1
|
Zhang S, Shao Y, Jin R, Ma B. Combining Network Pharmacology, Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation to Uncover the Efficacy and Mechanisms of Si-Miao-Yong-An Decoction in Diabetic Wound Healing. J Inflamm Res 2025; 18:4087-4101. [PMID: 40129870 PMCID: PMC11930845 DOI: 10.2147/jir.s506739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose Si-Miao-Yong-An (SMYA) Decoction, a traditional Chinese herbal mixture, shows promise for managing diabetic complications. Up to this point, no reports have explored the effects of SMYA on diabetic wounds or the underlying mechanisms. This study aimed to investigate the therapeutic potential of SMYA in promoting diabetic wound healing and to elucidate the underlying molecular mechanisms. Methods The wound healing effects of SMYA were evaluated in db/db diabetic mice by measuring wound closure rates and histological characteristics, including epidermal thickness and collagen deposition. Network pharmacology was utilized to identify active ingredients and corresponding therapeutic targets of SMYA, followed by validation through molecular docking and molecular dynamics simulations. KEGG and GO enrichment analyses were conducted to elucidate the relevant biological processes and pathways. In vitro studies involving high-glucose-treated HUVECs assessed the effects of SMYA-containing serum on cellular migration and angiogenesis. Finally, the expression of inflammatory factors and RAGE in the wound tissue was detected by qRT-PCR. Results SMYA significantly accelerated wound closure in db/db mice, as evidenced by improved epidermal thickness, tissue morphology, and collagen deposition. Network pharmacology identified 140 overlapping genes involved in angiogenesis and inflammation, with the AGE-RAGE signaling pathway playing a central role. Molecular docking and dynamics simulations revealed strong binding stability of quercetin and kaempferol to inflammation-related hub targets, including IL-6, TNF, and IL-1β. In vitro, SMYA-containing serum alleviated high-glucose-induced impairments in HUVEC migration and angiogenesis. Furthermore, qRT-PCR analysis showed that SMYA significantly downregulated Tnf, Il1b, Il6, and Rage expression in wound tissues, supporting its anti-inflammatory effect. Conclusion SMYA promotes diabetic wound healing by modulating the inflammatory microenvironment and inhibiting the AGE-RAGE signaling pathway. These findings provide robust evidence for SMYA's therapeutic potential and lay a foundation for its future clinical application in treating diabetic wounds.
Collapse
Affiliation(s)
- Shujuan Zhang
- Department of Laboratory Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yiming Shao
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Ranran Jin
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Baodong Ma
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
2
|
Anbar HS, Shehab NG, Yasin A, Shaar LM, Ashraf R, Rahi Z, Alamir R, Alsabbagh D, Thabet A, Altaas I, Lozon YA, El Rouby NMM, Shahiwala A. The wound healing and hypoglycemic activates of date palm (Phoenix dactylifera) leaf extract and saponins in diabetic and normal rats. PLoS One 2024; 19:e0308879. [PMID: 39312526 PMCID: PMC11419346 DOI: 10.1371/journal.pone.0308879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/28/2024] [Indexed: 09/25/2024] Open
Abstract
INTRODUCTION Indigenous plants have historically been crucial in treating human diseases across various cultures worldwide. Research continues to uncover new therapeutic uses for indigenous plants, from treating infectious diseases to managing chronic conditions such as diabetes and wound care. This study aimed to examine the effect of palm tree leaves "Phoenix dactylifera L" extract and its topical film formulation on wound healing and blood glucose levels. METHODS Palm leaves were collected, authenticated, powdered, and extracted with ethanol by cold maceration. Saponins were isolated. The dried extract was analyzed using reverse-phase high-pressure liquid chromatography to identify the phytochemicals present. Diabetes mellitus was induced by a single intraperitoneal injection of Streptozotocin (40mg/kg). Rats with blood glucose levels ≥ 200 mg/dl were used to determine the reduction in blood glucose with or without the oral extract. Incision and excision wounds were induced in both diabetic and normal rats. Topical films containing extract or saponin and inert films were applied to the wounds every other day, and wound sizes were recorded until the wound was completely healed. RESULTS The presence of six flavonoids, Naringin, Rutin, Quercetin, Kaempferol, Apigenin, and Catechin, and five phenolic acids, Syringic acid, p Coumaric acid, Caffeic acid, Ferulic acid, Ellagic acid were detected in the dried extract. A significant reduction in blood sugar in diabetic rats and wound diameter in the treated group compared to the control group in both diabetic and normal rats was observed, confirming the promising role of palm leaf extract on diabetes and wound care. Macroscopic, morphometric, and histological data suggested that the cutaneous wound healing in rats treated with the leaf extract was better and faster than the control or inert groups. CONCLUSIONS Our research findings highlight the marked effect of Phoenix dactylifera extract as a supportive or alternative treatment for both hyperglycemia and incision or excision wounds. Further research and clinical trials are warranted to validate these findings and explore the underlying mechanisms of action.
