Yang Y, Liang Z, Zhang R, Zhou S, Yang H, Chen Y, Zhang J, Yin H, Yu D. Research Advances in Superabsorbent Polymers.
Polymers (Basel) 2024;
16:501. [PMID:
38399879 PMCID:
PMC10892691 DOI:
10.3390/polym16040501]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Superabsorbent polymers are new functional polymeric materials that can absorb and retain liquids thousands of times their masses. This paper reviews the synthesis and modification methods of different superabsorbent polymers, summarizes the processing methods for different forms of superabsorbent polymers, and organizes the applications and research progress of superabsorbent polymers in industrial, agricultural, and biomedical industries. Synthetic polymers like polyacrylic acid, polyacrylamide, polyacrylonitrile, and polyvinyl alcohol exhibit superior water absorption properties compared to natural polymers such as cellulose, chitosan, and starch, but they also do not degrade easily. Consequently, it is often necessary to modify synthetic polymers or graft superabsorbent functional groups onto natural polymers, and then crosslink them to balance the properties of material. Compared to the widely used superabsorbent nanoparticles, research on superabsorbent fibers and gels is on the rise, and they are particularly notable in biomedical fields like drug delivery, wound dressing, and tissue engineering.
Collapse