1
|
Isvand A, Karimaei S, Amini M. Assessment of chitosan coating enriched with Citrus limon essential oil on the quality characteristics and shelf life of beef meat during cold storage. Int J Food Microbiol 2024; 423:110825. [PMID: 39059139 DOI: 10.1016/j.ijfoodmicro.2024.110825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
The present work aimed to assess the effects of chitosan coating comprising Citrus limon essential oil (CLEO) as an antimicrobial and antioxidant on the quality and the shelf-life of beef meat during storage in cold temperatures. The microbial, chemical, and sensory characteristics of beef meat were repeatedly evaluated. The outcomes showed that CLEO had a substantial preservative effect on refrigerated beef meat by reducing total volatile basic nitrogen compounds (TVB-N), inhibiting the replication of microorganisms (p < 0.05), and decreasing oxidation (p < 0.05) during storage. The incorporation of CLEO into chitosan coating significantly reduced (p < 0.05), TBARS, especially for the Nano-CS- ClEO 2 % and 4 % groups, with values at the end of storage of approximately 0.68 and 1.01 mg MDA/kg respectively. Moreover, the meat treatments with essential oils led to lower carbonyl content production in compared to other groups that treated without essential oils. Coated beef meat had the highest inhibitory effects against microbial growth. The counts of Enterobacteriaceae, lactic acid bacteria (LAB), psychrophilic, and mesophilic bacteria were significantly lower (p < 0.05) in the Nano-CS- ClEO 2 % (1.1, 4.2, 6.2, and 6.32 Log CFU/g, respectively) at day 16. The sensory evaluation indicated that this coating with chitosan nanoemulsions in combination with ClEOs could significantly preserve sensory characteristics of beef meat during storage. Moreover, concerning sensory features, the control samples gained the maximum score. Additionally, the group that contains chitosan in combination with 4 % ClEO nanoliposomes had the highest inhibition of microbial growth, reduced sensory changes, and extending the shelf life of beef meat (p < 0.05). In conclusion, nanoemulsions containing Citrus limon essential oil had a significant preservation effect on beef meat during refrigerated storage by preventing the microorganism's proliferation and decreasing the oxidation of fat and protein (p < 0.05). Therefore, they are suggested to extend the durability of fresh meat products during refrigerated storage.
Collapse
Affiliation(s)
- Abbas Isvand
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Samira Karimaei
- Food Microbiology Division, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoomeh Amini
- Food Microbiology Division, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Elahi R, Jamshidi A, Fallah AA. Effect of active composite coating based on nanochitosan-whey protein isolate on the microbial safety of chilled rainbow trout fillets packed with oxygen absorber. Int J Biol Macromol 2024; 277:133756. [PMID: 38986977 DOI: 10.1016/j.ijbiomac.2024.133756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/17/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
This study aimed to assess the effect of coating based on nanochitosan-whey protein isolate (NCH-WPI) containing summer savory essential oil (SEO) combined with oxygen absorber (OA) packaging on Pseudomonas aeruginosa, Listeria monocytogenes, and Escherichia coli O157H7, inoculated to rainbow trout fillets stored under refrigeration. Except control and OA groups, L. monocytogenes decreased (0.49-1.82 log CFU/g) in all treatment groups until the eighth day, and then increased (0.39-0.68 log CFU/g). This indicates that the treatments were ineffective to inhibit the proliferation of this bacterium. Considering the forced aerobic nature of inoculated P. aeruginosa, the counts of these bacteria become undetectable in groups packed with OA after the fourth day of storage, while the other groups showed an increase (0.99-2.23 log CFU/g) in this bacteria population during entire storage period. This growth rate was slower in the NCH-WPI + 1%SEO and NCH-WPI + 2%SEO groups. Regarding the inoculated E. coli, its count was decreased (1.48-2.41 log CFU/g) during storage, and this reduction (2.24-2.41 log CFU/g) was the highest in NCH-WPI + 1%SEO + OA and NCH-WPI + 2%SEO + OA groups. In conclusion, NCH-WPI treatments delayed the growth of all pathogenic bacteria, but the ternary treatment (NCH-WPI + SEO + OA) was the most effective treatment in this regard.
