1
|
Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D, Wei F. CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med 2021; 25:4501-4515. [PMID: 33837664 PMCID: PMC8093972 DOI: 10.1111/jcmm.16541] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
CDR1as is a well‐identified circular RNA with regulatory roles in a variety of physiological processes. However, the effects of CDR1as on stemness of periodontal ligament stem cells (PDLSCs) and the underlying mechanisms remain unclear. In this study, we detect CDR1as in human PDLSCs, and subsequently demonstrate that CDR1as maintains PDLSC stemness. Knockdown of CDR1as decreases the expression levels of stemness‐related genes and impairs the cell's multi‐differentiation and cell migration abilities, while overexpression of CDR1as increases the expression levels of stemness‐related genes and enhances these abilities. Furthermore, our results indicate that the RNA‐binding protein hnRNPM directly interacts with CDR1as and regulates its expression in PDLSCs. In addition, we show that CDR1as promotes the expression of stemness‐related genes in PDLSCs by inhibiting miR‐7‐mediated suppression of KLF4 expression. Collectively, our results demonstrate that CDR1as participates in the molecular circuitry that regulates PDLSC stemness.
Collapse
Affiliation(s)
- Xiuge Gu
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xiaoyu Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Ye Jin
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Mengying Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongxu Liu
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
2
|
Lee WC, Kim DY, Kim MJ, Lee HJ, Bharti D, Lee SH, Kang YH, Rho GJ, Jeon BG. Delay of cell growth and loss of stemness by inhibition of reverse transcription in human mesenchymal stem cells derived from dental tissue. Anim Cells Syst (Seoul) 2019; 23:335-345. [PMID: 31700699 PMCID: PMC6830198 DOI: 10.1080/19768354.2019.1651767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
The present study investigated the cellular properties in the dental tissue-derived mesenchymal stem cells (DSCs) exposed to nevirapine (NVP), an inhibitor of reverse transcriptase (RTase). After a prolonged exposure of DSCs for 2 weeks, the population doubling time (PDT) was significantly (P < .05) increased by delayed cell growth in the DSCs treated with 250 and 500 μM NVP, compared with untreated DSCs. Furthermore, the G1 phase of cell cycle with high activity of senescence-associated β-galactosidase was also significantly (P < .05) increased in the 250 μM NVP-treated DSCs, compared with untreated DSCs. The level of telomerase activity was unchanged between control and treatment. However, following the treatment of NVP, negative surface markers for mesenchymal stem cells (MSCs), such as CD34 and CD45, were significantly (P < .05) increased, while positive surface markers for MSCs, such as CD90 and CD105, were significantly (P < .05) decreased in the NVP-treated DSCs than those of untreated DSCs. Furthermore, the differentiation capacity into mesodermal lineage was gradually decreased, and a significant (P < .05) decrease of expression level of NANOG, OCT-4 and SOX-2 transcripts was observed in the DSCs treated with NVP, compared with untreated control DSCs. Taken together, the present results have revealed that inhibition of RTase by NVP induces delayed cell growth and loss of stemness.
Collapse
Affiliation(s)
- Won-Cheol Lee
- Department of Biology Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Dae-Young Kim
- Department of Biology Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Mi-Jeong Kim
- Department of Biology Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon-Jeong Lee
- OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Republic of Korea
| | - Dinesh Bharti
- OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Ho Lee
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Republic of Korea
| | - Gyu-Jin Rho
- OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Republic of Korea
| | - Byeong-Gyun Jeon
- Department of Biology Education, Gyeongsang National University, Jinju, Republic of Korea.,Institute of Education, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
3
|
Kim YD, Jang SJ, Lim EJ, Ha JS, Shivakumar SB, Jeong GJ, Rho GJ, Jeon BG. Induction of telomere shortening and cellular apoptosis by sodium meta-arsenite in human cancer cell lines. Anim Cells Syst (Seoul) 2017; 21:241-254. [PMID: 30460075 PMCID: PMC6138346 DOI: 10.1080/19768354.2017.1342691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/08/2017] [Accepted: 06/10/2017] [Indexed: 12/16/2022] Open
Abstract
The present study assessed the cytotoxicity of sodium meta-arsenite (SMA) on telomere shortening and cellular apoptosis in human A-549, MDA-MB-231 and U87-MG cancer cell lines. Following 2 weeks of 1 μM SMA treatment, population doubling time (PDT) was significantly (P < .05) increased by the inhibition of cell proliferation in all the cancer cell lines compared to that in untreated controls. Level of telomerase activity by relative-quantitative telomerase repeat amplification protocol was significantly (P < .05) downregulated by SMA treatment with significant (P < .05) decrease of both telomerase reverse transcriptase and telomerase RNA component transcripts, responsible for telomerase activity. A significant (P < .05) shortening of telomeric repeats by telomere restriction fragment analysis was consequently observed in SMA-treated cells. Moreover, high incidence of cells with senescence-associated β-glucosidase activity was observed in SMA-treated cells and some cells were also differentiated into adipocytes probably due to the loss of tumorous characterizations. Cellular apoptosis proven by DNA fragmentation was observed, and intrinsic apoptotic transcripts (BAX, caspase 3 and caspase 9) and stress-related transcripts (p21, HSP70 and HSP90) were significantly (P < .05) increased in three cancer cell lines treated with SMA. Based on the present study, SMA treatment apparently induced a shortening of telomere length and cytotoxicity, such as induction of cell senescence, apoptosis and cell differentiation. Therefore, we conclude that SMA treatment at specific concentration can lead to gradual loss of tumorous characterizations and can be considered as a potential anti-cancer drug for chemotherapy treatment.
