1
|
Wang B, Paullada-Salmerón JA, Muñoz-Cueto JA. Gonadotropin-inhibitory hormone and its receptors in teleosts: Physiological roles and mechanisms of actions. Gen Comp Endocrinol 2024; 350:114477. [PMID: 38387532 DOI: 10.1016/j.ygcen.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China; Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain.
| |
Collapse
|
2
|
Sang L, Sun S, Wang J, Gao C, Chen D, Xie X. Dual effects of gonadotropin-inhibitory hormone on testicular development in prepubertal Minxinan Black rabbits ( Oryctolagus cuniculus). Front Vet Sci 2024; 11:1320452. [PMID: 38328257 PMCID: PMC10847550 DOI: 10.3389/fvets.2024.1320452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a neurohormone that not only suppresses reproduction at the brain level but also regulates steroidogenesis and gametogenesis at the gonad level. However, its function in gonadal physiology has received little attention in rabbits. The main objective of this study was to evaluate the effects of GnIH on testicular development and function in prepubertal Minxinan Black rabbits (Oryctolagus cuniculus). In the present study, we investigated the serum reproductive hormone concentration, testicular parameters, morphology of seminiferous tubules, apoptosis of testicular cells, and expression of reproductive-related genes in male prepubertal Minxinan Black rabbits intraperitoneally administered with 0, 0.5, 5, or 50 μg quail GnIH-related peptides (qGnIH) for 10 days. Compared with the vehicle, administration with 5 μg of qGnIH downregulated the serum testosterone concentration and mRNA levels of spermatogenic genes (PCNA, FSHR, INHβA, HSF1, and AR) and upregulated the apoptosis rate of testicular cells; administration with 50 μg of qGnIH decreased the serum testosterone concentration and hypothalamic GnIH gene mRNA level and increased the serum LH concentration, pituitary LHβ gene mRNA level, testicular weight, gonadosomatic index (GSI), and spermatogenic cell layer thickness. It is concluded that GnIH could exert dual actions on testicular development depending on the male prepubertal rabbits receiving different intraperitoneal doses.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiping Xie
- Fujian Key Laboratory of Animal Genetics and Breeding, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
3
|
Chen J, Li Y, Zhang W, Wu Y, Zhao L, Huang X, Fang Y, Wang B. Molecular characterization and ontogenetic expression profiles of LPXRFa and its receptor in Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol 2024; 345:114392. [PMID: 37858870 DOI: 10.1016/j.ygcen.2023.114392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Investigations concerning the LPXRFa system are rarely conducted in flatfish species. Here, we first identified and characterized lpxrfa and its cognate receptor lpxrfa-r genes in the Japanese flounder (Paralichthys olivaceus). The coding DNA sequence of lpxrfa was 579 bp in length, wich encoded a 192-aa preprohormone that can produce three mature LPXRFa peptides. The open reading frame (ORF) of lpxrfa-r was 1446 bp in size, and encoded a 481-aa LPXRFa-R protein that encompassed seven hydrophobic transmembrane domains. Subsequently, tissue distribution expression profiles of lpxrfa and lpxrfa-r transcripts were assayed by quantitative real-time PCR. The results indicated that expressions of lpxrfa transcripts were detected at the highest levels in the brain of both females and males, however, lpxrfa-r transcripts were remarkablely expressed in the brain tissue of female fish and in the testis tissue of male fish. Furthermore, transcript levels of lpxrfa and lpxrfa-r genes were investigated during early ontogenetic development, with the maximum expression levels at 30 days post-hatching. Overall, these data contribute to providing preliminary proof for the existence and structure of the LPXRFa system in Japanese flounder, and the study is just the foundation for researching physiological function of LPXRFa system in this species.