Collapse
Affiliation(s)
- Raziyeh Elahi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdollah Jamshidi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
3
|
Costa JCCP, Bolívar A, Alberte TM, Zurera G, Pérez-Rodríguez F. Listeria monocytogenes in aquatic food products: Spotlight on epidemiological information, bio-based mitigation strategies and predictive approaches. Microb Pathog 2024; 197:106981. [PMID: 39349150 DOI: 10.1016/j.micpath.2024.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Listeria monocytogenes is the foodborne pathogen responsible for listeriosis in humans. Its ability to grow at refrigeration temperatures, particularly in products that support its growth and have a long-refrigerated shelf-life, poses a significant health risk, especially for vulnerable consumer groups such as pregnant women and immunocompromised individuals. A comprehensive analysis of L. monocytogenes in aquatic food products (AFPs) was conducted, examining the prevalence of the bacterium, the associated outbreaks, and the resulting deaths. Data from 66 studies, comprising a total of 19,373 samples, were analysed from the scientific literature to determine prevalence of the pathogen. The mean pooled prevalence of L. monocytogenes was 11 % (95 % CI: 8-14 %) among different AFPs categories. An overview of worldwide listeriosis outbreaks associated with contaminated AFPs between 1980 and 2023 was provided, totalling 1824 cases, including 41 deaths. Furthermore, a compilation of bio-based mitigation strategies was presented, including the use of lactic acid bacteria (LAB) and bacteriophages as bio-protective cultures to inhibit L. monocytogenes in AFPs. A variety of predictive microbiology models, based on growth prediction and interaction for L. monocytogenes, were reviewed to assess the effectiveness of control strategies in different types of AFPs, offering insights into pathogen behaviour throughout the production chain. The reported growth models describe primarily the impact of storage temperature on pathogen growth parameters, while interaction models, which reflect the inhibitory effect of LAB against L. monocytogenes, were generally defined using the Jameson-effect approach and Lotka-Volterra models' family (i.e., predator-prey models). Both models can be used to describe the simultaneous growth of two bacterial populations and their interactions (i.e., amensalism and antagonisms). Several Quantitative Risk assessment studies have been conducted for AFP, identifying the food category as a relevant contributor to Listeriosis risk, and providing predictive insight critical influence of storage temperature, food microbiota, product shelf-life, and population aging on the risk posed by L. monocytogenes. More importantly, this quantitative approach can serve as a key tool to assess the effectiveness of specific mitigation and intervention strategies to control the pathogen, such as sampling schemes or bio-preservation techniques.
Collapse
Affiliation(s)
- Jean Carlos Correia Peres Costa
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Universidad de Córdoba, 14014, Córdoba, Spain.
| | - Araceli Bolívar
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Universidad de Córdoba, 14014, Córdoba, Spain
| | - Tânia Maria Alberte
- Department of Food Engineering, Campus de Ariquemes, Federal University of Rondônia, 76872-848, Ariquemes, Brazil
| | - Gonzalo Zurera
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Universidad de Córdoba, 14014, Córdoba, Spain
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Universidad de Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
4
|
Safaeian Laein S, Mohajer F, Khanzadi A, Gheybi F, Azizzadeh M, Noori SMA, Mollaei F, Hashemi M. Effect of alginate coating activated by solid lipid nanoparticles containing Zataria multiflora essential oil on chicken fillet's preservation. Food Chem 2024; 446:138816. [PMID: 38422646 DOI: 10.1016/j.foodchem.2024.138816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
The current study aimed to assess the chemical, microbial, and sensory properties of Solid Lipid Nanoparticles (SLNs) in chicken fillets stored at 4 ± 1 °C for 12 days. As a result, the optimized ZEO-SLNS sample exhibited a spherical morphology with a droplet size of 251.51 ± 1.11 nm and a PDI of 0.34 ± 0.01 under transmission electron microscopy (TEM). The encapsulation efficiency (EE) and zeta potential were approximately 55.4 % and -20.87 ± 1.39 mV, respectively. Furthermore, encapsulating ZEO in SLNS enhanced antibacterial and antioxidant activity compared to pure ZEO. As a result, the application of alginate-loaded ZEO-SLNS extended the storage time of fresh chicken fillets. Thus, the application of this edible coating showcased a remarkable ability to substantially decelerate both microbial and chemical changes in chicken fillets during cold storage conditions. This finding underscores the potential of the edible coating as an effective means to enhance the safety and quality of chicken products.
