1
|
Kaltalioglu K. Sinapic acid-loaded gel accelerates diabetic wound healing process by promoting re-epithelialization and attenuating oxidative stress in rats. Biomed Pharmacother 2023; 163:114788. [PMID: 37105076 DOI: 10.1016/j.biopha.2023.114788] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Impaired wound healing is a critical health concern for individuals with diabetes. Sinapic acid, a phyto-compound, has wound-healing potential owing to its various bioactivities. In this study, we explored the wound-healing ability of sinapic acid in diabetes. Full-thickness excisional wounds were created in streptozotocin-induced diabetic rats. Sinapic acid-loaded gels (1%, 2%, and 3%) were prepared and applied topically to diabetic skin wounds. On day 7 post-wounding, rats were sacrificed, and macroscopic, histopathological, and oxidative markers of wound healing activity were evaluated in the collected wound tissues. Sinapic acid-loaded gels showed better recovery in re-epithelialization (p < 0.05) and angiogenesis (p < 0.05) compared to the negative control group. Sinapic acid-loaded gels (1%, 2%, and 3%) showed 87.46%, 79.53%, and 68.78% wound contraction, respectively. They increased collagen content (28.05 ± 1.66, 17.30 ± 2.19, and 11.64 ± 1.25, respectively) and decreased malondialdehyde (MDA) levels (17.49 ± 1.61, 18.44 ± 1.24, and 19.16 ± 1.77, respectively) compared to the negative control group (6.76 ± 0.89, and 43.58 ± 3.70, respectively) (p < 0.05). Moreover, sinapic acid-loaded gel groups demonstrated enhanced antioxidant capacity (approximately 2-2.5-fold) compared to the negative control group (p < 0.05). Sinapic acid 1% loaded gel showed the best effect on the diabetic healing process, whereas sinapic acid 2% loaded gel and reference drug showed similar effects. The results of this study, for the first time, suggest that the topical application of sinapic acid can promote diabetic wound healing, especially at low doses.
Collapse
Affiliation(s)
- Kaan Kaltalioglu
- Espiye Vocational School, Giresun University, 28600 Giresun, Turkey.
| |
Collapse
|
2
|
Polat DÇ, İlgün S, Karatoprak GŞ, Akkol EK, Capasso R. Phytochemical Profiles, Antioxidant, Cytotoxic, and Anti-Inflammatory Activities of Traditional Medicinal Plants: Centaurea pichleri subsp. pichleri, Conyza canadensis, and Jasminum fruticans. Molecules 2022; 27:molecules27238249. [PMID: 36500342 PMCID: PMC9735548 DOI: 10.3390/molecules27238249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Centaurea pichleri subsp. pichleri, Conyza canadensis, and Jasminum fruticans are traditionally used plants grown in Turkey. Methanol extracts were obtained from these plants and pharmacological activity studies and phytochemical analyses were carried out. To evaluate the phytochemical composition, spectrophotometric and chromatographic techniques were used. The extracts were evaluated for antioxidant activity by DPPH●, ABTS●+ radical scavenging, and FRAP assays. The cytotoxic effects of the extracts were investigated on DU145 prostate cancer and A549 lung cancer cell lines. The anti-inflammatory effects of extracts were investigated on the NO amount, TNF-α, IFN-γ, and PGE 2 levels in lipopolysaccharide-stimulated Raw 264.7 cells. The richest extract in terms of phenolic compounds (98.19 ± 1.64 mgGAE/gextract) and total flavonoids (21.85 ± 0.64 mgCA/gextract) was identified as C. pichleri subsp. pichleri methanol extract. According to antioxidant activity determinations, the C. pichleri subsp. pichleri extract was found to be the most active extract. Finally, the C. pichleri subsp. pichleri methanol extract was revealed to be the most effective inhibitor of viability in the cytotoxic activity investigation, and the extract with the best anti-inflammatory action. The findings point to C. pichleri subsp. pichleri as a promising source of bioactive compounds in the transition from natural sources to industrial uses, such as new medications, cosmeceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Derya Çiçek Polat
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-0312-202-3185 (E.K.A.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-0312-202-3185 (E.K.A.)