Collapse
Affiliation(s)
- Hanan S. Anbar
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Naglaa Gamil Shehab
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ayah Yasin
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Lana Mazen Shaar
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Ruba Ashraf
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Zahraa Rahi
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Raneem Alamir
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Deema Alsabbagh
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya Thabet
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Israa Altaas
- Undergraduate Student, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Yosra A. Lozon
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Nadia M. M. El Rouby
- Department of Biomedical Sciences, Dubai Medical College for Girls, Dubai, United Arab Emirates
| | - Aliasgar Shahiwala
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| |
Collapse
|
3
|
Nadeem Butt E, Ali S, Summer M, Siddiqua Khan A, Noor S. Exploring the mechanistic role of silk sericin biological and chemical conjugates for effective acute and chronic wound repair and related complications. Drug Dev Ind Pharm 2024; 50:577-592. [PMID: 39087808 DOI: 10.1080/03639045.2024.2387814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The current review is designed to elaborate and reveal the underlying mechanism of sericin and its conjugates of drug delivery during wounds and wound-related issues. SIGNIFICANCE Wound healing is a combination of different humoral, molecular, and cellular mechanisms. Various natural products exhibit potential in wound healing but among them, sericin, catches much attention of researchers due to its bio-functional properties such as being biodegradable, biocompatible, anti-oxidant, anti-bacterial, photo-protector, anti-inflammatory and moisturizing agent. METHODS AND RESULTS Sericin triggers the activity of anti-inflammatory cytokines which decrease cell adhesion and promote epithelial cell formation. Moreover, sericin enhances the anti-oxidant enzymes in the wounded area which scavenge the toxic consequences of reactive species (ROS). CONCLUSIONS This article highlights the mechanisms of how topical administration of sericin formulations along with 4-hexylresorcinol,\Chitosan\Ag@MOF-GO, polyvinyl alcohol (PVA), platelet lysate and UV photo cross-linked hydrogel sericin methacrylate which recruits a large number of cytokines on wounded area that stimulate fibroblasts and keratinocyte production as well as collagen deposition that led to early wound contraction. It also reviews the different sericin-based nanoparticles that play a significant role in rapid wound healing.
Collapse
Affiliation(s)
- Esham Nadeem Butt
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ayesha Siddiqua Khan
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
4
|
Huang H, Chen Y, Hu J, Guo X, Zhou S, Yang Q, Du Y, Jin Y, Liu G, Peng Y. Quercetin and its derivatives for wound healing in rats/mice: Evidence from animal studies and insight into molecular mechanisms. Int Wound J 2023; 21:e14389. [PMID: 37818786 PMCID: PMC10828129 DOI: 10.1111/iwj.14389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
Aimed to clarify the effect of quercetin and its derivatives on wound healing in animal experiments. PubMed, Embase, Science Direct, Web of Science, SinoMed, Vip Journal Integration Platform, China National Knowledge Infrastructure and WanFang databases were searched for animal experiments investigating the effect of quercetin and its derivatives on wound healing to April 2023. The Review Manager 5.4 software was used to conduct meta-analysis. Eighteen studies were enrolled in this article. According to the SYRCLE's RoB tool assessment, these studies exposed relatively low methodological quality. It was shown that animals with cutaneous wound receiving quercetin had faster wound healing in wound closure (%) than the control group. Moreover, the difference in efficacy gradually emerged after third day (WMD = 7.13 [5.52, 8.74]), with a peak reached on the tenth day after wounding (WMD = 19.78 [17.82, 21.74]). Subgroup analysis revealed that quercetin for wound closure (%) was independent of the types of rats and mice, wound area and with or without diabetes. Clear conclusion was also shown regarding the external application of quercetin for wound healing (WMD = 17.77 [11.11, 24.43]). A significant reduction in the distribution of inflammatory cells occurred in the quercetin group. Quercetin could increase blood vessel density (WMD = 1.85 [0.68, -3.02]), fibroblast distribution and collagen fraction. Biochemical indicators, including IL-1β, IL-10, TNF-α, TGF-β, vascular endothelial growth factor (VEGF), hydroxyproline and alpha-smooth muscle actin (α-SMA), had the consistent results. Quercetin and its derivatives could promote the recovery of cutaneous wound in animals, through inhibiting inflammatory response and accelerating angiogenesis, proliferation of fibroblast and collagen deposition.