Collapse
Affiliation(s)
- Sara Safaeian Laein
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Mohajer
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Khanzadi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Azizzadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Mollaei
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Siddiqui SA, Sundarsingh A, Bahmid NA, Nirmal N, Denayer JFM, Karimi K. A critical review on biodegradable food packaging for meat: Materials, sustainability, regulations, and perspectives in the EU. Compr Rev Food Sci Food Saf 2023; 22:4147-4185. [PMID: 37350102 DOI: 10.1111/1541-4337.13202] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/22/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
The development of biodegradable packaging is a challenge, as conventional plastics have many advantages in terms of high flexibility, transparency, low cost, strong mechanical characteristics, and high resistance to heat compared with most biodegradable plastics. The quality of biodegradable materials and the research needed for their improvement for meat packaging were critically evaluated in this study. In terms of sustainability, biodegradable packagings are more sustainable than conventional plastics; however, most of them contain unsustainable chemical additives. Cellulose showed a high potential for meat preservation due to high moisture control. Polyhydroxyalkanoates and polylactic acid (PLA) are renewable materials that have been recently introduced to the market, but their application in meat products is still limited. To be classified as an edible film, the mechanical properties and acceptable control over gas and moisture exchange need to be improved. PLA and cellulose-based films possess the advantage of protection against oxygen and water permeation; however, the addition of functional substances plays an important role in their effects on the foods. Furthermore, the use of packaging materials is increasing due to consumer demand for natural high-quality food packaging that serves functions such as extended shelf-life and contamination protection. To support the importance moving toward biodegradable packaging for meat, this review presented novel perspectives regarding ecological impacts, commercial status, and consumer perspectives. Those aspects are then evaluated with the specific consideration of regulations and perspective in the European Union (EU) for employing renewable and ecological meat packaging materials. This review also helps to highlight the situation regarding biodegradable food packaging for meat in the EU specifically.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Department for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | | | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
6
|
Ghasemi S, Jaldani S, Sanaei F, Ghiafehshirzadi A, Alidoost A, Hashemi M, Hossaeini Marashi SM, Khodaiyan F, Noori SMA. Application of alginate polymer films and coatings incorporated with essential oils in foods: a review of recent literature with emphasis on nanotechnology. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Abstract
Food waste is one of the major challenges in food safety and finding a solution for this issue is critically important. Herein, edible films and coatings became attractive for scientists as they can keep food from spoilage. Edible films and coatings can effectively preserve the original quality of food and extend its shelf life. Polysaccharides, including starch and cellulose derivatives, chitosan, alginate and pectin, have been extensively studied as biopackaging materials. One of the most interesting polysaccharides is alginate, which has been used to make edible films and coatings. Incorporating essential oils (EO) in alginate matrices results in an improvement in some properties of the edible packages, such as antioxidant and antimicrobial properties. Additionally, the use of nanotechnology can improve the desirable properties of edible films and coatings. In this article we reviewed the antimicrobial and antioxidant properties of alginate coatings and films and their use in various food products.
Collapse
Affiliation(s)
- Sajjad Ghasemi
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Shima Jaldani
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Farideh Sanaei
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Asiyeh Ghiafehshirzadi
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Ahmadreza Alidoost
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
- Department of Nutrition, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Sayed Mahdi Hossaeini Marashi
- College of Engineering, Design and Physical Sciences Michael Sterling Building (MCST 055) , Brunel University London , Uxbridge , UB8 3PH , UK
- School of Physics, Engineering and Computer Science, Centre for Engineering Research , University of Hertfordshire , Mosquito Way , Hatfield AL10 9EU , UK
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering , University of Tehran , Karaj , Iran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center , Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
- Department of Nutrition, School of Allied Medical Sciences , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
7
|
Anaduaka EG, Uchendu NO, Asomadu RO, Ezugwu AL, Okeke ES, Chidike Ezeorba TP. Widespread use of toxic agrochemicals and pesticides for agricultural products storage in Africa and developing countries: Possible panacea for ecotoxicology and health implications. Heliyon 2023; 9:e15173. [PMID: 37113785 PMCID: PMC10126862 DOI: 10.1016/j.heliyon.2023.e15173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Chemicals used for storage majorly possess insecticidal activities - deterring destructive insect pests and microorganisms from stored agricultural produce. Despite the controversy about their safety, local farmers and agro-wholesalers still predominantly use these chemicals in developing countries, especially Africa, to ensure an all-year supply of agriproducts. These chemicals could have short- or long-term effects. Despite the state-of-the-art knowledge, factors such as poor education and awareness, limited agricultural subventions, quests for cheap chemicals, over-dosage, and many more are the possible reasons for these toxic chemicals' setback and persistent use in developing countries. This paper provides an up-to-date review of the environmental and ecological effects, as well as the health impacts arising from the indiscriminate use of toxic chemicals in agriproducts. Existing data link pesticides to endocrine disruption, genetic mutations, neurological dysfunction, and other metabolic disorders, apart from the myriad of acute effects. Finally, this study recommended several naturally sourced preservatives as viable alternatives to chemical counterparts and emphasized the invaluable role of education and awareness programs in mitigating the use in developing nations for a sustainable society.
