (DNMTs; dependently or independently of DNA replication) resulting in the re-expression of tumor-suppressor genes; however, AZA also has an impact on mRNA and protein metabolism via its inhibition of ribonucleotide reductase, resulting in apoptosis. Herein, we first give an overview of transcriptional regulation, including DNA methylation, post-translational histone-tail modifications, the role of micro-RNA and long-range epigenetic gene silencing. We place special emphasis on epigenetic transcriptional regulation and discuss the implication of various components in the pathogenesis of MDS/AML, their potential as therapeutic targets, and their therapeutic modulation by HMAs and other substances (if known). The main focus of this review is laid on dissecting the rapidly evolving knowledge of AZA and DAC with a special focus on their differing mechanisms of action, and the effect of HMAs on transcriptional regulation.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Hospital Salzburg, Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute , Salzburg , Austria
| | | |
Collapse
|
8
|
Ruvolo PP, Zhou L, Watt JC, Ruvolo VR, Burks JK, Jiffar T, Kornblau S, Konopleva M, Andreeff M. Targeting PKC-mediated signal transduction pathways using enzastaurin to promote apoptosis in acute myeloid leukemia-derived cell lines and blast cells. J Cell Biochem 2011; 112:1696-707. [PMID: 21360576 PMCID: PMC3394435 DOI: 10.1002/jcb.23090] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies in acute myeloid leukemia (AML) suggest activation of pro-proliferative signaling cascades including those mediated by protein kinase C (PKC) represent a poor prognostic factor for patients. The classical PKC isoforms α and β generally support survival signaling and have emerged as important targets for anti-cancer therapy. Enzastaurin is a PKC β inhibitor and is in clinical trials for lymphomas, gliomas, and lung cancer. Presently, it is not known if enzastaurin could be effective against AML. In the current study, we found that high dose enzastaurin was found to promote apoptosis in the AML-derived cell lines and in blast cells from AML patients. The mechanism of cell death, however, likely does not involve PKC β as another PKC β inhibitor was not toxic to AML cell lines and did not promote enzastaurin-induced cell killing. While enzastaurin is fairly specific for PKC β, the agent can inhibit other PKC isoforms at higher concentrations. Enzastaurin was effective at inhibiting PKC α phosphorylation and membrane localization in the AML cell lines and suppressed phosphorylation of BCL2. Furthermore, enzastaurin suppressed activation of ERK (which can be activated by PKC α). Analysis of the serine/threonine phosphorylation profile in HL60 cells after enzastaurin treatment revealed that the drug inhibits the phosphorylation of a distinct set of proteins while promoting phosphorylation of another set of proteins. This suggests the drug may regulate multiple signaling pathways. Taken together, these findings suggest that enzastaurin could be effective in the therapy of AML.
Collapse
Affiliation(s)
- Peter P. Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Division of Signal Transduction and Apoptosis, University of Minnesota Hormel Institute, Austin, Minnesota
| | - Liran Zhou
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julie C. Watt
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivian R. Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Division of Signal Transduction and Apoptosis, University of Minnesota Hormel Institute, Austin, Minnesota
| | - Jared K. Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tilahun Jiffar
- Division of Signal Transduction and Apoptosis, University of Minnesota Hormel Institute, Austin, Minnesota
| | - Steven Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
9
|
Abstract
A challenge in cancer therapy has been to identify targets whose function is essential for survival of malignant cells but not normal cells. This Perspective discusses recent evidence that novel inhibitors of the kinase TOR can provide an unprecedented balance of anti-cancer efficacy and tolerability.
Collapse
Affiliation(s)
- Matthew R Janes
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
10
|
Role for PKC δ in Fenretinide-Mediated Apoptosis in Lymphoid Leukemia Cells. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2010:584657. [PMID: 20844597 PMCID: PMC2938797 DOI: 10.1155/2010/584657] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The synthetic Vitamin A analog fenretinide is a promising chemotherapeutic agent. In the current paper, the role of PKC δ was examined in fenretinide-induced apoptosis in lymphoid leukemia cells. Levels of proapoptotic cleaved PKC δ positively correlated with drug sensitivity. Fenretinide promoted reactive oxygen species (ROS) generation. The antioxidant Vitamin C prevented fenretinide-induced PKC δ cleavage and protected cells from fenretinide. Suppression of PKC δ expression by shRNA sensitized cells to fenretinide-induced apoptosis possibly by a mechanism involving ROS production. A previous study demonstrated that fenretinide promotes degradation of antiapoptotic MCL-1 in ALL cells via JNK. Now we have found that fenretinide-induced MCL-1 degradation may involve PKC δ as cleavage of the kinase correlated with loss of MCL-1 even in cells when JNK was not activated. These results suggest that PKC δ may play a complex role in fenretinide-induced apoptosis and may be targeted in antileukemia strategies that utilize fenretinide.