| |
Collapse
|
3
|
Youssef JR, Boraie NA, Ibrahim HF, Ismail FA, El-Moslemany RM. Glibenclamide Nanocrystal-Loaded Bioactive Polymeric Scaffolds for Skin Regeneration: In Vitro Characterization and Preclinical Evaluation. Pharmaceutics 2021; 13:1469. [PMID: 34575545 PMCID: PMC8469322 DOI: 10.3390/pharmaceutics13091469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
Skin restoration following full-thickness injury poses significant clinical challenges including inflammation and scarring. Medicated scaffolds formulated from natural bioactive polymers present an attractive platform for promoting wound healing. Glibenclamide was formulated in collagen/chitosan composite scaffolds to fulfill this aim. Glibenclamide was forged into nanocrystals with optimized colloidal properties (particle size of 352.2 nm, and polydispersity index of 0.29) using Kolliphor as a stabilizer to allow loading into the hydrophilic polymeric matrix. Scaffolds were prepared by the freeze drying method using different total polymer contents (3-6%) and collagen/chitosan ratios (0.25-2). A total polymer content of 3% at a collagen/chitosan ratio of 2:1 (SCGL3-2) was selected based on the results of in vitro characterization including the swelling index (1095.21), porosity (94.08%), mechanical strength, rate of degradation and in vitro drug release. SCGL3-2 was shown to be hemocompatible based on the results of protein binding, blood clotting and percentage hemolysis assays. In vitro cell culture studies on HSF cells demonstrated the biocompatibility of nanocrystals and SCGL3-2. In vivo studies on a rat model of a full-thickness wound presented rapid closure with enhanced histological and immunohistochemical parameters, revealing the success of the scaffold in reducing inflammation and promoting wound healing without scar formation. Hence, SCGL3-2 could be considered a potential dermal substitute for skin regeneration.
Collapse
Affiliation(s)
- Julie R. Youssef
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21523, Egypt; (J.R.Y.); (N.A.B.); (F.A.I.)
| | - Nabila A. Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21523, Egypt; (J.R.Y.); (N.A.B.); (F.A.I.)
| | - Heba F. Ibrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria 21523, Egypt;
| | - Fatma A. Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21523, Egypt; (J.R.Y.); (N.A.B.); (F.A.I.)
| | - Riham M. El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21523, Egypt; (J.R.Y.); (N.A.B.); (F.A.I.)
| |
Collapse
|
4
|
Okur ME, Karadağ AE, Özhan Y, Sipahi H, Ayla Ş, Daylan B, Kültür Ş, Demirci B, Demirci F. Anti-inflammatory, analgesic and in vivo-in vitro wound healing potential of the Phlomis rigida Labill. extract. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113408. [PMID: 32979409 DOI: 10.1016/j.jep.2020.113408] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The preparations of Phlomis aerial parts are used traditionally in Anatolia for wound healing and in inflammatory disorders. METHODS For the identification of the active fraction, the air dried aerial parts of Phlomis rigida Labill. were extracted by methanol and fractionated successively by n-hexane, dichloromethane and ethyl acetate, respectively. The phenolic constituents were characterized by the Folin-Ciocaltheu method; the antioxidant activity was performed by ABTS and DPPH radical scavenging assays. In vitro anti-inflammatory activity was evaluated by LOX enzyme inhibition, spectrophotometrically as well as cell cultures. The wound healing properties of P. rigida extract gels were studied via in vitro cell culture methods and in vivo by excisional wound model using Balb-c mice. The P. rigida extract was analyzed and characterized by GC-FID, GC-MS, and LC-MS. RESULTS The P. rigida methanol extract showed moderate LOX inhibitory at IC50 = 19.5 ± 2.8 μg/mL whereas the antioxidant activity was by DPPH• IC50 = 0.89 mg/mL, and by ABTS• IC50 = 0.99 mg/mL, respectively. In addition, a remarkable P. rigida extracts anti-inflammatory activity was observed in the cell culture assay, which was then confirmed by the in vitro wound healing activity applied at 0.125-0.5 mg/mL concentrations, resulting in a dose-dependent increase in wound closure at the final stage. The P. rigida gel formulation was prepared to evaluate the extract in vivo, whereas the experimental results of the new gel formulation supported the findings of the in vitro wound healing activity. CONCLUSION The findings of this in vitro and in vivo study suggest that the wound healing and anti-inflammatory properties provide a scientific evidence of the ethnopharmacological application of Phlomis species.
