1
|
Zamani A, Khajavi M, Abedian Kenari A, Haghbin Nazarpak M, Solouk A, Esmaeili M, Gisbert E. Physicochemical and Biochemical Properties of Trypsin-like Enzyme from Two Sturgeon Species. Animals (Basel) 2023; 13:ani13050853. [PMID: 36899710 PMCID: PMC10000239 DOI: 10.3390/ani13050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
This work aimed to determine the physicochemical and biochemical properties of trypsin from beluga Huso huso and sevruga Acipenser stellatus, two highly valuable sturgeon species. According to the results obtained from the methods of casein-zymogram and inhibitory activity staining, the molecular weight of trypsin for sevruga and beluga was 27.5 and 29.5 kDa, respectively. Optimum pH and temperature values for both trypsins were recorded at 8.5 and 55 °C by BAPNA (a specific substrate), respectively. The stability of both trypsins was well-preserved at pH values from 6.0 to 11.0 and temperatures up to 50 °C. TLCK and SBTI, two specific trypsin inhibitors, showed a significant inhibitory effect on the enzymatic activity of both trypsins (p < 0.05). The enzyme activity was significantly increased in the presence of Ca+2 and surfactants and decreased by oxidizing agents, Cu+2, Zn+2, and Co+2 (p < 0.05). However, univalent ions Na+ and K+ did not show any significant effect on the activity of both trypsins (p > 0.05). The results of our study show that the properties of trypsin from beluga and sevruga are in agreement with data reported in bony fish and can contribute to the clear understanding of trypsin activity in these primitive species.
Collapse
Affiliation(s)
- Abbas Zamani
- Fisheries Department, Faculty of Natural Resources and Environment, Malayer University, 4th km of Arak Road, Malayer 6574184621, Iran
- New Technologies Research Center, Amirkabir University of Technology, Tehran 1591634653, Iran
- Correspondence: ; Tel./Fax: +98-81-32355330
| | - Maryam Khajavi
- Fisheries Department, Faculty of Natural Resources and Environment, Malayer University, 4th km of Arak Road, Malayer 6574184621, Iran
| | - Abdolmohammad Abedian Kenari
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor P.O. Box 46414-356, Iran
| | | | - Atefeh Solouk
- Department of Biomaterial and Tissue Engineering, Medical Engineering Faculty, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Mina Esmaeili
- Department of Fisheries, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari 4818168984, Iran
| | - Enric Gisbert
- IRTA, Centre de la Rápita, Aquaculture Program, Crta. del Poble Nou Km 5.5, 43540 la Rápita, Spain
| |
Collapse
|
2
|
Poonsin T, Simpson BK, Benjakul S, Visessanguan W, Yoshida A, Osatomi K, Klomklao S. Anionic trypsin from the spleen of albacore tuna (Thunnus alalunga): Purification, biochemical properties and its application for proteolytic degradation of fish muscle. Int J Biol Macromol 2019; 133:971-979. [DOI: 10.1016/j.ijbiomac.2019.04.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
|
3
|
Kim H, An Z, Jang CH. Label-free optical detection of thrombin using a liquid crystal-based aptasensor. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Jesús-de la Cruz K, Álvarez-González CA, Peña E, Morales-Contreras JA, Ávila-Fernández Á. Fish trypsins: potential applications in biomedicine and prospects for production. 3 Biotech 2018; 8:186. [PMID: 29556440 DOI: 10.1007/s13205-018-1208-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/09/2018] [Indexed: 11/28/2022] Open
Abstract
In fishes, trypsins are adapted to different environmental conditions, and the biochemical and kinetic properties of a broad variety of native isoforms have been studied. Proteolytic enzymes remain in high demand in the detergent, food, and feed industries; however, our analysis of the literature showed that, in the last decade, some fish trypsins have been studied for the synthesis of industrial peptides and for specific biomedical uses as antipathogenic agents against viruses and bacteria, which have been recently patented. In addition, innovative strategies of trypsin administration have been studied to ensure that trypsins retain their properties until they exert their action. Biomedical uses require the production of high-quality enzymes. In this context, the production of recombinant trypsins is an alternative. For this purpose, E. coli-based systems have been tested for the production of fish trypsins; however, P. pastoris-based systems also seem to show great potential in the production of fish trypsins with higher production quality. On the other hand, there is a lack of information regarding the specific structures, biochemical and kinetic properties, and characteristics of trypsins produced using heterologous systems. This review describes the potential uses of fish trypsins in biomedicine and the enzymatic and structural properties of native and recombinant fish trypsins obtained to date, outlining some prospects for their study.