Collapse
Affiliation(s)
- Yoon-Dong Kim
- Department of Biology Education, College of Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Si-Jeong Jang
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Gyeongsangnam-do, Republic of Korea
| | - Eun-Ji Lim
- Department of Biology Education, College of Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Sook Ha
- Department of Biology Education, College of Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Sharath Belame Shivakumar
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Gyeongsangnam-do, Republic of Korea
| | - Gie-Joon Jeong
- Department of Biology Education, College of Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Gyeongsangnam-do, Republic of Korea
| | - Byeong-Gyun Jeon
- Department of Biology Education, College of Education, Gyeongsang National University, Jinju, Republic of Korea.,Research Institute of Education, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
4
|
Burdzinska A, Dybowski B, Zarychta-Wisniewska W, Kulesza A, Zagozdzon R, Gajewski Z, Paczek L. The Anatomy of Caprine Female Urethra and Characteristics of Muscle and Bone Marrow Derived Caprine Cells for Autologous Cell Therapy Testing. Anat Rec (Hoboken) 2016; 300:577-588. [PMID: 27741564 DOI: 10.1002/ar.23498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/14/2016] [Accepted: 07/03/2016] [Indexed: 02/01/2023]
Abstract
Cell therapy is emerging as an alternative treatment of stress urinary incontinence. However, many aspects of the procedure require further optimization. A large animal model is needed to reliably test cell delivery methods. In this study, we aim to determine suitability of the goat as an experimental animal for testing intraurethral autologous cell transplantation in terms of urethral anatomy and cell culture parameters. The experiments were performed in 12 mature/aged female goats. Isolated caprine muscle derived cells (MDC) were myogenic in vitro and mesenchymal stem cells (MSC) population was able to differentiate into adipo-, osteo- and chondrogenic lineages. The median yield of cells after 3 weeks of culture amounted 47 × 10(6) for MDC and 37 × 10(6) for MSC. Urethral pressure profile measurements revealed the mean functional urethral length of 3.75 ± 0.7 cm. The mean maximal urethral closure pressure amounted 63.5 ± 5.9 cmH2 O and the mean functional area was 123.3 ± 19.4 cm*cmH2 O. The omega- shaped striated urethral sphincter was well developed in the middle and distal third of the urethra and its mean thickness on cross section was 2.3 mm. In the proximal part of the urethra only loosely arranged smooth muscle fibers were identified. To conclude, presented data demonstrate that caprine MDC and MSC can be expanded in vitro in a repeatable manner even when mature or aged animals are cell donors. Results suggest that female caprine urethra has similar parameters to those reported in human and therefore the goat can be an appropriate experimental animal for testing intraurethral cell transplantation. Anat Rec, 00:000-000, 2016. © 2016 Wiley Periodicals, Inc. Anat Rec, 300:577-588, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Burdzinska
- Department of Immunology, Transplantology and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Bartosz Dybowski
- Department of Urology, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Zarychta-Wisniewska
- Department of Immunology, Transplantology and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Kulesza
- Department of Immunology, Transplantology and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Radoslaw Zagozdzon
- Department of Immunology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.,Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Zdzislaw Gajewski
- Department of Large Animal Diseases with Clinic Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Leszek Paczek
- Department of Immunology, Transplantology and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Bharti D, Shivakumar SB, Subbarao RB, Rho GJ. Research Advancements in Porcine Derived Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2016. [PMID: 26201864 PMCID: PMC5403966 DOI: 10.2174/1574888x10666150723145911] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs) before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton’s jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs) have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson’s disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases.