Collapse
Affiliation(s)
- Emeka Godwin Anaduaka
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Nene Orizu Uchendu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Rita Onyekachukwu Asomadu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Arinze Linus Ezugwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Corresponding author. Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria.
| |
Collapse
|
8
|
Hashemi M, Adibi S, Hojjati M, Razavi R, Noori SMA. Impact of alginate coating combined with free and nanoencapsulated Carum copticum essential oil on rainbow trout burgers. Food Sci Nutr 2023; 11:1521-1530. [PMID: 36911830 PMCID: PMC10002943 DOI: 10.1002/fsn3.3192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Carum copticum essential oil (CEO) is known as a valuable active food and pharmaceutical ingredient with antimicrobial and antioxidant activities. Solid lipid nanoparticles incorporated with CEO can overcome their limitations, namely low physicochemical stability and water solubility. In the current study, the antimicrobial and antioxidant activity of free and nanoencapsulated CEO were measured. The results revealed that although the nanoparticles of CEO had higher DPPH radical scavenging activity compared to free CEO, the antimicrobial activity of free CEO toward Escherichia coli and Listeria monocytogenes was higher than nanoparticles. Fish burger samples coated with free and nanoencapsulated CEO and stored for 12 days at 4°C. Alginate coating without CEO was considered as a control sample. The mean zeta potential, particle size, and polydispersity index (PDI) of nanoparticles were 19.18 ± 0.9 mV, 286.5 ± 18.2 nm, and 0.32 ± 0.01, respectively. The results revealed that lipid oxidation, microbial growth, and production of total volatile basic nitrogen in fish burger samples coated with alginate enriched with nanoencapsulated CEO were lower than free CEO. The main volatile compounds of CEO were para-cymene, γ-terpinene, and thymol, which were responsible for the antioxidant and antimicrobial activity of CEO. The data obtained by the current study suggest the application of alginate coating with CEO in form of nanoparticle to enhance fish burgers' shelf life stored at 4°C.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Medical Toxicology Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Shiva Adibi
- Medical Toxicology Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mohammad Hojjati
- Department of Food Science and TechnologyAgricultural Sciences and Natural Resources University of KhuzestanAhvazIran
| | - Razie Razavi
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariMazandaranIran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research CenterMedical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Nutrition, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
9
|
Barkhori-Mehni S, Khanzadi S, Hashemi M, Azizzadeh M, Keykhosravy K. The Combined Effects of Bio-Components and Alginate Coating on Chemical and Sensory Quality of Chill-Stored Rainbow Trout Fillets. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2120789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Saber Barkhori-Mehni
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Azizzadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Kobra Keykhosravy
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Laein SS, Khanzadi S, Hashemi M, Gheybi F, Azizzadeh M. Peppermint essential oil-loaded solid lipid nanoparticle in gelatin coating: Characterization and antibacterial activity against foodborne pathogen inoculated on rainbow trout (Oncorhynchus mykiss) fillet during refrigerated storage. J Food Sci 2022; 87:2920-2931. [PMID: 35703572 DOI: 10.1111/1750-3841.16221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 01/02/2023]
Abstract
The present study was conducted to determine the characterization and antibacterial activity of peppermint essential oil-loaded solid lipid nanoparticle (PEO-SLN) and its impact on the quality of trout fillet stored at 4 ± 1°C for 12 days. The SLNs were prepared through a bath sonication technique. PEO-SLNs contained 0.2% (w/v) PEO in 2% of lipid phase glycerol monostearate (GMS) and tween 80 (1% w/v) used as a surfactant in the aqueous phase. The characterization parameter of PEO-SLN was evaluated, and the antibacterial activity of PEO-SLNs was conducted under in vitro conditions. Trout samples were analyzed for inoculated Pseudomonas aeruginosa, Listeria monocytogenes, and Escherichia coli O157:H7 during refrigerated storage. The mean particle size of PEO-SLNs was 154.83 ± 1.21 nm with a polydispersity index (PDI) of 0.35 ± 0.01 and zeta potential was about -24.16 ± 0.51 mV. The results indicated that PEO-SLN had higher antibacterial activity than the free form of PEO and also when used in combination with gelatin coating (gel + PEO-SLN) had a significant effect on preventing microbial growth in trout fillets (p < 0.05). The most decreasing rate of P. aeruginosa (1.92 log CFU/g), E. coli O157:H7 (0.71 log CFU/g), and L. monocytogenes count (1.69 log CFU/g) was seen in gel + PEO-SLN. These findings illustrated that PEO-SLNs could potentially be utilized in the food industry to increase the shelf life of fish fillets.
