1
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
2
|
Roles and Regulation of BCL-xL in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23042193. [PMID: 35216310 PMCID: PMC8876520 DOI: 10.3390/ijms23042193] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Members of the Bcl-2 family are proteins that play an essential role in the regulation of apoptosis, a crucial process in development and normal physiology in multicellular organisms. The essential mechanism of this family of proteins is given by the role of pro-survival proteins, which inhibit apoptosis by their direct binding with their counterpart, the effector proteins of apoptosis. This family of proteins was named after the typical member Bcl-2, which was named for its discovery and abnormal expression in B-cell lymphomas. Subsequently, the structure of one of its members BCL-xL was described, which allowed one to understand much of the molecular mechanism of this family. Due to its role of BCL-xL in the regulation of cell survival and proliferation, it has been of great interest in its study. Due to this, it is important to research its role regarding the development and progression of human malignancies, especially in hematologic malignancies. Due to its variation in expression in cancer, it has been suggested that BCL-xL can or cannot play a role in cancer depending on the cellular or tissue context. This review discusses recent advances in its transcriptional regulation of BCL-xL, as well as the advances regarding the activities of BCL-xL in hematological malignancies, its possible role as a biomarker, and its possible clinical relevance in these malignancies.
Collapse
|
3
|
Activators and Inhibitors of Protein Kinase C (PKC): Their Applications in Clinical Trials. Pharmaceutics 2021; 13:pharmaceutics13111748. [PMID: 34834162 PMCID: PMC8621927 DOI: 10.3390/pharmaceutics13111748] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Protein kinase C (PKC), a family of phospholipid-dependent serine/threonine kinase, is classed into three subfamilies based on their structural and activation characteristics: conventional or classic PKC isozymes (cPKCs; α, βI, βII, and γ), novel or non-classic PKC isozymes (nPKCs; δ, ε, η, and θ), and atypical PKC isozymes (aPKCs; ζ, ι, and λ). PKC inhibitors and activators are used to understand PKC-mediated intracellular signaling pathways and for the diagnosis and treatment of various PKC-associated diseases, such as cancers, neurological diseases, cardiovascular diseases, and infections. Many clinical trials of PKC inhibitors in cancers showed no significant clinical benefits, meaning that there is a limitation to design a cancer therapeutic strategy targeting PKC alone. This review will focus on the activators and inhibitors of PKC and their applications in clinical trials.
Collapse
|
4
|
Lind J, Czernilofsky F, Vallet S, Podar K. Emerging protein kinase inhibitors for the treatment of multiple myeloma. Expert Opin Emerg Drugs 2019; 24:133-152. [PMID: 31327278 DOI: 10.1080/14728214.2019.1647165] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Significant advances have been made during the last two decades in terms of new therapeutic options but also of innovative approaches to diagnosis and management of multiple myeloma (MM). While patient survival has been significantly prolonged, most patients relapse. Including the milestone approval of the first kinase inhibitor imatinib mesylate for CML in 2001, 48 small molecule protein kinase (PK) inhibitors have entered clinical practice until now. However, no PK inhibitor has been approved for MM therapy yet. Areas covered: This review article summarizes up-to-date knowledge on the pathophysiologic role of PKs in MM. Derived small molecules targeting receptor tyrosine kinases (RTKs), the Ras/Raf/MEK/MAPK- pathway, the PI3K/Akt/mTOR- pathway as well as Bruton tyrosine kinase (BTK), Aurora kinases (AURK), and cyclin-dependent kinases (CDKs) are most promising. Preclinical as well as early clinical data focusing on these molecules will be presented and critically reviewed. Expert opinion: Current MM therapy is directed against general vulnerabilities. Novel therapeutic strategies, inhibition of PKs in particular, are directed to target tumor-specific driver aberrations such as genetic abnormalities and microenvironment-driven deregulations. Results of ongoing Precision Medicine trials with PK inhibitors alone or in combination with other agents are eagerly awaited and hold the promise of once more improving MM patient outcome.
Collapse
Affiliation(s)
- Judith Lind
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Felix Czernilofsky
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Sonia Vallet
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Klaus Podar
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| |
Collapse
|
5
|
A Novel Assay for Profiling GBM Cancer Model Heterogeneity and Drug Screening. Cells 2019; 8:cells8070702. [PMID: 31336733 PMCID: PMC6678976 DOI: 10.3390/cells8070702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/21/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
Accurate patient-derived models of cancer are needed for profiling the disease and for testing therapeutics. These models must not only be accurate, but also suitable for high-throughput screening and analysis. Here we compare two derivative cancer models, microtumors and spheroids, to the gold standard model of patient-derived orthotopic xenografts (PDX) in glioblastoma multiforme (GBM). To compare these models, we constructed a custom NanoString panel of 350 genes relevant to GBM biology. This custom assay includes 16 GBM-specific gene signatures including a novel GBM subtyping signature. We profiled 11 GBM-PDX with matched orthotopic cells, derived microtumors, and derived spheroids using the custom NanoString assay. In parallel, these derivative models underwent drug sensitivity screening. We found that expression of certain genes were dependent on the cancer model while others were model-independent. These model-independent genes can be used in profiling tumor-specific biology and in gauging therapeutic response. It remains to be seen whether or not cancer model-specific genes may be directly or indirectly, through changes to tumor microenvironment, manipulated to improve the concordance of in vitro derivative models with in vivo models yielding better prediction of therapeutic response.