Collapse
Affiliation(s)
- Kristal Jesús-de la Cruz
- Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco México
| | | | - Emyr Peña
- Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco México
- Cátedra Consejo Nacional de Ciencia y Tecnología-UJAT, Villahermosa, Tabasco México
| | - José Antonio Morales-Contreras
- 2Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez No. 2838-A. Col. Tamulté, 86150 Villahermosa, Tabasco México
| | - Ángela Ávila-Fernández
- 2Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez No. 2838-A. Col. Tamulté, 86150 Villahermosa, Tabasco México
| |
Collapse
|
5
|
Smichi N, Othman H, Achouri N, Noiriel A, Arondel V, Srairi-Abid N, Abousalham A, Gargouri Y, Miled N, Fendri A. Functional and Structural Characterization of a Thermostable Phospholipase A 2 from a Sparidae Fish (Diplodus annularis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2468-2480. [PMID: 28287729 DOI: 10.1021/acs.jafc.6b05810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Novel phospholipase (PLA2) genes from the Sparidae family were cloned. The sequenced PLA2 revealed an identity with pancreatic PLA2 group IB. To better understand the structure/function relationships of these enzymes and their evolution, the Diplodus annularis PLA2 (DaPLA2) was overexpressed in E. coli. The refolded enzyme was purified by Ni-affinity chromatography and has a molecular mass of 15 kDa as determined by MALDI-TOF spectrometry. Interestingly, unlike the pancreatic type, the DaPLA2 was active and stable at higher temperatures, which suggests its great potential in biotechnological applications. The 3D structure of DaPLA2 was constructed to gain insights into the functional properties of sparidae PLA2. Molecular docking and dynamic simulations were performed to explain the higher thermal stability and the substrate specificity of DaPLA2. Using the monolayer technique, the purified DaPLA2 was found to be active on various phospholipids ranging from 10 to 20 mN·m-1, which explained the absence of the hemolytic activity for DaPLA2.
Collapse
Affiliation(s)
- Nabil Smichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS , 3038 Sfax, Tunisia
- Enzymologie Interfaciale et Physiologie de la Lipolyse, UMR7282, CNRS, Aix-Marseille Université , 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Houcemeddine Othman
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Université Tunis-El Manar, Institut Pasteur de Tunis , Tunis 1002, Tunisia
| | - Neila Achouri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS , 3038 Sfax, Tunisia
| | - Alexandre Noiriel
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM2 , F-69622 Villeurbanne cedex, France
| | - Vincent Arondel
- Univ Bordeaux, UMR 5200, Laboratoire de Biogenèse Membranaire , Bat. A3 Campus INRA de Bordeaux 71 avenue E., Bourlaux CS 2003233140 Villenave d'Ornon, France
| | - Najet Srairi-Abid
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Université Tunis-El Manar, Institut Pasteur de Tunis , Tunis 1002, Tunisia
| | - Abdelkarim Abousalham
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM2 , F-69622 Villeurbanne cedex, France
| | - Youssef Gargouri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS , 3038 Sfax, Tunisia
| | - Nabil Miled
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS , 3038 Sfax, Tunisia
| | - Ahmed Fendri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS , 3038 Sfax, Tunisia
| |
Collapse
|
6
|
Zamani A, Madani R, Rezaei M, Benjakul S. Antioxidative Activitiy of Protein Hydrolysate from the Muscle of Common Kilka (Clupeonella cultriventris caspia) Prepared Using the Purified Trypsin from Common Kilka Intestine. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2016. [DOI: 10.1080/10498850.2015.1073822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Abbas Zamani
- Fisheries Department, Faculty of Natural Resources and Environment, Malayer University, Malayer, Hamedan, Iran
| | - Rasool Madani