Collapse
Affiliation(s)
- Mehmet Evren Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey.
| | - Ayşe Esra Karadağ
- Istanbul Medipol University, School of Pharmacy, Department of Pharmacognosy, 34810, Istanbul, Turkey; Anadolu University, Graduate School of Health Sciences, Department of Pharmacognosy, Eskişehir, Turkey.
| | - Yağmur Özhan
- Yeditepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul, Turkey.
| | - Hande Sipahi
- Yeditepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul, Turkey.
| | - Şule Ayla
- Istanbul Medipol University, School of Medicine, Department of Histology and Embryology, 34810, Istanbul, Turkey.
| | - Benay Daylan
- Istanbul Medipol University, School of Medicine, Department of Histology and Embryology, 34810, Istanbul, Turkey.
| | - Şükran Kültür
- İstanbul University, Faculty of Pharmacy, Department of Pharmaceutical Botany, Istanbul, Turkey.
| | - Betül Demirci
- Anadolu University, Faculty of Pharmacy, Department of Pharmacognosy, 26470, Eskişehir, Turkey.
| | - Fatih Demirci
- Anadolu University, Faculty of Pharmacy, Department of Pharmacognosy, 26470, Eskişehir, Turkey; Eastern Mediterranean University, Faculty of Pharmacy, Famagusta, N. Cyprus, Mersin 10, Turkey.
| |
Collapse
|
5
|
Batur S, Ayla S, Sakul AA, Okur ME, Karadag AE, Daylan B, Ozdemir EM, Kepil N, Gunal MY. An Alternative Approach Wound Healing Field with Polypodium Vulgare. Medeni Med J 2020; 35:315-323. [PMID: 33717624 PMCID: PMC7945725 DOI: 10.5222/mmj.2020.89983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/21/2020] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE In this study, we examined the effects of Polypodium vulgare L. (Polypodiaceae) as a candidate to be used for wound healing scarred area. We investigated the antibacterial, and antioxidant activity of P. Vulgare on both in vivo, and in vitro wound healing using an excisional wound model in mice. METHOD We used 32 Balb-c mice equally divided into four groups: Group 1 control, Group 2 vehicle, Group 3 Polypodium vulgare, and Group 4 Centella asiatica extract (CAE). All treatments were applied topically once in a day. The scar area, percentage wound closure and epithelization time were measured. PDGF, VEGF, and collagen immunohistochemical staining were used for evaluation. RESULTS CAE and P. vulgare extract groups were observed to be more effective than the control and vehicle groups in terms of new vascular, epidermal and granulation tissue organization. PDGF, VEGF, and collagen immunohistochemical staining was stronger in the P.vulgare extract and CAE groups compared to the control and vehicle groups. In the P. vulgare and CAE groups, PDGF staining intensity was stronger than the control and vehicle groups, but VEGF and collagen staining in P. vulgare group was not different from the control group. CONCLUSION P. vulgare had an effect on the injured area by regenerating the epidermis and increasing vascularization. P. vulgare extract with known antioxidant, and antimicrobial activities may be helpful as a supportive treatment in wound healing.