Collapse
|
6
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
7
|
Fleming AK, Storz P. Protein kinase C isoforms in the normal pancreas and in pancreatic disease. Cell Signal 2017; 40:1-9. [PMID: 28826907 DOI: 10.1016/j.cellsig.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022]
Abstract
Protein Kinase C isoforms have been implicated in regulating multiple processes within the healthy pancreas. Moreover, their dysregulation contributes to all aspects of pancreatic disease. In this review, with a focus on acinar, ductal, and islet cells, we highlight the roles and contributions of the different PKC isoforms to normal pancreas function. We also discuss the contribution of PKC enzymes to pancreatic diseases, including insulin resistance and diabetes mellitus, as well as pancreatitis and the development and progression of pancreatic cancer.
Collapse
Affiliation(s)
- Alicia K Fleming
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
8
|
Bourhill T, Narendran A, Johnston RN. Enzastaurin: A lesson in drug development. Crit Rev Oncol Hematol 2017; 112:72-79. [PMID: 28325267 DOI: 10.1016/j.critrevonc.2017.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/25/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Enzastaurin is an orally administered drug that was intended for the treatment of solid and haematological cancers. It was initially developed as an isozyme specific inhibitor of protein kinase Cβ (PKCβ), which is involved in both the AKT and MAPK signalling pathways that are active in many cancers. Enzastaurin had shown encouraging preclinical results for the prevention of angiogenesis, inhibition of proliferation and induction of apoptosis as well as showing limited cytotoxicity within phase I clinical trials. However, during its assessment in phase II and III clinical trials the efficacy of enzastaurin was poor both in combination with other drugs and as a single agent. In this review, we will discuss the development of enzastaurin from drug design to clinical testing, exploring target identification, validation and preclinical assessment. Finally, we will consider the clinical evaluation of enzastaurin as an example of the challenges associated with drug development. In particular, we discuss the poor translation of drug efficacy from preclinical animal models, inappropriate end point analysis, limited standards in phase I clinical trials, insufficient use of biomarker analysis and also patient stratification, all of which contributed to the failure to achieve approval of enzastaurin as an anticancer therapeutic.
Collapse
Affiliation(s)
- T Bourhill
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Canada.
| | - A Narendran
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - R N Johnston
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
9
|
Yu W, Chen Y, Xiang R, Xu W, Wang Y, Tong J, Zhang N, Wu Y, Yan H. Novel phosphatidylinositol 3-kinase inhibitor BKM120 enhances the sensitivity of multiple myeloma to bortezomib and overcomes resistance. Leuk Lymphoma 2016; 58:428-437. [PMID: 27439454 DOI: 10.1080/10428194.2016.1190968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proteasome inhibitor bortezomib has proven efficacy against multiple myeloma. However, bortezomib activates the phosphatidylinositol 3-kinase/AKT (PI3K/AKT) pathway (which is essential to the development of myeloma), often resulting in drug resistance and disease recurrence. The addition of BKM120 significantly enhanced the apoptotic effects of bortezomib in both bortezomib-sensitive and bortezomib-resistant cells. Treatment with bortezomib alone increased the phosphorylation of AKT (P-AKT), whereas the addition of BKM120 markedly downregulated P-AKT in both bortezomib-sensitive and bortezomib-resistant cells. The clinical relevance of combined treatment with bortezomib and BKM120 was investigated in a xenograft mouse model and in myeloma patients, and the synergy of the combination was confirmed. In conclusion, the addition of BKM120 enhanced the sensitivity of myeloma cells to bortezomib.
