1
|
Barshidi A, Ardeshiri K, Ebrahimi F, Alian F, Shekarchi AA, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of exhausted natural killer cells in the immunopathogenesis and treatment of leukemia. Cell Commun Signal 2024; 22:59. [PMID: 38254135 PMCID: PMC10802000 DOI: 10.1186/s12964-023-01428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
The immune responses to cancer cells involve both innate and acquired immune cells. In the meantime, the most attention has been drawn to the adaptive immune cells, especially T cells, while, it is now well known that the innate immune cells, especially natural killer (NK) cells, play a vital role in defending against malignancies. While the immune cells are trying to eliminate malignant cells, cancer cells try to prevent the function of these cells and suppress immune responses. The suppression of NK cells in various cancers can lead to the induction of an exhausted phenotype in NK cells, which will impair their function. Recent studies have shown that the occurrence of this phenotype in various types of leukemic malignancies can affect the prognosis of the disease, and targeting these cells may be considered a new immunotherapy method in the treatment of leukemia. Therefore, a detailed study of exhausted NK cells in leukemic diseases can help both to understand the mechanisms of leukemia progression and to design new treatment methods by creating a deeper understanding of these cells. Here, we will comprehensively review the immunobiology of exhausted NK cells and their role in various leukemic malignancies. Video Abstract.
Collapse
Affiliation(s)
- Asal Barshidi
- Department of Biological Sciences, Faculty of Sciences, University of Kurdistan, Sanandaj, Iran
| | - Keivan Ardeshiri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Ning Q, Jian T, Cui S, Shi L, Jian X, He X, Zhang X, Li X. Tim-3 facilitates immune escape in benzene-induced acute myeloid leukemia mouse model by promoting macrophage M2 polarization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115532. [PMID: 37806131 DOI: 10.1016/j.ecoenv.2023.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Benzene poisoning can cause acute myeloid leukemia (AML) through a variety of passways. Tim-3 has gained prominence as a potential candidate in mediating immunosuppression in tumor microenvironments. The macrophage polarization is also related to immune escape. Herein, we reported that Tim-3 and macrophage M2 polarization play a vital role in benzene-induced AML. First, the benzene-induced AML C3H/He mouse model was constructed by subcutaneously injecting 250 mg/kg of benzene. After six months, macrophage phenotype, cytokines, and Tim-3 expression levels were investigated. Flow cytometry assay revealed that the T-cell inhibitory receptor Tim-3 was significantly upregulated in both bone marrow and spleen of the benzene-induced AML mouse model. Elisa's results displayed a decreased serum level of IL-12 while increased TGF-β1. Mechanistically, changes in cytokine secretion promote the growth of M2-type macrophages in the bone marrow and spleen, as determined by immunofluorescence assay. The increased levels of PI3K, AKT, and mTOR in the benzene-exposure group further proved the crucial role of Tim-3 in regulating the functional status of macrophages in the AML microenvironment. These results demonstrate that Tim-3 and macrophage polarization may play a vital role during the immune escape of the benzene-induced AML. This study provides a new potential intervention site for immune checkpoint-based AML therapeutic strategy.
Collapse
Affiliation(s)
- Qiong Ning
- Department of Occupational Diseases, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250002, China
| | - Tianzi Jian
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Siqi Cui
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Longke Shi
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangdong Jian
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaopeng He
- Department of Thoracic surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiangxing Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangxin Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Dunai C, Ames E, Ochoa MC, Fernandez-Sendin M, Melero I, Simonetta F, Baker J, Alvarez M. Killers on the loose: Immunotherapeutic strategies to improve NK cell-based therapy for cancer treatment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:65-122. [PMID: 35798507 DOI: 10.1016/bs.ircmb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that control tumor progression by not only directly killing cancer cells, but also by regulating other immune cells, helping to orchestrate a coordinated anti-tumor response. However, despite the tremendous potential that this cell type has, the clinical results obtained from diverse NK cell-based immunotherapeutic strategies have been, until recent years, rather modest. The intrinsic regulatory mechanisms that are involved in the control of their activation as well as the multiple mechanisms that tumor cells have developed to escape NK cell-mediated cytotoxicity likely account for the unsatisfactory clinical outcomes. The current approaches to improve long-term NK cell function are centered on modulating different molecules involved in both the activation and inhibition of NK cells, and the latest data seems to advocate for combining strategies that target multiple aspects of NK cell regulation. In this review, we summarize the different strategies (such as engineered NK cells, CAR-NK, NK cell immune engagers) that are currently being used to take advantage of this potent and complex immune cell.