Collapse
Affiliation(s)
- Sara Safaeian Laein
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Azizzadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
11
|
Antimicrobial bio-inspired active packaging materials for shelf life and safety development: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Novais C, Molina AK, Abreu RMV, Santo-Buelga C, Ferreira ICFR, Pereira C, Barros L. Natural Food Colorants and Preservatives: A Review, a Demand, and a Challenge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2789-2805. [PMID: 35201759 PMCID: PMC9776543 DOI: 10.1021/acs.jafc.1c07533] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The looming urgency of feeding the growing world population along with the increasing consumers' awareness and expectations have driven the evolution of food production systems and the processes and products applied in the food industry. Although substantial progress has been made on food additives, the controversy in which some of them are still shrouded has encouraged research on safer and healthier next generations. These additives can come from natural sources and confer numerous benefits for health, beyond serving the purpose of coloring or preserving, among others. As limiting factors, these additives are often related to stability, sustainability, and cost-effectiveness issues, which justify the need for innovative solutions. In this context, and with the advances witnessed in computers and computational methodologies for in silico experimental aid, the development of new safer and more efficient natural additives with dual functionality (colorant and preservative), for instance by the copigmentation phenomena, may be achieved more efficiently, circumventing the current difficulties.
Collapse
Affiliation(s)
- Cláudia Novais
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adriana K. Molina
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rui M. V. Abreu
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santo-Buelga
- Grupo
de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia,
Campus Miguel de Unamuno s/n, Universidad
de Salamanca, 37007 Salamanca, Spain
| | - Isabel C. F. R. Ferreira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
13
|
Yousefi M, Nematollahi A, Shadnoush M, Mortazavian AM, Khorshidian N. Antimicrobial Activity of Films and Coatings Containing Lactoperoxidase System: A Review. Front Nutr 2022; 9:828065. [PMID: 35308287 PMCID: PMC8931696 DOI: 10.3389/fnut.2022.828065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The production of safe and healthy foodstuffs is considered as one of the most important challenges in the food industry, and achieving this important goal is impossible without using various processes and preservatives. However, recently, there has been a growing concern about the use of chemical preservatives and attention has been focused on minimal process and/or free of chemical preservatives in food products. Therefore, researchers and food manufacturers have been induced to utilize natural-based preservatives such as antimicrobial enzymes in their production. Lactoperoxidase, as an example of antimicrobial enzymes, is the second most abundant natural enzyme in the milk and due to its wide range of antibacterial activities, it could be potentially applied as a natural preservative in various food products. On the other hand, due to the diffusion of lactoperoxidase into the whole food matrix and its interaction and/or neutralization with food components, the direct use of lactoperoxidase in food can sometimes be restricted. In this regard, lactoperoxidase can be used as a part of packaging material, especially edible and coating, to keep its antimicrobial properties to extend food shelf-life and food safety maintenance. Therefore, this study aims to review various antimicrobial enzymes and introduce lactoperoxidase as a natural antimicrobial enzyme, its antimicrobial properties, and its functionality in combination with an edible film to extend the shelf-life of food products.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Nasim Khorshidian
| |
Collapse
|
14
|
Zhang W, Rhim JW. Functional edible films/coatings integrated with lactoperoxidase and lysozyme and their application in food preservation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108670] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Rathod NB, Ranveer RC, Benjakul S, Kim SK, Pagarkar AU, Patange S, Ozogul F. Recent developments of natural antimicrobials and antioxidants on fish and fishery food products. Compr Rev Food Sci Food Saf 2021; 20:4182-4210. [PMID: 34146459 DOI: 10.1111/1541-4337.12787] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
Fish and fishery products (FFP) are highly perishable due to their high nutritional value and moisture content. The spoilage is mainly caused by microorganisms and chemical reactions, especially lipid oxidation, leading to losses in quality and market value. Microbiological and lipid deteriorations of fishery-derived products directly lower their nutritive value and pose the risk of toxicity for human health. Increasing demand for safe FFP brings about the preservation using additives from natural origins without chemical additives due to their safety and strict regulation. Antimicrobials and antioxidants from natural sources have exhibited an excellent control over the growth of microorganisms causing fish spoilage via different mechanisms. They also play a major role in retarding lipid oxidation by acting at various stages of oxidation. Antimicrobials and antioxidants from natural sources are usually regarded as safe with no detrimental effects on the quality attributes of FFP. This review provides recent literature on the different antioxidant and antimicrobial agents from natural sources, focusing on microbial and oxidative spoilage mechanisms, their inhibition system, and their applications to retard spoilage, maintain safety, and extend the shelf life of FFP. Their applications and benefits have been revisited.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Rahul Chudaman Ranveer
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology Hanyang University Erica, Ansan-si, Gyeonggi-do, South Korea
| | - Asif Umar Pagarkar