- Biotechnology Department of Razi Vaccine and Serum Research Institute, Karaj, Alborz, Iran
| | - Masoud Rezaei
- Fisheries Department, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
7
|
Bkhairia I, Ben Khaled H, Ktari N, Miled N, Nasri M, Ghorbel S. Biochemical and molecular characterisation of a new alkaline trypsin from Liza aurata: Structural features explaining thermal stability. Food Chem 2016; 196:1346-54. [DOI: 10.1016/j.foodchem.2015.10.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/16/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
|
8
|
Zamani A, Benjakul S. Trypsin from unicorn leatherjacket (Aluterus monoceros) pyloric caeca: purification and its use for preparation of fish protein hydrolysate with antioxidative activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:962-969. [PMID: 25777470 DOI: 10.1002/jsfa.7172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Fish proteases, especially trypsin, could be used to prepare fish protein hydrolysates with antioxidative activities. In this study, trypsin from the pyloric caeca of unicorn leatherjacket was purified by ammonium sulfate precipitation and soybean trypsin inhibitor (SBTI)-Sepharose 4B affinity chromatography. Hydrolysate from Indian mackerel protein isolate with different degrees of hydrolysis (20, 30 and 40% DH) was prepared using the purified trypsin, and antioxidative activities (1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging activities, ferric-reducing antioxidant power and ferrous-chelating activity) of the hydrolysate were determined. RESULTS Trypsin was purified 26.43-fold with a yield of 13.43%. The purified trypsin had a molecular weight (MW) of 23.5 kDa and optimal activity at pH 8.0 and 55 °C. It displayed high stability in the pH range of 6.0-11.0 and was thermally stable up to 50 °C. Both SBTI (0.05 mmol L(-1)) and N-p-tosyl-L-lysine-chloromethylketone (5 mmol L(-1)) completely inhibited trypsin activity. Antioxidative activities of the hydrolysate from Indian mackerel protein isolate increased with increasing DH up to 40% (P < 0.05). Based on sodium dodecyl sulfate polyacrylamide gel electrophoresis, the hydrolysate with 40% DH had a MW lower than 6.5 kDa. CONCLUSION The purified protease from unicorn leatherjacket pyloric caeca was identified as trypsin based on its ability to hydrolyze a specific synthetic substrate and the response to specific trypsin inhibitors. The purified trypsin could hydrolyze Indian mackerel protein isolate, and the resulting hydrolysate exhibited antioxidative activity depending on its DH.
Collapse
Affiliation(s)
- Abbas Zamani
- Fisheries Department, Faculty of Natural Resources and Environmental, Malayer University, Malayer, Hamedan, Iran
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| |
Collapse
|
9
|
Sripokar P, Poonsin T, Chaijan M, Benjakul S, Klomklao S. Proteinases from the Liver of Albacore Tuna (T
hunnus Alalunga
): Optimum Extractant and Biochemical Characteristics. J Food Biochem 2015. [DOI: 10.1111/jfbc.12174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pakteera Sripokar
- Biotechnology Program, Department of Food Science and Technology, Faculty of Technology and Community Development; Thaksin University, Phatthalung Campus; Phatthalung 93210 Thailand
| | - Tanchanok Poonsin
- Biotechnology Program, Department of Food Science and Technology, Faculty of Technology and Community Development; Thaksin University, Phatthalung Campus; Phatthalung 93210 Thailand
| | - Manat Chaijan
- Department of Food Technology; School of Agricultural Technology; Walailak University; Nakhon Si Thammarat Thailand
| | - Soottawat Benjakul
- Department of Food Technology; Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Songkhla Thailand
| | - Sappasith Klomklao
- Department of Food Science and Technology; Faculty of Technology and Community Development; Thaksin University, Phatthalung Campus; Phatthalung 93210 Thailand
| |
Collapse
|