Collapse
|
11
|
Katsoulidis E, Kaur S, Platanias LC. Deregulation of Interferon Signaling in Malignant Cells. Pharmaceuticals (Basel) 2010; 3:406-418. [PMID: 27713259 PMCID: PMC4033917 DOI: 10.3390/ph3020406] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 12/24/2022] Open
Abstract
Interferons (IFNs) are a family of cytokines with potent antiproliferative, antiviral, and immunomodulatory properties. Much has been learned about IFNs and IFN-activated signaling cascades over the last 50 years. Due to their potent antitumor effects in vitro and in vivo, recombinant IFNs have been used extensively over the years, alone or in combination with other drugs, for the treatment of various malignancies. This review summarizes the current knowledge on IFN signaling components and pathways that are deregulated in human malignancies. The relevance of deregulation of IFN signaling pathways in defective innate immune surveillance and tumorigenesis are discussed.
Collapse
Affiliation(s)
- Efstratios Katsoulidis
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60611, USA
| | - Surinder Kaur
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60611, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
The protein kinase C agonist PEP005 (ingenol 3-angelate) in the treatment of human cancer: a balance between efficacy and toxicity. Toxins (Basel) 2010; 2:174-94. [PMID: 22069553 PMCID: PMC3206618 DOI: 10.3390/toxins2010174] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/07/2010] [Accepted: 01/18/2010] [Indexed: 12/31/2022] Open
Abstract
The diterpene ester ingenol-3-angelate (referred to as PEP005) is derived from the plant Euphorbia peplus. Crude euphorbia extract causes local toxicity and transient inflammation when applied topically and has been used in the treatment of warts, skin keratoses and skin cancer. PEP005 is a broad range activator of the classical (α, β, γ) and novel (δ, ε, η, θ) protein kinase C isoenzymes. Direct pro-apoptotic effects of this drug have been demonstrated in several malignant cells, including melanoma cell lines and primary human acute myelogenous leukemia cells. At micromolar concentrations required to kill melanoma cells this agent causes PKC-independent secondary necrosis. In contrast, the killing of leukemic cells occurs in the nanomolar range, requires activation of protein kinase C δ (PKCδ) and is specifically associated with translocation of PKCδ from the cytoplasm to the nuclear membrane. However, in addition to this pro-apoptotic effect the agent seems to have immunostimulatory effects, including: (i) increased chemokine release by malignant cells; (ii) a general increase in proliferation and cytokine release by activated T cells, including T cells derived from patients with chemotherapy-induced lymphopenia; (iii) local infiltration of neutrophils after topical application with increased antibody-dependent cytotoxicity; and (iv) development of specific anti-cancer immune responses by CD8(+) T cells in animal models. Published studies mainly describe effects from in vitro investigations or after topical application of the agent, and careful evaluation of the toxicity after systemic administration is required before the possible use of this agent in the treatment of malignancies other than skin cancers.
Collapse
|
13
|
Wu SF, Huang Y, Hou JK, Yuan TT, Zhou CX, Zhang J, Chen GQ. The downregulation of onzin expression by PKCɛ-ERK2 signaling and its potential role in AML cell differentiation. Leukemia 2010; 24:544-51. [DOI: 10.1038/leu.2009.280] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Redig AJ, Sassano A, Majchrzak-Kita B, Katsoulidis E, Liu H, Altman JK, Fish EN, Wickrema A, Platanias LC. Activation of protein kinase C{eta} by type I interferons. J Biol Chem 2009; 284:10301-14. [PMID: 19211565 DOI: 10.1074/jbc.m807254200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Type I interferons (IFNs) are cytokines with diverse biological properties, including antiviral, growth inhibitory, and immunomodulatory effects. Although several signaling pathways are activated during engagement of the type I IFN receptor and participate in the induction of IFN responses, the mechanisms of generation of specific signals for distinct biological effects remain to be elucidated. We provide evidence that a novel member of the protein kinase C (PKC) family of proteins is rapidly phosphorylated and activated during engagement of the type I IFN receptor. In contrast to other members of the PKC family that are also regulated by IFN receptors, PKCeta does not regulate IFN-inducible transcription of interferon-stimulated genes or generation of antiviral responses. However, its function promotes cell cycle arrest and is essential for the generation of the suppressive effects of IFNalpha on normal and leukemic human myeloid (colony-forming unit-granulocyte macrophage) bone marrow progenitors. Altogether, our studies establish PKCeta as a unique element in IFN signaling that plays a key and essential role in the generation of the regulatory effects of type I IFNs on normal and leukemic hematopoiesis.
Collapse
Affiliation(s)
- Amanda J Redig
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology/Oncology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|