Collapse
Affiliation(s)
- Wenjun Yu
- a Department of Hematology , Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Yubao Chen
- a Department of Hematology , Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Rufang Xiang
- a Department of Hematology , Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Wenbin Xu
- a Department of Hematology , Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Yan Wang
- a Department of Hematology , Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Jia Tong
- a Department of Hematology , Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Nan Zhang
- a Department of Hematology , Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Yingli Wu
- b Hongqiao International Institute of Medicine, Shanghai Tongren Hospital , Shanghai , China.,c Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education , School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Hua Yan
- a Department of Hematology , Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| |
Collapse
|
10
|
Reyland ME, Jones DNM. Multifunctional roles of PKCδ: Opportunities for targeted therapy in human disease. Pharmacol Ther 2016; 165:1-13. [PMID: 27179744 DOI: 10.1016/j.pharmthera.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The serine-threonine protein kinase, protein kinase C-δ (PKCδ), is emerging as a bi-functional regulator of cell death and proliferation. Studies in PKCδ-/- mice have confirmed a pro-apoptotic role for this kinase in response to DNA damage and a tumor promoter role in some oncogenic contexts. In non-transformed cells, inhibition of PKCδ suppresses the release of cytochrome c and caspase activation, indicating a function upstream of apoptotic pathways. Data from PKCδ-/- mice demonstrate a role for PKCδ in the execution of DNA damage-induced and physiologic apoptosis. This has led to the important finding that inhibitors of PKCδ can be used therapeutically to reduce irradiation and chemotherapy-induced toxicity. By contrast, PKCδ is a tumor promoter in mouse models of mammary gland and lung cancer, and increased PKCδ expression is a negative prognostic indicator in Her2+ and other subtypes of human breast cancer. Understanding how these distinct functions of PKCδ are regulated is critical for the design of therapeutics to target this pathway. This review will discuss what is currently known about biological roles of PKCδ and prospects for targeting PKCδ in human disease.
Collapse
Affiliation(s)
- Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - David N M Jones
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Zhang M, Sun F, Chen F, Zhou B, Duan Y, Su H, Lin X. Subcellular proteomic approach for identifying the signaling effectors of protein kinase C-β₂ under high glucose conditions in human umbilical vein endothelial cells. Mol Med Rep 2015; 12:7247-62. [PMID: 26459836 PMCID: PMC4626174 DOI: 10.3892/mmr.2015.4403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 08/05/2015] [Indexed: 11/06/2022] Open
Abstract
The high glucose‑induced activation of protein kinase C‑β2 (PKC‑β2) has an essential role in the pathophysiology of diabetes‑associated vascular disease. In the present study, human umbilical vein endothelial cells (HUVECs) were cultured in high and normal glucose conditions prior to being infected with a recombinant adenovirus to induce the overexpression of PKC‑β2. The activity of PKC‑β2 was also decreased using a selective PKC‑β2 inhibitor. A series of two‑dimensional electrophoresis images detected ~800 spots in the nuclei, and ~600 spots in the cytosol. Following intra‑ and inter‑group cross‑matching, 38 significantly altered spots were identified as high glucose‑induced and PKC‑β2‑associated nuclear proteins. In addition to the observation that the regulation of key proteins involved in the nuclear factor (NF)‑κB signaling cascade occurred in the cytosol, various transcription factors, including peroxisome proliferator‑activated receptor δ (PPAR‑δ), were also altered in the nuclei. A human protein‑protein interaction network of potential connections of PKC‑β2‑associated proteins was constructed in the proteomics investigation using Biological General Repository for Interaction Datasets. The results indicated that PKC‑β2 may be involved in high glucose‑induced glucose and lipid crosstalk by regulating PPAR‑δ. In addition, NF‑κB inhibitor‑interacting Ras‑like protein 1 may be important in the PKC‑β2‑NF‑κB inhibitor‑NF‑κB signaling pathway in HUVECs under high‑glucose conditions.
Collapse
Affiliation(s)
- Min Zhang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Fangfang Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bo Zhou
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yaqian Duan
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong Su
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xuebo Lin
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
12
|
Nakagawa R, Vukovic M, Tarafdar A, Cosimo E, Dunn K, McCaig AM, Holroyd A, McClanahan F, Ramsay AG, Gribben JG, Michie AM. Generation of a poor prognostic chronic lymphocytic leukemia-like disease model: PKCα subversion induces up-regulation of PKCβII expression in B lymphocytes. Haematologica 2015; 100:499-510. [PMID: 25616575 DOI: 10.3324/haematol.2014.112276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overwhelming evidence identifies the microenvironment as a critical factor in the development and progression of chronic lymphocytic leukemia, underlining the importance of developing suitable translational models to study the pathogenesis of the disease. We previously established that stable expression of kinase dead protein kinase C alpha in hematopoietic progenitor cells resulted in the development of a chronic lymphocytic leukemia-like disease in mice. Here we demonstrate that this chronic lymphocytic leukemia model resembles the more aggressive subset of chronic lymphocytic leukemia, expressing predominantly unmutated immunoglobulin heavy chain genes, with upregulated tyrosine kinase ZAP-70 expression and elevated ERK-MAPK-mTor signaling, resulting in enhanced proliferation and increased tumor load in lymphoid organs. Reduced function of PKCα leads to an up-regulation of PKCβII expression, which is also associated with a poor prognostic subset of human chronic lymphocytic leukemia samples. Treatment of chronic lymphocytic leukemia-like cells with the selective PKCβ inhibitor enzastaurin caused cell cycle arrest and apoptosis both in vitro and in vivo, and a reduction in the leukemic burden in vivo. These results demonstrate the importance of PKCβII in chronic lymphocytic leukemia-like disease progression and suggest a role for PKCα subversion in creating permissive conditions for leukemogenesis.