Collapse
Affiliation(s)
- Sebnem Batur
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pathology, Istanbul, Turkey
| | - Sule Ayla
- Istanbul Medipol University, Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Ayse Arzu Sakul
- Istanbul Medipol University, Faculty of Medicine, Istanbul, Department of Medical Pharmacology, Istanbul, Turkey
| | - Mehmet Evren Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - Ayse Esra Karadag
- Istanbul Medipol University, Faculty of Pharmacy, Department of Pharmacognosy, Istanbul, Turkey
| | - Benay Daylan
- Istanbul Medipol University, Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Ekrem Musa Ozdemir
- Istanbul Medipol University, Department of Animal Facility, Istanbul, Turkey
| | - Nuray Kepil
- Istanbul University-Cerrahpasa Faculty of Medicine, Department of Pathology, Istanbul, Turkey
| | - Mehmet Yalcin Gunal
- Alanya Alaaddin Keykubat University, Faculty of Medicine, Department of Physiology, Alanya, Turkey
| |
Collapse
|
6
|
Ali Khan B, Ullah S, Khan MK, Alshahrani SM, Braga VA. Formulation and evaluation of Ocimum basilicum-based emulgel for wound healing using animal model. Saudi Pharm J 2020; 28:1842-1850. [PMID: 33424273 PMCID: PMC7783209 DOI: 10.1016/j.jsps.2020.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/21/2020] [Indexed: 01/31/2023] Open
Abstract
The main aim of the topically applied drugs is to provide local drug contact to the skin and minimize general absorption of drugs. Ocimum basilicum (OB) is popular for folk medicines, having official acceptance in many countries. The aim of this study was to formulate and evaluate the efficacy of topical application of OB-based emulgel on wound healing in animal model. The prepared formulations (OB emulgel) were assessed for FTIR analysis, stability studies, physical appearance, rheological behavior, spreadability, patch/sensitivity test and in vitro drug release. The in vivo wound healing effect was evaluated and compared with commercially available Silver Sulfadiazine cream Quench® in wound-induced rabbits by macroscopic and histopathological evidence. The OB extract/drug was compatible with the selected polymer and other excipients and indicated the suitability of the polymers/excipients for preparation of topical emulgel. The formulated OB emulgel exhibited good physical properties. The release profile of emulgel was satisfactory and released 81.71 ± 1.7% of the drug in 250 min. In vivo wound healing studies showed that OB emulgel exhibited the highest percent wound contraction similar to the commercial product (p > 0.05). This activity was statistically significant (p < 0.05) in comparison to control. Histopathological assessment showed marked improvement in the skin histological architecture after 16 days of OB emulgel treatment. In conclusion, the data demonstrated here signify the prospective of 5% OB emulgel as an innovative therapeutic approach in wound healing.
Collapse
Affiliation(s)
- Barkat Ali Khan
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29500, Pakistan
| | - Shafi Ullah
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29500, Pakistan
| | - M Khalid Khan
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29500, Pakistan
| | | | - Valdir A Braga
- Center of Biotechnology, Federal University of Paraiba, Brazil
| |
Collapse
|
7
|
Manzoureh R, Farahpour MR. Topical administration of hydroethanolic extract of Trifolium pratense (red clover) accelerates wound healing by apoptosis and re-epithelialization. Biotech Histochem 2020; 96:276-286. [PMID: 32716218 DOI: 10.1080/10520295.2020.1797875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We investigated the wound healing effects of an ointment prepared from a hydroethanolic extract of Trifolium pratense (red clover) in Wistar rats. An animal model was prepared by making 314 mm2 full thickness skin excisions in all animals. Rats were divided into four experimental groups. Group 1 was a non-intervention control. Groups 2, 3 and 4 were treated topically with ointments containing 1.5, 3.0 and 6% (w/v) T. pretense extract, respectively. We evaluated the effects of these ointments by histological analysis of collagen production, epidermis thickness, fibroblast distribution and wound contraction ratio, and also by estimating expression of Bax, Bcl-2 and p53. Collagen production, epidermis thickness, fibroblast distribution and wound contraction ratio were significantly increased in groups 2 - 4 compared to group 1. Groups 2 - 4 also exhibited significantly increased levels of Bcl-2 mRNA and reduced mRNA levels of Bax and p53 compared to group 1. Groups 2 - 4 exhibited accelerated healing by up-regulating Bcl-2 expression, reducing p53 and Bax levels, and by promoting the proliferative phase of healing. We suggest that a hydroethanolic extract of T. pratense in commercial ointments may be useful for promoting wound healing.
Collapse
Affiliation(s)
- R Manzoureh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Urmia, Iran
| | - M R Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Urmia, Iran
| |
Collapse
|