Collapse
Affiliation(s)
- Jun Chen
- School of Agriculture, Ludong University, Yantai 264025, China.
| | - Yuru Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wenwen Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yanqing Wu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Limiao Zhao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xueying Huang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
4
|
Narwal R, Laxmi RK, Rawat VS, Sehgal N. Molecular cloning and bioinformatic characterization of Gonadotropin Inhibitory Hormone (GnIH) and its receptors in the freshwater murrel, Channa punctatus (Bloch, 1793). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:711-736. [PMID: 37462854 DOI: 10.1007/s10695-023-01211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Abstract
Gonadotropin inhibitory hormone belonging to the RFamide peptide family, a hypothalamic neuropeptide, regulates Hypothalamus-pituitary-gonadal (HPG) axis and inhibits gonadal development. GnIH polypeptide precursor has an Arg-Phe-NH2 (RFamide) motif at the C-terminal, which has LPXRF (X = Q or L) domain. The actions of GnIH are mediated through G-protein coupled receptors and upto three receptors have been characterized in many teleosts. GnIH exerts its inhibitory effect on the HPG axis through direct interaction with GnRH and Kisspeptin neurons in the brain and acts directly on the pituitary gonadotrophs. To decipher the role of GnIH in Indian freshwater murrel, Channa punctatus, we sequenced the cDNA encoding GnIH and its two receptors. The identified GnIH mRNA encodes three RFamide peptides having -MPMRF, -MPQRF, and -LPQRFamide motifs. In silico analysis of the amino acid sequence of GnIH exhibits its molecular and functional properties and the protein-protein interaction with significant factors regulating the HPG axis. The 3-D structure of GnIH and its receptors, provides more relevant information about the active residues of these proteins which might be involved in their functioning and interaction with other proteins. Molecular dynamic simulation of GnIH protein has provided more insight into its dynamic behavior. The expression of GnIH and its receptors, shows an inverse correlation with gonadal development during the annual reproductive cycle.
Collapse
Affiliation(s)
- Ritu Narwal
- Department of Zoology, University of Delhi, Delhi, India, 110007
| | | | | | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, India, 110007.
| |
Collapse
|
5
|
Comparative insights of the neuroanatomical distribution of the gonadotropin-inhibitory hormone (GnIH) in fish and amphibians. Front Neuroendocrinol 2022; 65:100991. [PMID: 35227766 DOI: 10.1016/j.yfrne.2022.100991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022]
Abstract
This paper intends to apprise the reader regarding the existing knowledge on the neuroanatomical distribution of GnIH-like peptides in in fish and amphibians in both the adult stage and during ontogenesis. The neuroanatomical distribution of GnIH-like neuropeptides appears quite different in the studied species, irrespective of the evolutionary closeness. The topology of the olfactory bulbs can affect the distribution of neurons producing the GnIH-like peptides, with a tendency to show a more extended distribution into the brains with pedunculate olfactory bulbs. Therefore, the variability of the GnIH-like system could also reflect specific adaptations rather than evolutionary patterns. The onset of GnIH expression was detected very early during development suggesting its precocious roles, and the neuroanatomical distribution of GnIH-like elements showed a generally increasing trend. This review highlights some critical technical aspects and the need to increase the number of species to be studied to obtain a complete neuroanatomical picture of the GnIH-like system.
Collapse
|
6
|
Kumar P, Wisdom KS, Kumar Ram R, Gireesh-Babu P, Kumar Nayak S, Nagpure NS, Sharma R. Gonadotropin inhibitory hormone receptors (GnIHRs): Molecular characterization and synergistic effect of different drugs in Indian major carp, Labeo catla. Gen Comp Endocrinol 2021; 314:113904. [PMID: 34530001 DOI: 10.1016/j.ygcen.2021.113904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022]
Abstract
After the discovery of Gonadotropin-inhibitory hormone (GnIH) in birds in 2000, it showed different roles in different vertebrate classes and even in different species of same classes. In birds and mammals, GnIH inhibits the expression of gonadotropins during reproduction, while in fishes it exerts both inhibitory and stimulatory effect on reproduction. The current study evaluates the role of GnIH during reproduction in Labeo catla. The partial cDNA sequence of GnIHR1 and GnIHR3 receptor genes was identified by degenerate PCR. The mRNA expression analysis of GnIHRs during different reproductive phases showed that the expression of all three GnIH receptor genes is highest during spawning phase. The expression of GnIH receptors is detected in both brain and gonads except for GnIHR3 which only expressed in gonads. The in vivo experiments with GnIH antagonist, RF313 drastically reduced the expression level of reproduction related genes like LH, FSH, and GnRH at 1 h post-injection. In another experiment the surge induced by cGnIH-III peptide on gonadotropins gene expression is further increased when co-injected with LHRHa. However, co-injection of melatonin along with cGnIH-III peptide had opposite effects. These results showed that the GnIH/GnIHRs system has positive effect on reproduction in L. catla.