Collapse
Affiliation(s)
- Rinako Nakagawa
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow The Babraham Institute, Cambridge
| | - Milica Vukovic
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow MRC Centre for Regenerative Medicine, University of Edinburgh
| | - Anuradha Tarafdar
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Emilio Cosimo
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Karen Dunn
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Alison M McCaig
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Ailsa Holroyd
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Fabienne McClanahan
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London
| | - Alan G Ramsay
- Department of Haemato-Oncology, King's College London, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London
| | - Alison M Michie
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| |
Collapse
|
13
|
Keane NA, Glavey SV, Krawczyk J, O'Dwyer M. AKT as a therapeutic target in multiple myeloma. Expert Opin Ther Targets 2014; 18:897-915. [PMID: 24905897 DOI: 10.1517/14728222.2014.924507] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Multiple myeloma remains an incurable malignancy with poor survival. Novel therapeutic approaches capable of improving outcomes in patients with multiple myeloma are urgently required. AKT is a central node in the phosphatidylinositol-3-kinase/AKT/mammalian target of rapamycin signaling pathway with high expression in advanced and resistant multiple myeloma. AKT contributes to multiple oncogenic functions in multiple myeloma which may be exploited therapeutically. Promising preclinical data has lent support for pursuing further development of AKT inhibitors in multiple myeloma. Lead drugs are now entering the clinic. AREAS COVERED The rationale for AKT inhibition in multiple myeloma, pharmacological subtypes of AKT inhibitors in development, available results of clinical studies of AKT inhibitors and suitable drug partners for further development in combination with AKT inhibition in multiple myeloma are discussed. EXPERT OPINION AKT inhibitors are a welcome addition to the armamentarium against multiple myeloma and promising clinical activity is being reported from ongoing trials in combination with established and/or novel treatment approaches. AKT inhibitors may be set to improve patient outcomes when used in combination with synergistic drug partners.
Collapse
Affiliation(s)
- Niamh A Keane
- Galway University Hospital, Department of Haematology , Newcastle Road, Galway , Ireland
| | | | | | | |
Collapse
|
14
|
Azab F, Vali S, Abraham J, Potter N, Muz B, de la Puente P, Fiala M, Paasch J, Sultana Z, Tyagi A, Abbasi T, Vij R, Azab AK. PI3KCA plays a major role in multiple myeloma and its inhibition with BYL719 decreases proliferation, synergizes with other therapies and overcomes stroma-induced resistance. Br J Haematol 2014; 165:89-101. [DOI: 10.1111/bjh.12734] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Feda Azab
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
| | | | - Joseph Abraham
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
- Saint Louis College of Pharmacy; St. Louis MO USA
| | - Nicholas Potter
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
- Saint Louis College of Pharmacy; St. Louis MO USA
| | - Barbara Muz
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
| | - Pilar de la Puente
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
| | - Mark Fiala
- Section of Stem Cell Transplant and Leukemia; Division of Medical Oncology; Washington University School of Medicine; St. Louis MO USA
| | - Jacob Paasch
- Section of Stem Cell Transplant and Leukemia; Division of Medical Oncology; Washington University School of Medicine; St. Louis MO USA
| | - Zeba Sultana
- Cellworks Research India Pvt. Ltd.; Bangalore India
| | - Anuj Tyagi
- Cellworks Research India Pvt. Ltd.; Bangalore India
| | | | - Ravi Vij
- Section of Stem Cell Transplant and Leukemia; Division of Medical Oncology; Washington University School of Medicine; St. Louis MO USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
| |
Collapse
|
15
|
Verdelli D, Nobili L, Todoerti K, Mosca L, Fabris S, D'Anca M, Pellegrino E, Piva R, Inghirami G, Capelli C, Introna M, Baldini L, Chiaramonte R, Lombardi L, Neri A. Molecular events underlying interleukin-6 independence in a subclone of the CMA-03 multiple myeloma cell line. Genes Chromosomes Cancer 2013; 53:154-67. [PMID: 24327544 DOI: 10.1002/gcc.22127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 11/08/2022] Open
Abstract
We explored the molecular mechanisms involved in the establishement of CMA-03/06, an IL-6-independent variant of the multiple myeloma cell line CMA-03 previously generated in our Institution. CMA-03/06 cells grow in the absence of IL-6 with a doubling time comparable with that of CMA-03 cells; neither the addition of IL6 (IL-6) to the culture medium nor co-culture with multipotent mesenchymal stromal cells increases the proliferation rate, although they maintain the responsiveness to IL-6 stimulation as demonstrated by STAT1, STAT3, and STAT5 induction. IL-6 independence of CMA-03/06 cells is not apparently due to the development of an autocrine IL-6 loop, nor to the observed moderate constitutive activation of STAT5 and STAT3, since STAT3 silencing does not affect cell viability or proliferation. When compared to the parental cell line, CMA-03/06 cells showed an activated pattern of the NF-κB pathway. This finding is supported by gene expression profiling (GEP) analysis identifying an appreciable fraction of modulated genes (28/308) in the CMA-03/06 subclone reported to be involved in this pathway. Furthermore, although more resistant to apoptotic stimuli compared to the parental cell line, CMA-03/06 cells display a higher sensibility to NF-κB inhibition induced by bortezomib. Finally, GEP analysis suggests an involvement of a number of cytokines, which might contribute to IL-6 independence of CMA-03/06 by stimulating growth and antiapoptotic processes. In conclusion, the parental cell-line CMA-03 and its variant CMA-03/06 represent a suitable model to further investigate molecular mechanisms involved in the IL-6-independent growth of myeloma cells.