- Marine Biological Research Station, (DBSKKV), Ratnagiri, Maharashtra, 415 612, India
| | - Surendra Patange
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey, 01330, Turkey
| |
Collapse
|
16
|
Sheng L, Wang L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr Rev Food Sci Food Saf 2020; 20:738-786. [PMID: 33325100 DOI: 10.1111/1541-4337.12671] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms play a crucial and unique role in fish and fish product safety. The presence of human pathogens and the formation of histamine caused by spoilage bacteria make the control of both pathogenic and spoilage microorganisms critical for fish product safety. To provide a comprehensive and updated overview of the involvement of microorganisms in fish and fish product safety, this paper reviewed outbreak and recall surveillance data obtained from government agencies from 1998 to 2018 and identified major safety concerns associated with both domestic and imported fish products. The review also summarized all available literature about the prevalence of major and emerging microbial safety concerns, including Salmonella spp., Listeria monocytogenes, and Aeromonas hydrophila, in different fish and fish products and the survival of these pathogens under different storage conditions. The prevalence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs), two emerging food safety concerns, is also reviewed. Pathogenic and spoilage microorganisms as well as ARB and ARGs can be introduced into fish and fish products in both preharvest and postharvest stages. Many novel intervention strategies have been proposed and tested for the control of different microorganisms on fish and fish products. One key question that needs to be considered when developing and implementing novel control measures is how to ensure that the measures are cost and environment friendly as well as sustainable. Over the years, regulations have been established to provide guidance documents for good farming and processing practices. To be more prepared for the globalization of the food chain, harmonization of regulations is still needed.
Collapse
Affiliation(s)
- Lina Sheng
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Luxin Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| |
Collapse
|
17
|
Khezri M, Rezaei M, Mohabbati Mobarez A, Zolfaghari M. Viable but non culturable state and expression of pathogenic genes of
Escherichia coli
O157
:
H7
in salted silver carp. J Food Saf 2020. [DOI: 10.1111/jfs.12843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad Khezri
- Department of Seafood Processing, Faculty of Marine Sciences Tarbiat Modares University Noor Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences Tarbiat Modares University Noor Iran
| | | | - Mehdi Zolfaghari
- Faculty of Fisheries and Environmental Sciences Agricultur and Natural Resource University of Gorgan Gorgan Iran
| |
Collapse
|
18
|
Gat P, Rafiq S, Vysakh T, Gat Y, Waghmare R. A Review on Approaches of Edible Coating as Potential Packaging for Meat, Poultry and Seafood. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190619110933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The World population is increasing continuously and to fulfil the requirement of future
generation food supply needs to be increased. Food availability and accessibility can be increased by
increasing production, improving distribution, and reducing the losses. To achieve the goal of improving
the quality of food products, the use of synthetic packaging films has increased and this has
led to serious ecological problems due to their non-biodegradability. Amongst other alternatives to
replace the use of synthetic packaging, the application of biodegradable films and coatings has shown
promising results. The aim of this article is to update the information about the effects of polysaccharide,
protein and lipid-based coatings, and antimicrobial and composite coatings on meat products. In the
future, this data will be helpful for the processors to select the best coating material which can
enhance the quality of different fresh, processed and frozen meat, poultry and seafood.
Collapse
Affiliation(s)
- Punam Gat
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara-144411, India
| | - Shafiya Rafiq
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara-144411, India
| | - Thelamparambath Vysakh
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara-144411, India
| | - Yogesh Gat
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara-144411, India
| | - Roji Waghmare
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Navi Mumbai-400614, India
| |
Collapse
|
19
|
Munekata PE, Pateiro M, Rodríguez-Lázaro D, Domínguez R, Zhong J, Lorenzo JM. The Role of Essential Oils against Pathogenic Escherichia coli in Food Products. Microorganisms 2020; 8:microorganisms8060924. [PMID: 32570954 PMCID: PMC7356374 DOI: 10.3390/microorganisms8060924] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/30/2022] Open
Abstract
Outbreaks related to foodborne diseases are a major concern among health authorities, food industries, and the general public. Escherichia coli (E. coli) is a pathogen associated with causing multiple outbreaks in the last decades linked to several ready to eat products such as meat, fish, dairy products, and vegetables. The ingestion of contaminated food with pathogenic E. coli can cause watery diarrhea, vomiting, and persistent diarrhea as well as more severe effects such as hemorrhagic colitis, end-stage renal disease, and, in some circumstances, hemolytic uremic syndrome. Essential oils (EOs) are natural compounds with broad-spectrum activity against spoilage and pathogenic microorganisms and are also generally recognized as safe (GRAS). Particularly for E. coli, several recent studies have been conducted to study and characterize the effect to inhibit the synthesis of toxins and the proliferation in food systems. Moreover, the strategy used to apply the EO in food plays a crucial role to prevent the development of E. coli. This review encompasses recent studies regarding the protection against pathogenic E. coli by the use of EO with a major focus on inhibition of toxins and proliferation in food systems.