Collapse
Affiliation(s)
- He‐chen Huang
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Yan Chen
- Shanghai Municipal Hospital of Traditional Chinese MedicineAffiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jie Hu
- Shanghai Municipal Hospital of Traditional Chinese MedicineAffiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiu‐tian Guo
- Shanghai Municipal Hospital of Traditional Chinese MedicineAffiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shao‐rong Zhou
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Qi‐qi Yang
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Yu‐qing Du
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Yu Jin
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Guo‐bin Liu
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Yun‐hua Peng
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| |
Collapse
|
5
|
Panthi VK, Imran M, Chaudhary A, Paudel KR, Mohammed Y. The significance of quercetin-loaded advanced nanoformulations for the management of diabetic wounds. Nanomedicine (Lond) 2023; 18:391-411. [PMID: 37140389 DOI: 10.2217/nnm-2022-0281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Quercetin is a well-known plant flavanol that exhibits multiple biological activities, including antioxidant, anti-inflammatory and anticancer activities. The role of quercetin in wound healing has been widely explored by a range of researchers in different models. However, the physicochemical properties, such as solubility and permeability, of this compound are low, which ultimately limits its bioavailability on the target site. To overcome these limitations for successful therapy, scientists have developed a range of nanoformulations that provide effective therapeutic potential. In this review, the broad mechanism of quercetin for acute and chronic wounds is covered. A compilation of recent advances on the horizon of wound healing via quercetin is incorporated with several advanced nanoformulations.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Department of Pharmacy, College of Pharmacy & Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Mohammad Imran
- Therapeutic Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Arshi Chaudhary
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Keshav Raj Paudel
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Yousuf Mohammed
- Therapeutic Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, 4102, Australia
| |
Collapse
|
6
|
Remigante A, Spinelli S, Straface E, Gambardella L, Caruso D, Falliti G, Dossena S, Marino A, Morabito R. Antioxidant Activity of Quercetin in a H2O2-Induced Oxidative Stress Model in Red Blood Cells: Functional Role of Band 3 Protein. Int J Mol Sci 2022; 23:ijms231910991. [PMID: 36232293 PMCID: PMC9569818 DOI: 10.3390/ijms231910991] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 12/12/2022] Open
Abstract
During their lifespan, red blood cells (RBCs) are exposed to a large number of stressors and are therefore considered as a suitable model to investigate cell response to oxidative stress (OS). This study was conducted to evaluate the potential beneficial effects of the natural antioxidant quercetin (Q) on an OS model represented by human RBCs treated with H2O2. Markers of OS, including % hemolysis, reactive oxygen species (ROS) production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, CD47 and B3p expression, methemoglobin formation (% MetHb), as well as the anion exchange capability through Band 3 protein (B3p) have been analyzed in RBCs treated for 1 h with 20 mM H2O2 with or without pre-treatment for 1 h with 10 μM Q, or in RBCs pre-treated with 20 mM H2O2 and then exposed to 10 µM Q. The results show that pre-treatment with Q is more effective than post-treatment to counteract OS in RBCs. In particular, pre-exposure to Q avoided morphological alterations (formation of acanthocytes), prevented H2O2-induced OS damage, and restored the abnormal distribution of B3p and CD47 expression. Moreover, H2O2 exposure was associated with a decreased rate constant of SO42− uptake via B3p, as well as an increased MetHb formation. Both alterations have been attenuated by pre-treatment with 10 μM Q. These results contribute (1) to elucidate OS-related events in human RBCs, (2) propose Q as natural antioxidant to counteract OS-related alterations, and (3) identify B3p as a possible target for the treatment and prevention of OS-related disease conditions or aging-related complications impacting on RBCs physiology.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology, Papardo Hospital, 98122 Messina, Italy
| | - Giuseppe Falliti
- Complex Operational Unit of Clinical Pathology, Papardo Hospital, 98122 Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
- Correspondence:
| |
Collapse
|