1
|
Maynard AG, Pohl NK, Mueller AP, Petrova B, Wong AYL, Wang P, Culhane AJ, Brook JR, Hirsch LM, Hoang N, Kirkland O, Braun T, Ducamp S, Fleming MD, Li H, Kanarek N. Folate depletion induces erythroid differentiation through perturbation of de novo purine synthesis. SCIENCE ADVANCES 2024; 10:eadj9479. [PMID: 38295180 PMCID: PMC10830111 DOI: 10.1126/sciadv.adj9479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Folate, an essential vitamin, is a one-carbon acceptor and donor in key metabolic reactions. Erythroid cells harbor a unique sensitivity to folate deprivation, as revealed by the primary pathological manifestation of nutritional folate deprivation: megaloblastic anemia. To study this metabolic sensitivity, we applied mild folate depletion to human and mouse erythroid cell lines and primary murine erythroid progenitors. We show that folate depletion induces early blockade of purine synthesis and accumulation of the purine synthesis intermediate and signaling molecule, 5'-phosphoribosyl-5-aminoimidazole-4-carboxamide (AICAR), followed by enhanced heme metabolism, hemoglobin synthesis, and erythroid differentiation. This is phenocopied by inhibition of folate metabolism using the inhibitor SHIN1, and by AICAR supplementation. Mechanistically, the metabolically driven differentiation is independent of mechanistic target of rapamycin complex 1 (mTORC1) and adenosine 5'-monophosphate-activated protein kinase (AMPK) and is instead mediated by protein kinase C. Our findings suggest that folate deprivation-induced premature differentiation of erythroid progenitor cells is a molecular etiology to folate deficiency-induced anemia.
Collapse
Affiliation(s)
- Adam G. Maynard
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Nancy K. Pohl
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard School of Public Health PhD Program, Boston, MA 02115, USA
| | - Annabel P. Mueller
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Alan Y. L. Wong
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Wang
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J. Culhane
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jeannette R. Brook
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Leah M. Hirsch
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ngoc Hoang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Orville Kirkland
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Tatum Braun
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sarah Ducamp
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Mark D. Fleming
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Hojun Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| |
Collapse
|
2
|
Mishra SK, Millman SE, Zhang L. Metabolism in acute myeloid leukemia: mechanistic insights and therapeutic targets. Blood 2023; 141:1119-1135. [PMID: 36548959 PMCID: PMC10375271 DOI: 10.1182/blood.2022018092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic rewiring and cellular reprogramming are trademarks of neoplastic initiation and progression in acute myeloid leukemia (AML). Metabolic alteration in leukemic cells is often genotype specific, with associated changes in epigenetic and functional factors resulting in the downstream upregulation or facilitation of oncogenic pathways. Targeting abnormal or disease-sustaining metabolic activities in AML provides a wide range of therapeutic opportunities, ideally with enhanced therapeutic windows and robust clinical efficacy. This review highlights the dysregulation of amino acid, nucleotide, lipid, and carbohydrate metabolism in AML; explores the role of key vitamins and enzymes that regulate these processes; and provides an overview of metabolism-directed therapies currently in use or development.