Collapse
Affiliation(s)
- Paulo E.S. Munekata
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Mirian Pateiro
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - David Rodríguez-Lázaro
- Microbiology Division, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Rubén Domínguez
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Jian Zhong
- Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100125, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Jose M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: ; Tel.: +988-548-277
| |
Collapse
|
20
|
The Use of Edible Films Based on Sodium Alginate in Meat Product Packaging: An Eco-Friendly Alternative to Conventional Plastic Materials. COATINGS 2020. [DOI: 10.3390/coatings10020166] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amount of plastics used globally today exceeds a million tonnes annually, with an alarming annual growth. The final result is that plastic packaging is thrown into the environment, and the problem of waste is increasing every year. A real alternative is the use bio-based polymer packaging materials. Research carried out in the laboratory context and products tested at the industrial level have confirmed the success of replacing plastic-based packaging with new, edible or completely biodegradable foils. Of the polysaccharides used to obtain edible materials, sodium alginate has the ability to form films with certain specific properties: resistance, gloss, flexibility, water solubility, low permeability to O2 and vapors, and tasteless or odorless. Initially used as coatings for perishable or cut fresh fruits and vegetables, these sodium alginate materials can be applied to a wide range of foods, especially in the meat industry. Used to cover meat products, sodium alginate films prevent mass loss and degradation of color and texture. The addition of essential oils prevents microbial contamination with Escherichia coli, Salmonella enterica, Listeria monocytogenes, or Botrytis cinerea. The obtained results promote the substitution of plastic packaging with natural materials based on biopolymers and, implicitly, of sodium alginate, with or without other natural additions. These natural materials have become the packaging of the future.
Collapse
|
21
|
Keykhosravy K, Khanzadi S, Hashemi M, Azizzadeh M. Chitosan-loaded nanoemulsion containing Zataria Multiflora Boiss and Bunium persicum Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. Int J Biol Macromol 2020; 150:904-913. [PMID: 32057880 DOI: 10.1016/j.ijbiomac.2020.02.092] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
This study was targeted to investigate the effect of chitosan-loaded nanoemulsion enriched with two types of essential oils on the microbial quality of turkey meat. To this end, the effects of essential oils of Zataria Multiflora Boiss (ZEO) and Bunium persicum Boiss (BEO) were evaluated at two concentrations (0.5% and 1% (w/v)) during 18 days of storage at 4 °C. Initially, in vitro evaluations were performed on the prepared nanoemulsions, namely essential oil nanoemulsions and chitosan-loaded nanoemulsions containing essential oils, using micro-dilution method and agar diffusion methods, respectively. Meat samples were analyzed for microbial indicators and inoculated salmonella Enteritidis, and Listeria monocytogenes during 3-day intervals. The highest reduction rate of total viable bacteria (2.06 log CFU/g), total psychrophilic (2.59 log CFU/g), Pseudomonas spp. (2.07 log CFU/g), Enterobacteriaceae (2.51 log CFU/g), lactic acid bacteria (2.51 log CFU/g), and yeast and mold count (2.10 log CFU/g) were observed in chitosan-loaded nanoemulsion containing ZEO 1%, in comparison with control samples. Moreover, the shelf life significantly increased due to the application of chitosan-loaded nanoemulsions (15-18 days), compared to that of the control group (6 days). Therefore, the edible chitosan-based nanoemulsion could play an effective role in the preservation of the microbial qualities of turkey meat.
Collapse
Affiliation(s)
- Kobra Keykhosravy
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Azizzadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
22
|
Mei J, Ma X, Xie J. Review on Natural Preservatives for Extending Fish Shelf Life. Foods 2019; 8:E490. [PMID: 31614926 PMCID: PMC6835557 DOI: 10.3390/foods8100490] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Fish is extremely perishable as a result of rapid microbial growth naturally present in fish or from contamination. Synthetic preservatives are widely used in fish storage to extend shelf life and maintain quality and safety. However, consumer preferences for natural preservatives and concerns about the safety of synthetic preservatives have prompted the food industry to search natural preservatives. Natural preservatives from microorganisms, plants, and animals have been shown potential in replacing the chemical antimicrobials. Bacteriocins and organic acids from bacteria showed good antimicrobial activities against spoilage bacteria. Plant-derived antimicrobials could prolong fish shelf life and decrease lipid oxidation. Animal-derived antimicrobials also have good antimicrobial activities; however, their allergen risk should be paid attention. Moreover, some algae and mushroom species can also provide a potential source of new natural preservatives. Obviously, the natural preservatives could perform better in fish storage by combining with other hurdles such as non-thermal sterilization processing, modified atmosphere packaging, edible films and coatings.