Collapse
Affiliation(s)
- Cordelia Dunai
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Maria C Ochoa
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Myriam Fernandez-Sendin
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Centre in Onco-Haematology, Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Jeanette Baker
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
4
|
Hong J, Xia L, Huang Z, Yuan X, Liang X, Dai J, Wu Z, Liang L, Ruan M, Long Z, Cheng X, Chen X, Ni J, Ge J, Li Q, Zeng Q, Xia R, Wang Y, Yang M. TIM-3 Expression Level on AML Blasts Correlates With Presence of Core Binding Factor Translocations Rather Than Clinical Outcomes. Front Oncol 2022; 12:879471. [PMID: 35494006 PMCID: PMC9046698 DOI: 10.3389/fonc.2022.879471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) expresses on leukemic stem and progenitor populations of non-M3 acute myeloid leukemia (AML) as well as T lymphocytes. TIM-3 is thought to be involved in the self-renewal of leukemic stem cells and the immune escape of AML cells, however its correlation with AML prognosis is still controversial and worthy of further investigation. Methods we simultaneously assessed TIM-3 expression levels of leukemic blasts and T lymphocytes in the bone marrow of de novo AML patients using flow cytometry. The correlations of TIM-3 expression between leukemic blasts and T lymphocytes and the correlations of TIM-3 expression with various patient parameters were analyzed. In addition, the Cancer Genome Atlas (TCGA) data of AML patients were acquired and analyzed to verify the results. Results TIM-3 expression of CD34+ leukemic blasts (R2 = 0.95, p<0.0001) and CD34+CD38- leukemic stem cells (R2 = 0.75, p<0.0001) were significantly and positively correlated with that of the whole population of leukemic blasts. In addition, TIM-3 expression level of leukemic blasts correlated significantly and positively with that of CD8+ (R2 = 0.44, p<0.0001) and CD4+ (R2 = 0.16, p=0.0181) lymphocytes, and higher TIM-3 expression of leukemic blasts was significantly associated with a greater proportion of peripheral CD8+ T lymphocytes (R2 = 0.24, p=0.0092), indicating that TIM-3 on leukemic blasts might alter adaptive immunity of AML patients. Regarding clinical data, the presence of core binding factor (CBF) translocations was significantly correlated with higher TIM-3 expression of leukemic blasts (CBF versus non-CBF, median 22.78% versus 1.28%, p=0.0012), while TIM-3 expression levels of leukemic blasts were not significantly associated with the remission status after induction chemotherapy (p=0.9799), overall survival (p=0.4201) or event-free survival (p=0.9873). Similar to our results, TCGA data showed that patients with CBF translocations had significantly higher mRNA expression level of HAVCR2 (the gene encoding TIM-3) (median, 9.81 versus 8.69, p<0.0001), and as all patients in the cohort were divided into two groups based on the median HAVCR2 expression level, 5-year overall survivals were not significantly different (low versus high, 24.95% versus 24.54%, p=0.6660). Conclusion TIM-3 expression level on AML blasts correlates with presence of CBF translocations rather than clinical outcomes.
Collapse
Affiliation(s)
- Jian Hong
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Leiming Xia
- Department of Hematology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenqi Huang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaodong Yuan
- Division of Life Sciences and Medicine, Department of Organ Transplantation Center, Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
| | - Xinglin Liang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jifei Dai
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhonghui Wu
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Liang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Ruan
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Cheng
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowen Chen
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Ni
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingsheng Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingshu Zeng
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixiang Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Mingzhen Yang, ; Yi Wang,
| | - Mingzhen Yang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Hematology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Mingzhen Yang, ; Yi Wang,
| |
Collapse
|