Collapse
Affiliation(s)
- Donata Verdelli
- Department of Clinical Sciences and Community Health, University of Milano and Hematology-CTMO, Fondazione Cà Granda, IRCCS Policlinico, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Glauer J, Pletz N, Schön M, Schneider P, Liu N, Ziegelbauer K, Emmert S, Wulf GG, Schön MP. A novel selective small-molecule PI3K inhibitor is effective against human multiple myeloma in vitro and in vivo. Blood Cancer J 2013; 3:e141. [PMID: 24013662 PMCID: PMC3789203 DOI: 10.1038/bcj.2013.37] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 07/13/2013] [Accepted: 07/19/2013] [Indexed: 12/24/2022] Open
Abstract
Developing effective therapies against multiple myeloma (MM) is an unresolved challenge. Phosphatidylinositol-3-kinase (PI3K) activation may be associated with tumor progression and drug resistance, and inhibiting PI3K can induce apoptosis in MM cells. Thus, targeting of PI3K is predicted to increase the susceptibility of MM to anticancer therapy. The lead compound of a novel class of PI3K inhibitors, BAY80-6946 (IC50=0.5 nM against PI3K-α), was highly efficacious in four different MM cell lines, where it induced significant antitumoral effects in a dose-dependent manner. The compound inhibited cell cycle progression and increased apoptosis (P<0.001 compared with controls). Moreover, it abrogated the stimulation conferred by insulin-like growth-factor-1, a mechanism relevant for MM progression. These cellular effects were paralleled by decreased Akt phosphorylation, the main downstream target of PI3K. Likewise, profound antitumoral activity was observed ex vivo, as BAY80-6946 significantly inhibited proliferation of freshly isolated myeloma cells from three patients (P<0.001 compared with vehicle). In addition, BAY80-6946 showed convincing in vivo activity against the human AMO-1 and MOLP-8 myeloma cell lines in a preclinical murine xenograft model, where treatment with 6 mg/kg every other day for 2 weeks reduced the cell numbers by 87.0% and 69.3%, respectively (P<0.001 compared with vehicle), without overt toxicity in treated animals.
Collapse
Affiliation(s)
- J Glauer
- Department of Dermatology, Venereology and Allergology, University Medical Center, Georg August University, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Saba NS, Levy LS. Protein kinase C-beta inhibition induces apoptosis and inhibits cell cycle progression in acquired immunodeficiency syndrome-related non-hodgkin lymphoma cells. J Investig Med 2013; 60:29-38. [PMID: 21997316 DOI: 10.2310/jim.0b013e318237eb55] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Acquired immunodeficiency syndrome (AIDS)-related non-Hodgkin lymphoma (NHL) constitutes an aggressive variety of lymphomas characterized by increased extranodal involvement, relapse rate, and resistance to chemotherapy. Protein kinase C-beta (PKCβ) targeting showed promising results in preclinical and clinical studies involving a wide variety of cancers, but studies describing the role of PKCβ in AIDS-NHL are primitive if not lacking. METHODS In the present study, 3 AIDS-NHL cell lines were examined: 2F7 (AIDS-Burkitt lymphoma), BCBL-1 (AIDS-primary effusion lymphoma), and UMCL01-101 (AIDS-diffuse large B-cell lymphoma). RESULTS Immunoblot analysis demonstrated expression of PKCβ1 and PKCβ2 in 2F7 and UMCL01-101 cells, and PKCβ1 alone in BCBL-1 cells. The viability of 2F7 and BCBL-1 cells decreased significantly in the presence of PKCβ-selective inhibitor at half-maximal inhibitory concentration of 14 and 15 μmol/L, respectively, as measured by tetrazolium dye reduction assay. In contrast, UMCL01-101 cells were relatively resistant. As determined using flow cytometric deoxynucleotidyl transferase dUTP nick-end labeling assay with propidium iodide staining, the responsiveness of sensitive cells was associated with apoptotic induction and cell cycle inhibition. Protein kinase C-beta-selective inhibition was observed not to affect AKT phosphorylation but to induce a rapid and sustained reduction in the phosphorylation of glycogen synthase kinase-3 beta, ribosomal protein S6, and mammalian target of rapamycin in sensitive cell lines. CONCLUSIONS The results indicate that PKCβ plays an important role in AIDS-related NHL survival and suggest that PKCβ targeting should be considered in a broader spectrum of NHL. The observations in BCBL-1 were unexpected in the absence of PKCβ2 expression and implicate PKCβ1 as a regulator in those cells.
