1
|
Sangtanoo P, Srimongkol P, Saisavoey T, Puthong S, Buakeaw A, Suttisuwan R, Jatupornpipat M, Pimtong W, Reamtong O, Karnchanatat A. Bee pollen peptides as potent tyrosinase inhibitors with anti-melanogenesis effects in murine b16f10 melanoma cells and zebrafish embryos. Sci Rep 2024; 14:30834. [PMID: 39730661 DOI: 10.1038/s41598-024-81495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024] Open
Abstract
One important functional food ingredient today, valued for its health properties and ability to prevent disease, is bee pollen, which comprises a combination of nectar, pollen from plants, and the secretions of bees. In this research, the tyrosinase (TYR) inhibiting abilities of the peptides derived from bee pollen protein hydrolysates are investigated. Various proteases were utilized to generate these peptides, followed by testing at different concentrations. Tyrosinase inhibition activity was detected in all cases, while the hydrolysate drawn from 5.0% w/v neutrase exhibited the best IC50 value and was thus investigated further via ultrafiltration to separate the active fractions. The highest potential for tyrosinase inhibition was recorded for the fractions below 0.65 kDa. Subsequent purification steps via SEC and RP-HPLC led to the identification of the VDGYPAAGY (named VY-9) peptide via LC-Q-TOF-MS/MS in fraction F1-2, known for its non-toxic and hydrophobic characteristics albeit poor water solubility. The synthesized VY-9 peptide demonstrated competitive inhibition, with IC50 values of 0.55 ± 0.03 µM for mono-phenolase and 2.54 ± 0.06 µM for di-phenolase activities, as confirmed by molecular docking analysis revealing dominant hydrogen bond interactions with TYR. Effective concentrations of 0.2-1.6 µM of VY-9 showed negligible cytotoxicity in B16F10 cells. Melanin synthesis suppression was examined via qRT-PCR, and western blot in MITF, TYR, TRP-1, and TRP-2. Cell death in zebrafish embryos was evaluated in vivo using a toxicity assay which revealed no significant influence from VY-9, while anti-melanogenic effects were observed when the concentration was 4 µM, suggesting bee pollen-derived peptides' potential in cosmetic and pharmaceutical depigmentation applications.
Collapse
Affiliation(s)
- Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Tanatorn Saisavoey
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Rutairat Suttisuwan
- Biodiversity and Sustainable Utilization Research Unit, Department of Biology, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nang linchi Road, Sathorn, Bangkok, 10120, Thailand
| | - Marisa Jatupornpipat
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology, Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Huang P, Miao J, Liao W, Huang C, Chen B, Li Y, Wang X, Yu Y, Liang X, Zhao H, Cao Y. Rapid screening of novel tyrosinase inhibitory peptides from a pearl shell meat hydrolysate by molecular docking and the anti-melanin mechanism. Food Funct 2023; 14:1446-1458. [PMID: 36648079 DOI: 10.1039/d2fo03105a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pearls are an edible and medicinal resource with whitening activity and nutritional value in China. In the previous study, we found that the pearl shell meat hydrolysate showed dual activities of antioxidation and tyrosinase inhibition, which were similar to the activities of pearls. In this research, a pearl shell meat hydrolysate was isolated, identified and screened by molecular docking, and three peptides FLF, SPSSS and WLL with high tyrosinase inhibitory activities were obtained. The results indicated that FLF, SPSSS and WLL could effectively inhibit tyrosinase activities and the inhibition rates (1.0 mg mL-1) were 54.32%, 65.26% and 57.50%, respectively. The results of a zebrafish whitening experiment showed that the tyrosinase activities of zebrafish treated with FLF, SPSSS and WLL decreased by 75.41%, 62.87% and 64.99% (p < 0.05), respectively, and the melanin content decreased by 37.34%, 38.52% and 40.39% (p < 0.05), respectively. In a B16F10 cell whitening experiment, compared with a control group, FLF, SPSSS and WLL also showed a significant whitening effect, the tyrosinase activities decreased by 84.08%, 79.08% and 77.45% (p < 0.05), respectively, and the melanin content decreased by 42.23%, 34.37% and 34.02% (p < 0.05), respectively. Moreover, the active peptides could act on three signal pathways including Wnt/β-catenin, MAPK and MC1R/α-MSH and significantly downregulated the expressions of the signaling factors WNT4, MITF, β-catenin, ERK, JNK, TRP1 and TRP2 (p < 0.05). The results demonstrated that the whitening active peptides were edible natural antioxidants, tyrosinase inhibitors and skin anti-melanin agents, which could be added to functional foods as food ingredients.