Collapse
Affiliation(s)
| | - Scott E. Millman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lingbo Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| |
Collapse
|
3
|
Garcia-Manero G, Pemmaraju N, Alvarado Y, Naqvi K, Ravandi F, Jabbour E, De Lumpa R, Kantarjian H, Advani A, Mukherjee S, Gerds A, Carraway HE, Nazha A, Iwamura H, Murase M, Bavisotto L, Kurman M, Maier G, Johansen M, Sekeres MA. Results of a Phase 1/2a dose-escalation study of FF-10501-01, an IMPDH inhibitor, in patients with acute myeloid leukemia or myelodysplastic syndromes. Leuk Lymphoma 2020; 61:1943-1953. [PMID: 32264726 DOI: 10.1080/10428194.2020.1747065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
FF-10501-01 potently inhibits inosine-5-monophosphate dehydrogenase (IMPDH), inducing anti-proliferative and pro-apoptotic effects in acute myeloid leukemia (AML) human cell lines resistant to hypomethylating agents. In this Phase 1/2a study, Phase 1 enrolled 38 patients with relapsed/refractory AML (n = 28) or myelodysplastic syndromes (MDS/CMML, n = 10) to receive FF-10501 oral doses 50-500 mg/m2 BID for 14 or 21 days out of each 28-day cycle. Fifteen additional patients with HMA-resistant MDS/CMML (Phase 2a) were treated at 400 mg/m2 BID for 21 days. Most Phase 1 adverse events were disease-related and low-grade. 3 of 19 (16%) evaluable AML patients achieved partial remission (31, 7, and 5 months). 2 of 20 (10%) evaluable MDS/CMML patients (Phase 1 and 2a) attained marrow complete remission, one continuing treatment for 17 months. While FF-10501-01 demonstrated clinical activity and target inhibition in heavily pretreated patients with AML and MDS/CMML, increased mucositis events led to Phase 2a closure (ClinTrials.gov#NCT02193958).
Collapse
Affiliation(s)
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yesid Alvarado
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Naqvi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ricardo De Lumpa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anjali Advani
- Leukemia Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Sudipto Mukherjee
- Leukemia Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Aaron Gerds
- Leukemia Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Hetty E Carraway
- Leukemia Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Aziz Nazha
- Leukemia Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | - Michael Kurman
- FUJIFILM Pharmaceuticals U.S.A., Inc, Cambridge, MA, USA
| | - Gary Maier
- FUJIFILM Pharmaceuticals U.S.A., Inc, Cambridge, MA, USA
| | - Mary Johansen
- FUJIFILM Pharmaceuticals U.S.A., Inc, Cambridge, MA, USA
| | - Mikkael A Sekeres
- Leukemia Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Matsumoto T, Jimi S, Migita K, Terada K, Mori M, Takamatsu Y, Suzumiya J, Hara S. FF-10501 induces caspase-8-mediated apoptotic and endoplasmic reticulum stress-mediated necrotic cell death in hematological malignant cells. Int J Hematol 2019; 110:606-617. [PMID: 31407254 DOI: 10.1007/s12185-019-02722-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023]
Abstract
FF-10501 is a novel inhibitor of inosine monophosphate dehydrogenase (IMPDH). Clinical trials of FF-10501 for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are currently being conducted in the United States. Although it has been shown that FF-10501 induces apoptosis in hematological malignant cells, the intracellular mechanisms of this effect have not been characterized. We conducted an in vitro study to elucidate the mechanisms of FF-10501-induced cell death using 12 hematological malignant cell lines derived from myeloid and lymphoid malignancies. FF-10501 suppressed the growth of each cell line in a dose-dependent manner. However, the clinically relevant dose (40 μM) of FF-10501 induced cell death in three cell lines (MOLM-13, OCI-AML3, and MOLT-3). Investigation of the cell death mechanism suggested that FF-10501 induces both apoptotic and necrotic cell death. FF-10501-induced apoptosis was mediated by caspase-8 activation followed by activation of the mitochondrial pathway in MOLM-13 and MOLT-3 cells. FF-10501 induced necrotic cell death via endoplasmic reticulum stress in OCI-AML3 cells. The present study is the first to identify intracellular pathways involved in FF-10501-induced cell death.
Collapse
Affiliation(s)
- Taichi Matsumoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan.
| | - Shiro Jimi
- Central Laboratory of Pathology and Morphology, Department of Medicine, Fukuoka University, Fukuoka, Japan
| | - Keisuke Migita
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan
| | - Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yasushi Takamatsu
- Division of Medical Oncology, Hematology, and Infectious Diseases, Department of Medicine, Fukuoka University, Fukuoka, Japan
| | - Junji Suzumiya
- Department of Oncology/Hematology, Shimane University Hospital, Shimane, Japan
| | - Shuuji Hara
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan
| |
Collapse
|