Collapse
Affiliation(s)
- Nakhle S Saba
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | |
Collapse
|
18
|
Zeng L, Webster SV, Newton PM. The biology of protein kinase C. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:639-61. [PMID: 22453963 DOI: 10.1007/978-94-007-2888-2_28] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review gives a basic introduction to the biology of protein kinase C, one of the first calcium-dependent kinases to be discovered. We review the structure and function of protein kinase C, along with some of the substrates of individual isoforms. We then review strategies for inhibiting PKC in experimental systems and finally discuss the therapeutic potential of targeting PKC. Each aspect is covered in summary, with links to detailed resources where appropriate.
Collapse
Affiliation(s)
- Lily Zeng
- School of Medicine, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
19
|
Cosenza M, Civallero M, Grisendi G, Marcheselli L, Roat E, Bari A, Sacchi S. Combination of low doses of Enzastaurin and Lenalidomide has synergistic activity in B-non-Hodgkin lymphoma cell lines. Ann Hematol 2012; 91:1613-22. [DOI: 10.1007/s00277-012-1490-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 05/02/2012] [Indexed: 12/27/2022]
|
20
|
Ghobrial IM, Munshi NC, Harris BN, Shi P, Porter NM, Schlossman RL, Laubach JP, Anderson KC, Desaiah D, Myrand SP, Wooldridge JE, Richardson PG, Abonour R. A phase I safety study of enzastaurin plus bortezomib in the treatment of relapsed or refractory multiple myeloma. Am J Hematol 2011; 86:573-8. [PMID: 21630305 DOI: 10.1002/ajh.22048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to assess the safety and identify the recommended doses of enzastaurin and bortezomib in combination for future Phase II studies in patients with relapsed or refractory multiple myeloma. Three dose levels (DLs) of oral enzastaurin and intravenous bortezomib were used according to a conventional "3 + 3" design. A loading dose of enzastaurin (250 mg twice/day [BID]) on Day 1 was followed by enzastaurin 125 mg BID for 1 week, after which bortezomib was added (Cycle 1, 28 days, 1.0 mg/m(2) : Days 8, 11, 15, and 18; seven subsequent 21-day cycles, 1.3 mg/m(2) : Days 1, 4, 8, and 11). Twenty-three patients received treatment; all patients received prior systemic therapy. Most patients received ≥3 regimens; 17 patients were bortezomib-refractory. A median of four treatment cycles (range 1-24) was completed. No dose-limiting toxicities were observed; thus, DL 3 was the recommended Phase II dose. The most common drug-related Grade 3/4 toxicities were thrombocytopenia (n = 6) and anemia (n = 2). No patients died on therapy. One patient (DL 1) achieved a very good partial response; three patients (DLs 2 and 3), a partial response; nine patients, stable disease; and four patients, progressive disease. The recommended Phase II doses in patients with relapsed or refractory multiple myeloma are as follows: enzastaurin loading dose of 375 mg three times/day on Day 1 followed by 250 mg BID, with bortezomib 1.3 mg/m(2) on Days 1, 4, 8, and 11 of a 21-day cycle. The combination was well-tolerated and demonstrated some antimyeloma activity.