Collapse
Affiliation(s)
| | | | | | - Gyu-Jin Rho
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 900 Gazwa, Jinju 660-701, Republic of Korea.
| |
Collapse
|
6
|
Comparison of Immunomodulation Properties of Porcine Mesenchymal Stromal/Stem Cells Derived from the Bone Marrow, Adipose Tissue, and Dermal Skin Tissue. Stem Cells Int 2015; 2016:9581350. [PMID: 26798368 PMCID: PMC4699062 DOI: 10.1155/2016/9581350] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) demonstrate immunomodulation capacity that has been implicated in the reduction of graft-versus-host disease. Accordingly, we herein investigated the capacity of MSCs derived from several tissue sources to modulate both proinflammatory (interferon [IFN] γ and tumor necrosis factor [TNF] α) and immunosuppressive cytokines (transforming growth factor [TGF] β and interleukin [IL] 10) employing xenogeneic human MSC-mixed lymphocyte reaction (MLR) test. Bone marrow-derived MSCs showed higher self-renewal capacity with relatively slow proliferation rate in contrast to adipose-derived MSCs which displayed higher proliferation rate. Except for the lipoprotein gene, there were no marked changes in osteogenesis- and adipogenesis-related genes following in vitro differentiation; however, the histological marker analysis revealed that adipose MSCs could be differentiated into both adipose and bone tissue. TGFβ and IL10 were detected in adipose MSCs and bone marrow MSCs, respectively. However, skin-derived MSCs expressed both IFNγ and IL10, which may render them sensitive to immunomodulation. The xenogeneic human MLR test revealed that MSCs had a partial immunomodulation capacity, as proliferation of activated and resting peripheral blood mononuclear cells was not affected, but this did not differ among MSC sources. MSCs were not tumorigenic when introduced into immunodeficient mice. We concluded that the characteristics of MSCs are tissue source-dependent and their in vivo application requires more in-depth investigation regarding their precise immunomodulation capacities.
Collapse
|
7
|
Jeon BG, Bharti D, Lee WJ, Jang SJ, Park JS, Jeong GJ, Rho GJ. Comparison of mesenchymal stem cells isolated from various tissues of isogenic mini-pig. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1089323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
8
|
Jeon BG, Jang SJ, Park JS, Subbarao RB, Jeong GJ, Park BW, Rho GJ. Differentiation potential of mesenchymal stem cells isolated from human dental tissues into non-mesodermal lineage. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1087430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Moon JY, Kim SW, Yun GM, Lee HS, Kim YD, Jeong GJ, Ullah I, Rho GJ, Jeon BG. Inhibition of cell growth and down-regulation of telomerase activity by amygdalin in human cancer cell lines. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1060261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
10
|
Subbarao RB, Ullah I, Kim EJ, Jang SJ, Lee WJ, Jeon RH, Kang D, Lee SL, Park BW, Rho GJ. Characterization and evaluation of neuronal trans-differentiation with electrophysiological properties of mesenchymal stem cells isolated from porcine endometrium. Int J Mol Sci 2015; 16:10934-51. [PMID: 26006231 PMCID: PMC4463684 DOI: 10.3390/ijms160510934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
Endometrial stromal cells (EMSCs) obtained from porcine uterus (n = 6) were positive for mesenchymal stem cell markers (CD29, CD44 and CD90), and negative for epithelial marker CD9 and hematopoietic markers CD34, CD45 analyzed by flow cytometry. Further the cells were positive for expression of mesenchymal markers, CD105, CD140b, and CD144 by PCR. Pluripotent markers OCT4, SOX2, and NANOG were positively expressed in EMSCs analyzed by Western blotting and PCR. Further, differentiation into adipocytes and osteocytes was confirmed by cytochemical staining and lineage specific gene expression by quantitative realtime-PCR. Adipocyte (FABP, LPL, AP2) and osteocyte specific genes (ON, BG, RUNX2) in differentiated EMSCs showed significant (p < 0.05) increase in expression compared to undifferentiated control cells. Neurogenic transdifferentiation of EMSCs exhibited distinctive dendritic morphology with axon projections and neuronal specific genes, NFM, NGF, MBP, NES, B3T and MAP2 and proteins, B3T, NFM, NGF, and TRKA were positively expressed in neuronal differentiated cells. Functional analysis of neuronal differentiated EMSCs displayed voltage-dependence and kinetics for transient outward K+ currents (Ito), at holding potential of -80 mV, Na+ currents and during current clamp, neuronal differentiated EMSCs was more negative than that of control EMSCs. Porcine EMSCs is a suitable model for studying molecular mechanism of transdifferentiation, assessment of electrophysiological properties and their efficiency during in vivo transplantation.
Collapse
Affiliation(s)
- Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Eun-Jin Kim
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Won-Jae Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Ryoung Hoon Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Dawon Kang
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|