Collapse
Affiliation(s)
- Pantian Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China. .,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
| | - Wanwen Liao
- B.I.R.D. (Guangzhou) Biotechnology Co., Ltd, Guangzhou 510642, China
| | - Congshu Huang
- B.I.R.D. (Guangzhou) Biotechnology Co., Ltd, Guangzhou 510642, China
| | - Bingbing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yingkun Li
- Beihai Black Pearl Marine Biotechnology Co. Ltd, Beihai 536000, China
| | - Xianghua Wang
- Beihai Black Pearl Marine Biotechnology Co. Ltd, Beihai 536000, China
| | - Yan Yu
- Beihai Black Pearl Marine Biotechnology Co. Ltd, Beihai 536000, China
| | - Xingtang Liang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Haishan Zhao
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Kose A, Oncel SS. Design of melanogenesis regulatory peptides derived from phycocyanin of the microalgae Spirulina platensis. Peptides 2022; 152:170783. [PMID: 35278583 DOI: 10.1016/j.peptides.2022.170783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022]
Abstract
Pigmentation issues are common conditions associated with excessive or insufficient production of melanin. Recently peptides are investigated to discover novel melanogenesis regulators as low molecular weight compounds to regulate skin pigmentation. In this study, an internal library of peptides obtained through in silico enzymatic digestion of phycocyanin from microalgae S. platensis was tested to apprehend their anti-melanogenic effects. Seven peptides were investigated for their inhibitory potential against mushroom and B16-F10 murine tyrosinase enzymes. According to the results, P5 (SPSWY) and P7 (AADQRGKDKCARDIGY) were effective in lowering the activity of mushroom and B16-F10 tyrosinases. P5 was the most potent (IC50 value, 12.1 µM) in mushroom which was followed by P2 (MAACLR, 86.9 µM). Although the peptides were particularly powerful in inhibiting monophenolase activity, only moderate inhibition was observed for diphenolase activity in mushroom tyrosinase assay. Apart from tyrosinase inhibition, P2 and P3 (RCLNGRL) were efficient DPPH radical scavengers at low concentrations (IC50 < 200 µM). In the mammalian assay system, P5 and P7 were noticeably effective to decrease tyrosinase enzyme activity with IC50 values of 48.9 and 34.2 µM, respectively. However, although P4 (RYVTYAVF) was a potent mushroom tyrosinase inhibitor, it increased melanin synthesis up to 3-fold in B16-F10 cells. The results indicate that C-terminal tyrosine residue is important for tyrosinase inhibition. This study shows, for the first time, that microalgae proteins can be regarded as sources for melanogenesis regulation.