Collapse
Affiliation(s)
- Irene M Ghobrial
- The Multiple Myeloma/Waldenstrom's Macroglobulinemia Program, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Civallero M, Cosenza M, Bari A, Sacchi S. Rational combinations of enzastaurin with novel targeted agents for patients with B-cell non-Hodgkin's lymphoma. Expert Opin Investig Drugs 2011; 20:1029-31. [DOI: 10.1517/13543784.2011.594793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Civallero M, Cosenza M, Grisendi G, Marcheselli L, Todoerti K, Sacchi S. Effects of enzastaurin, alone or in combination, on signaling pathway controlling growth and survival of B-cell lymphoma cell lines. Leuk Lymphoma 2011; 51:671-9. [DOI: 10.3109/10428191003637290] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Li XY, Li Y, Zhang Y, Wang K, Yuan X, Jin J, Zhang Y, Liu ZZ, Chen XG. A novel bisindolymaleimide derivative (WK234) inhibits proliferation and induces apoptosis through the protein kinase Cβ pathway, in chronic myelogenous leukemia K562 cells. Leuk Lymphoma 2011; 52:1312-20. [PMID: 21534868 DOI: 10.3109/10428194.2011.565393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
WK234, a novel bisindolymaleimide derivative, was designed as a protein kinase Cβ (PKCβ) inhibitor. The objective of this study was to evaluate the anti-tumor activity of WK234 in the human chronic myelogenous leukemia (CML) K562 cell line and to investigate possible mechanisms of its action. The results show that WK234 inhibited K562 cell proliferation in a time- and dose-dependent manner. WK234 increased cytochrome C release and caspase-3 cleavage, which indicates that it induced apoptosis via mitochondria- and caspase-mediated pathways. Western blotting showed that PKCβ1, PKCβ2, and their phosphorylation levels were effectively decreased after 2-4 h of WK234 treatment. Meanwhile the phosphorylation status of PKCβ downstream proteins, glycogen synthase kinase 3α/β (GSK3α/β) and extracellular signal-regulated kinase (ERK), were inhibited. WK234 blocked phorbol myristate acetate (PMA)-induced Ser(660) phosphorylation of PKCβ2 located at the cell membrane, and increased Ser(660) PKCβ2 expression within the cytoplasm and the nucleus. These results indicate that WK234 inhibited cell proliferation and induced apoptosis through suppressing the PKCβ signal pathway. WK234 might be a promising candidate for the treatment of CML.
Collapse
Affiliation(s)
- Xiang-Yan Li
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Morgillo F, D'Aiuto E, Troiani T, Martinelli E, Cascone T, De Palma R, Orditura M, De Vita F, Ciardiello F. RETRACTED: Antitumor activity of bortezomib in human cancer cells with acquired resistance to anti-epidermal growth factor receptor tyrosine kinase inhibitors. Lung Cancer 2011; 71:283-90. [PMID: 20619923 DOI: 10.1016/j.lungcan.2010.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 10/19/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief Concern has been raised about the duplication of the β-Actin protein blot in the western blots that are in Figure 3A and Figure 4C. The authors have been asked to provide an acceptable explanation for this and – after initial denial and being presented with an independent evaluation noted that the western blot for β-Actin in Figure 3A was erroneously uploaded as a partial duplication of the β-Actin western blot in Figure 4C. According to the authors, this mistake was due to the fact that both Figure 3A and Figure 4C are representing the same experiment with only different protein species presented in the two Figures and with the loading control β-Actin that is presented in both Figures. The Editor-in-Chief of the journal therefore feels that the findings of the manuscript cannot be relied upon and that the article needs to be retracted. All authors agree with this retraction and deeply regret these errors and apologize to the editorial board and readers for any inconvenience caused.
Collapse
Affiliation(s)
- Floriana Morgillo
- Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale F. Magrassi e A. Lanzara, Seconda Università degli Studi di Napoli, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Saba NS, Levy LS. Apoptotic induction in B-cell acute lymphoblastic leukemia cell lines treated with a protein kinase Cβ inhibitor. Leuk Lymphoma 2011; 52:877-86. [PMID: 21271861 DOI: 10.3109/10428194.2011.552136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) in adults exhibits a 5-year disease-free survival rate of only 25-40% after currently available treatment. Protein kinase Cβ (PKCβ) is under active consideration as a rational therapeutic target in several B-cell malignancies, but studies of its possible utility in B-ALL are lacking. Expression of PKCβ1 and PKCβ2 isoforms was demonstrated in five B-ALL cell lines characterized by distinctive chromosomal translocations, and sensitivity to PKCβ-selective inhibition was examined. Inhibitor treatment resulted in a dose-dependent reduction in viability in all cell lines, although pro-B ALL with t(4;11)(q21;q23) was most sensitive. Apoptotic induction was evident after 24-48 h of treatment, and an inhibition of cell cycle progression was detected in one cell line. Treatment resulted in a rapid induction of poly(ADP-ribose) polymerase (PARP) cleavage, indicating caspase-3-mediated apoptosis, and a rapid reduction in phosphorylation of AKT and its downstream target glycogen synthase kinase 3β (GSK3β). These results indicate that PKCβ targeting should be considered as a potential treatment option in B-ALL.