Collapse
Affiliation(s)
- Pravesh Kumar
- College of Fisheries, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India.
| | - K S Wisdom
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Roshan Kumar Ram
- College of Fisheries, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | | | | | - N S Nagpure
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Rupam Sharma
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| |
Collapse
|
7
|
Wang B, Zhang Y, Cui A, Xu Y, Jiang Y, Wang L, Liu X. LPXRFa and its receptor in yellowtail kingfish (Seriola lalandi): Molecular cloning, ontogenetic expression profiles, and stimulatory effects on growth hormone and gonadotropin gene expression. Gen Comp Endocrinol 2021; 312:113872. [PMID: 34324840 DOI: 10.1016/j.ygcen.2021.113872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022]
Abstract
Despite its functional significance in mammals and birds, the biological role of gonadotropin-inhibitory hormone (GnIH) in reproduction is still far from being fully understood in teleosts. In the current study, we have identified LPXRFa, the piscine ortholog of GnIH, and its cognate receptor (LPXRFa-R) in yellowtail kingfish (YTK), which is considered as a promising species for aquaculture industry worldwide. The YTK cDNA sequence of lpxrfa was 534 base pair (bp) in length and encoded a 178-amino acids (aa) preprohormone. The LPXRFa precursor comprised three putative peptide sequences that included -MPMRF, -MPQRF, or -LPERL motifs at the C-termini, respectively. The YTK lpxrfa-r cDNA sequence was composed of 1265 bp that gave rise to a LPXRFa-R of 420 aa, encompassing the characteristic seven hydrophobic transmembrane domains. In males, both lpxrfa and lpxrfa-r transcripts could be detected at high levels in the brain and testis. In females, a noteworthy expression of lpxrfa was observed in the brain and ovary, while the expression of lpxrfa-r was especially evident only in the brain. To study the ontogeny of LPXRFa system, transcript levels were also investigated during early life stages. Variable expression of the LPXRFa system was observed during all stages of YTK embryogenesis. The highest expression of lpxrfa and lpxrfa-r were noticed at 7 dph and 15 dph, respectively. Furthermore, LPXRFa peptides stimulated growth hormone (gh), luteinizing hormone (lhβ) and follicle-stimulating hormone (fshβ) gene expression from the pituitary. Taken together, our results provide initial evidence for the existence of the LPXRFa system in yellowtail kingfish and suggest its possible involvement at early development and reproductive functions.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yaxing Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Aijun Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yan Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Liang Wang
- Yantai Marine Economic Research Institute, Yantai 264003, China
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
8
|
Bédécarrats GY, Hanlon C, Tsutsui K. Gonadotropin Inhibitory Hormone and Its Receptor: Potential Key to the Integration and Coordination of Metabolic Status and Reproduction. Front Endocrinol (Lausanne) 2021; 12:781543. [PMID: 35095760 PMCID: PMC8792613 DOI: 10.3389/fendo.2021.781543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Since its discovery as a novel gonadotropin inhibitory peptide in 2000, the central and peripheral roles played by gonadotropin-inhibiting hormone (GnIH) have been significantly expanded. This is highlighted by the wide distribution of its receptor (GnIH-R) within the brain and throughout multiple peripheral organs and tissues. Furthermore, as GnIH is part of the wider RF-amide peptides family, many orthologues have been characterized across vertebrate species, and due to the promiscuity between ligands and receptors within this family, confusion over the nomenclature and function has arisen. In this review, we intend to first clarify the nomenclature, prevalence, and distribution of the GnIH-Rs, and by reviewing specific localization and ligand availability, we propose an integrative role for GnIH in the coordination of reproductive and metabolic processes. Specifically, we propose that GnIH participates in the central regulation of feed intake while modulating the impact of thyroid hormones and the stress axis to allow active reproduction to proceed depending on the availability of resources. Furthermore, beyond the central nervous system, we also propose a peripheral role for GnIH in the control of glucose and lipid metabolism at the level of the liver, pancreas, and adipose tissue. Taken together, evidence from the literature strongly suggests that, in fact, the inhibitory effect of GnIH on the reproductive axis is based on the integration of environmental cues and internal metabolic status.
Collapse
Affiliation(s)
- Grégoy Y. Bédécarrats
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Grégoy Y. Bédécarrats,
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|