Collapse
Affiliation(s)
- Ayse Kose
- Ege University Faculty of Engineering Department of Bioengineering, 35100 Bornova, Izmir, Turkey
| | - Suphi S Oncel
- Ege University Faculty of Engineering Department of Bioengineering, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
4
|
Recent progress in preventive effect of collagen peptides on photoaging skin and action mechanism. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Zu XY, Zhao YJ, Fu SM, Liao T, Li HL, Xiong GQ. Physicochemical Properties and Biological Activities of Silver Carp Scale Peptide and Its Nanofiltration Fractions. Front Nutr 2022; 8:812443. [PMID: 35059429 PMCID: PMC8765580 DOI: 10.3389/fnut.2021.812443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
To explore the physicochemical properties and biological functions of silver carp scale peptide (SCSP), its molecular-weight fractions SCSP-I, II, and III obtained by nanofiltration were assessed for their solubility, emulsibility, free radical scavenging ability, effect on the proliferation of mouse B16 cells. The results showed that the solubility of each fraction of SCSP was higher than 90%, SCSP-II and III were higher than 95%. The antioxidant powers on ⦁OH,O 2 - ⦁ and Fe3+ were ranked as SCSP-III > SCSP-II > SCSP-I > SCSP. All fractions of SCSP had no toxic or side effects in mouse B16 melanoma cells experiments in vitro. At a concentration of 0.01 mg/mL, the tyrosinase activity of B16 cells in the SCSP-II fraction was significantly lower than that of the α-arbutin (P < 0.05), at 65.37%. The molecular weight distribution of SCSP was 399-1404 Dalton and 13 peptide sequences were detected. Among them, SCSP-II contained many hydrophobic amino acids, and SCSP-III stood out for combining arginine with hydrophobic amino acids. This may be the reason why the low molecular-weight SCSPs show the strong antioxidant activity and strong tyrosinase inhibition. The work provides a data base for the development of SCSP and increases the possibility of its application.
Collapse
Affiliation(s)
- Xiao-yan Zu
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ya-jing Zhao
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Petrochemical, Lanzhou University of Technology, Lanzhou, China
| | - Shi-ming Fu
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Tao Liao
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hai-lan Li
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guang-quan Xiong
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
6
|
Kong S, Choi HR, Kim YJ, Lee YS, Park KC, Kwak SY. Milk Protein-Derived Antioxidant Tetrapeptides as Potential Hypopigmenting Agents. Antioxidants (Basel) 2020; 9:antiox9111106. [PMID: 33182801 PMCID: PMC7698045 DOI: 10.3390/antiox9111106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022] Open
Abstract
Excessive accumulation of melanin can cause skin pigmentation disorders, which may be accompanied by significant psychological stress. Although many natural and synthetic products have been developed for the regulation of melanogenesis biochemistry, the management of unwanted skin pigmentation remains challenging. Herein, we investigated the potential hypopigmenting properties of peptide sequences that originated from milk proteins such as ĸ-casein and β-lactoglobulin. These proteins are known to inhibit melanogenesis and their hydrolysates are reported as antioxidant peptides. We synthesize tetrapeptide fragments of the milk protein hydrolysates and investigate the amino acids that are essential for designing peptides with tyrosinase inhibitory and antioxidant activities. We found that the peptide methionine-histidine-isoleucine-arginine amide sufficiently inhibits mushroom tyrosinase activity, shows potent antioxidant activity and effectively impedes melanogenesis in cultured melanocytes via cooperative biological activities. Our findings demonstrate the potential utility of the bioactive tetrapeptide from milk proteins as a chemical alternative to hypopigmenting agents.
Collapse
Affiliation(s)
- Saerom Kong
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea;
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (H.-R.C.); (Y.-J.K.)
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam 13605, Korea
| | - Yoon-Jeong Kim
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (H.-R.C.); (Y.-J.K.)
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea;
- Correspondence: (Y.-S.L.); (K.-C.P.); (S.-Y.K.)
| | - Kyoung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (H.-R.C.); (Y.-J.K.)
