Romani VP, Martins PC, da Rocha M, Bulhosa MCS, Kessler F, Martins VG. UV Radiation and Protein Hydrolysates in Bio-Based Films: Impacts on Properties and Italian Salami Preservation.
Antioxidants (Basel) 2024;
13:517. [PMID:
38790622 PMCID:
PMC11117594 DOI:
10.3390/antiox13050517]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
UV radiation was combined with the incorporation of fish protein hydrolysates to improve the performance of active bio-based films for food packaging. UV radiation was not used previously to enhance the packaging performance of blend films of starch/protein, and fish protein hydrolysates were not incorporated in bio-based polymer surfaces previously. Rice starch and fish proteins (from Whitemouth croaker muscle) were utilized to prepare films by the casting technique, which were UV-radiated under different exposure times (1, 5, and 10 min). The packaging performance of the films was determined according to the mechanical and barrier performance, solubility, and color. Fish protein hydrolysates (from Argentine croaker muscle) were then incorporated into the films (bulk structure or surface). The results showed that UV radiation for 1 min increased the tensile strength and modified the optical properties of films. It also altered the structure of the polymeric matrix, as demonstrated by the microstructure and thermal analysis, in agreement with the data obtained in packaging properties. The evaluation of antioxidant capacity through 2,2-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and reducing power indicated that incorporating fish protein hydrolysates either in the films' bulk structure or film surface promoted antioxidant properties; control films (produced with rice starch/fish proteins without hydrolysates) also presented antioxidant potential. According to the peroxide value and thiobarbituric acid reactive substance (TBARS) assays, control films and the films containing hydrolysates in their bulk structure or on the surface could prevent the lipid oxidation of Italian salami. Thus, combining UV radiation to shape the characteristics of bio-based materials with fish protein hydrolysates to reduce lipid oxidation contributes to the performance of active bio-based films for food packaging.
Collapse