Collapse
Affiliation(s)
- Nakhle S Saba
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | |
Collapse
|
26
|
Dumstorf CA, Konicek BW, McNulty AM, Parsons SH, Furic L, Sonenberg N, Graff JR. Modulation of 4E-BP1 Function as a Critical Determinant of Enzastaurin-Induced Apoptosis. Mol Cancer Ther 2010; 9:3158-63. [DOI: 10.1158/1535-7163.mct-10-0413] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Santo L, Vallet S, Hideshima T, Cirstea D, Ikeda H, Pozzi S, Patel K, Okawa Y, Gorgun G, Perrone G, Calabrese E, Yule M, Squires M, Ladetto M, Boccadoro M, Richardson PG, Munshi NC, Anderson KC, Raje N. AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in multiple myeloma via GSK-3beta activation and RNA polymerase II inhibition. Oncogene 2010; 29:2325-36. [PMID: 20101221 PMCID: PMC3183744 DOI: 10.1038/onc.2009.510] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 01/08/2023]
Abstract
Dysregulated cell cycling is a universal hallmark of cancer and is often mediated by abnormal activation of cyclin-dependent kinases (CDKs) and their cyclin partners. Overexpression of individual complexes are reported in multiple myeloma (MM), making them attractive therapeutic targets. In this study, we investigate the preclinical activity of a novel small-molecule multi-CDK inhibitor, AT7519, in MM. We show the anti-MM activity of AT7519 displaying potent cytotoxicity and apoptosis; associated with in vivo tumor growth inhibition and prolonged survival. At the molecular level, AT7519 inhibited RNA polymerase II (RNA pol II) phosphorylation, a CDK9, 7 substrate, associated with decreased RNA synthesis confirmed by [(3)H] Uridine incorporation. In addition, AT7519 inhibited glycogen synthase kinase 3beta (GSK-3beta) phosphorylation; conversely pretreatment with a selective GSK-3 inhibitor and shRNA GSK-3beta knockdown restored MM survival, suggesting the involvement of GSK-3beta in AT7519-induced apoptosis. GSK-3beta activation was independent of RNA pol II dephosphorylation confirmed by alpha-amanitin, a specific RNA pol II inihibitor, showing potent inhibition of RNA pol II phosphorylation without corresponding effects on GSK-3beta phosphorylation. These results offer new insights into the crucial, yet controversial role of GSK-3beta in MM and show significant anti-MM activity of AT7519, providing the rationale for its clinical evaluation in MM.
Collapse
Affiliation(s)
- L Santo
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vangestel C, Van de Wiele C, Mees G, Peeters M. Forcing Cancer Cells to Commit Suicide. Cancer Biother Radiopharm 2009; 24:395-407. [DOI: 10.1089/cbr.2008.0598] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Christel Vangestel
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| | - Christophe Van de Wiele
- Department of Nuclear Medicine, Experimental Cancerology and Radiotherapy, University Hospital Ghent, Ghent, Belgium
| | - Gilles Mees
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marc Peeters
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
29
|
Verdelli D, Nobili L, Todoerti K, Intini D, Cosenza M, Civallero M, Bertacchini J, Deliliers GL, Sacchi S, Lombardi L, Neri A. Molecular targeting of the PKC-βinhibitor enzastaurin (LY317615) in multiple myeloma involves a coordinated downregulation of MYC and IRF4 expression. Hematol Oncol 2009; 27:23-30. [DOI: 10.1002/hon.875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Brennführer A, Neumann H, Pews-Davtyan A, Beller M. Catalytic and Stoichiometric Synthesis of Novel 3-Aminocarbonyl-, 3-Alkoxycarbonyl-, and 3-Amino-4-indolylmaleimides. European J Org Chem 2008. [DOI: 10.1002/ejoc.200800964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Abstract
Targeting protein kinase C (PKC) isoforms by the small molecule inhibitor enzastaurin has shown promising preclinical activity in a wide range of tumor cells. We further delineated its mechanism of action in multiple myeloma (MM) cells and found a novel role of beta-catenin in regulating growth and survival of tumor cells. Specifically, inhibition of PKC leads to rapid accumulation of beta-catenin by preventing the phosphorylation required for its proteasomal degradation. Microarray analysis and small-interfering RNA (siRNA)-mediated gene silencing in MM cells revealed that accumulated beta-catenin activates early endoplasmic reticulum stress signaling via eIF2alpha, C/EBP-homologous protein (CHOP), and p21, leading to immediate growth inhibition. Furthermore, accumulated beta-catenin contributes to enzastaurin-induced cell death. Sequential knockdown of beta-catenin, c-Jun, and p73, as well as overexpression of beta-catenin or p73 confirmed that accumulated beta-catenin triggers c-Jun-dependent induction of p73, thereby conferring MM cell apoptosis. Our data reveal a novel role of beta-catenin in endoplasmic reticulum (ER) stress-mediated growth inhibition and a new proapoptotic mechanism triggered by beta-catenin on inhibition of PKC isoforms. Moreover, we identify p73 as a potential novel therapeutic target in MM. Based on these and previous data, enzastaurin is currently under clinical investigation in a variety of hematologic malignancies, including MM.
Collapse
|