- Department of Dermatology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (Y.-S.L.); (K.-C.P.); (S.-Y.K.)
| | - Seon-Yeong Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence: (Y.-S.L.); (K.-C.P.); (S.-Y.K.)
| |
Collapse
|
7
|
Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Karnchanatat A. Anti-inflammatory action of two novel peptides derived from peanut worms (Sipunculus nudus) in lipopolysaccharide-induced RAW264.7 macrophages. Food Funct 2020; 11:552-560. [PMID: 31850468 DOI: 10.1039/c9fo02178g] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peanut worm (Sipunculus nudus Linn.) protein was hydrolyzed by three proteases, and NO scavenging activity of the protein hydrolysates was evaluated. The hydrolysate obtained using Alcalase® showed the highest NO scavenging activity. This hydrolysate was fractionated using 10-, 5-, and 3 kDa molecular weight cut-off membranes, and the lowest MW fraction (<3 kDa) exhibited the highest NO scavenging activity. The <3 kDa fraction was further purified by gel filtration and high-performance liquid chromatographies. The peptides in the HPLC fraction with the strongest anti-NO activity were identified by quadrupole-time-of-flight mass spectrometry as LSPLLAAH (821.48 Da) and TVNLAYY (843.42 Da). Both peptides and the corresponding pure synthetic peptides inhibited NO production by RAW 264.7 macrophages without cytotoxicity. Quantitative real-time RT-PCR analysis showed that peptides LSPLLAAH and TVNLAYY reduced expression of proinflammatory cytokine genes iNOS, IL-6, TNF-α, and COX-2 in RAW 264.7 macrophages, suggesting that these peptides are novel anti-inflammatory candidates.
Collapse
Affiliation(s)
- Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| | | | | | | | | |
Collapse
|
8
|
Petsantad P, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Chaitanawisuti N, Karnchanatat A. The antioxidant potential of peptides obtained from the spotted babylon snail (Babylonia areolata) in treating human colon adenocarcinoma (Caco-2) cells. RSC Adv 2020; 10:25746-25757. [PMID: 35518590 PMCID: PMC9055304 DOI: 10.1039/d0ra03261a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
This research study investigated the free radical-scavenging activities of peptides which were obtained from the protein hydrolysates of the spotted babylon snail using a combination of pepsin and pancreatin proteolysis which can replicate the conditions of gastrointestinal digestion. In this study, spotted babylon protein hydrolysate (SPH) derived from a sequential 3 hour digestion, first with pepsin and then with pancreatin, was examined. SPH was fractionated using molecular weight cut-off membranes for 10 kDa, 5 kDa, 3 kDa, and 0.65 kDa. It was found that the MW < 0.65 kDa fraction provided the greatest levels of 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazl (DPPH), and nitric oxide (NO) radical scavenging activity. Three subfractions of the MW < 0.65 kDa fraction were then generated via RP-HPLC. The subfraction which subsequently demonstrated the greatest free radical scavenging activity was F3, which was accordingly chosen for further investigation commencing with quadrupole-time-of-flight-electron spin induction-mass spectrometry-based de novo peptide sequencing. This resulted in the identification of a pair of novel peptides: His–Thr–Tyr–His–Glu–Val–Thr–Lys–His (HTYHEVTKH), and Trp–Pro–Val–Leu–Ala–Tyr–His–Phe–Thr (WPVLAYHF). The WPVLAYHF peptide exhibited greater antioxidant activity. The study also confirmed that the F3 sub-fraction was able to prevent hydroxyl radicals from causing DNA damage by conducting tests which involved the pKS, pUC19, and pBR322 plasmids using the Fenton reaction. In addition, cellular antioxidant activity was demonstrated by two synthetic peptides toward the human adenocarcinoma colon (Caco-2) cell line, with the potency of the activity dependent upon the peptide concentration. The isolation and subsequent identification of the two novel antioxidant peptides, HTYHEVTKH, and WPVLAYHF from the spotted babylon snail was achieved. In the Caco-2 cell line, two synthetic peptides produced a dose-dependent response on antioxidant activity.![]()
Collapse
Affiliation(s)
- Putcha Petsantad
- Program in Biotechnology
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics
- Faculty of Tropical Medicine
- Mahidol University
- Bangkok 10400
- Thailand
| | | | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| |
Collapse
|
9
|
Static hydrothermal processing and fractionation for production of a collagen peptide with anti-oxidative and anti-aging properties. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|