Collapse
Affiliation(s)
- Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Xuan Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China.
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|
23
|
Gokoglu N. Novel natural food preservatives and applications in seafood preservation: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2068-2077. [PMID: 30318589 DOI: 10.1002/jsfa.9416] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 05/09/2023]
Abstract
Food preservative additives are natural or synthetic substances which delay degradation in foods caused by microbial growth, enzyme activity, and oxidation. Until recently, the use of synthetic additives in food was more common. However, synthetic additives have not been widely accepted by consumers in recent years due to their assumed adverse effects on their health. Therefore, the tendency of consumers to natural additives is increasing day-by-day. Seafood is an easily perishable food due to its chemical composition. Immediately after harvest, changes in odor, taste, and texture in fishery products can be noticed. For this reason, measures to protect the product must be taken immediately after harvest or catching. Various preservation methods have been developed. In addition to various technological methods, preservative additives are used in fresh or processed seafood as well as in other foods. This review focuses on novel natural preservatives from different sources such as plants, bacteria, fungi, animals and algae, and their use in seafood to protect quality and prolong shelf life. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nalan Gokoglu
- Department of Fish Processing Technology, Fisheries Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
24
|
Saravani M, Ehsani A, Aliakbarlu J, Ghasempour Z. Gouda cheese spoilage prevention: Biodegradable coating induced by Bunium persicum essential oil and lactoperoxidase system. Food Sci Nutr 2019; 7:959-968. [PMID: 30918638 PMCID: PMC6418427 DOI: 10.1002/fsn3.888] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 11/11/2022] Open
Abstract
This study aimed to prepare an inhibitory edible coating for Gouda cheese based on whey protein containing lactoperoxidase system (LPOS) and Bunium persicum essential oil (EO) in order to control postpasteurization contamination. Using a full factorial design, the effects of LPOS and EO on microbiological characteristics and chemical indices of manufactured Gouda cheeses were evaluated during 90 days of storage time. Listeria, lactic acid bacteria, Enterobacter, Escherichia, and Pseudomonas species were considered as potential pathogenic and spoilage indicators of produced Gouda cheese samples. Chemical properties of cheeses were assessed using the free fatty acid, peroxide value, and thiobarbituric acid experiments. The results showed that bacteria counts remained constant in cheese samples coated with EO and also EO-LPOS. However, the survival of gram-positive lactic acid bacteria and Enterobacter spp. was more pronounced in LPOS-based coating. The most effective treatments on oxidation stability parameters in cheese samples were EO- and EO-LPOS coatings. By the addition of B. persicum EO and LPOS, further inhibition of the lipid oxidation of the cheese samples was achieved. Lipolysis, as a result of lipid degradation, was more pronounced in the control, whey-coated, and whey-LPOS-coated samples in comparison with whey-EO- and whey-EO-LPOS-coated samples during the final days of storage time. These results indicate that antibacterial, lipid oxidation, and oxygen barrier properties of the coatings were developed by the addition of B. persicum EO and LPOS.
Collapse
Affiliation(s)
- Morteza Saravani
- Department of Food Hygiene and Quality ControlUrmia UniversityUrmiaIran
| | - Ali Ehsani
- Department of Food Hygiene and Quality ControlUrmia UniversityUrmiaIran
- Department of Food Science and TechnologyTabriz University of Medical ScienceTabrizIran
| | - Javad Aliakbarlu
- Department of Food Hygiene and Quality ControlUrmia UniversityUrmiaIran
| | - Zahra Ghasempour
- Department of Food Science and TechnologyTabriz University of Medical ScienceTabrizIran
| |
Collapse
|
25
|
Yousefi M, Farshidi M, Ehsani A. Effects of lactoperoxidase system-alginate coating on chemical, microbial, and sensory properties of chicken breast fillets during cold storage. J Food Saf 2018. [DOI: 10.1111/jfs.12449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Yousefi
- Talented Students Center, Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science; Tabriz University of Medical Sciences; Tabriz Iran
| | - Maryam Farshidi
- Department of Food Science and Technology, Faculty of Nutrition and Food Science; Tabriz University of Medical Sciences; Tabriz Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Science; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|