1
|
Papadopoulou-Fermeli N, Lagopati N, Pippa N, Sakellis E, Boukos N, Gorgoulis VG, Gazouli M, Pavlatou EA. Composite Nanoarchitectonics of Photoactivated Titania-Based Materials with Anticancer Properties. Pharmaceutics 2022; 15:pharmaceutics15010135. [PMID: 36678763 PMCID: PMC9864881 DOI: 10.3390/pharmaceutics15010135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
The synthesis of titania-based composite materials with anticancer potential under visible-light irradiation is the aim of this study. In specific, titanium dioxide (TiO2) nanoparticles (NPs) chemically modified with silver were embedded in a stimuli-responsive microgel (a crosslinked interpenetrating network (IP) network that was synthesized by poly (N-Isopropylacrylamide) and linear chains of polyacrylic acid sodium salt, forming composite particles. The ultimate goal of this research, and for our future plans, is to develop a drug-delivery system that uses optical fibers that could efficiently photoactivate NPs, targeting cancer cells. The produced Ag-TiO2 NPs, the microgel and the composite materials were characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), micro-Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). Our results indicated that Ag-TiO2 NPs were successfully embedded within the thermoresponsive microgel. Either Ag-TiO2 NPs or the composite materials exhibited high photocatalytic degradation efficiency on the pollutant rhodamine B and significant anticancer potential under visible-light irradiation.
Collapse
Affiliation(s)
- Nefeli Papadopoulou-Fermeli
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15789 Zografou, Greece
| | - Nefeli Lagopati
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15789 Zografou, Greece
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Agia Paraskevi, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Agia Paraskevi, Greece
| | - Vassilis G. Gorgoulis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Clinical Molecular Pathology, Medical School, University of Dundee, Dundee DD1 9SY, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15789 Zografou, Greece
- Correspondence: ; Tel.: +30-210-772-3110
| |
Collapse
|
2
|
Chao PW, Yang KM, Chiang YC, Chiang PY. The formulation and the release of low–methoxyl pectin liquid-core beads containing an emulsion of soybean isoflavones. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Fares MM, Abu Al-Rub FA, Talafha T. Diblock Sodium Alginate Grafted Poly (N-vinylimidazole) in blank copolymeric beads and immobilized algal beads for water treatment. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Li N, Xue F, Zhang H, Sanyour HJ, Rickel AP, Uttecht A, Fanta B, Hu J, Hong Z. Fabrication and Characterization of Pectin Hydrogel Nanofiber Scaffolds for Differentiation of Mesenchymal Stem Cells into Vascular Cells. ACS Biomater Sci Eng 2019; 5:6511-6519. [PMID: 33417803 PMCID: PMC11268401 DOI: 10.1021/acsbiomaterials.9b01178] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite significant progress over the past few decades, creating a tissue-engineered vascular graft with replicated functions of native blood vessels remains a challenge due to the mismatch in mechanical properties, low biological function, and rapid occlusion caused by restenosis of small diameter vessel grafts (<6 mm diameter). A scaffold with similar mechanical properties and biocompatibility to the host tissue is ideally needed for the attachment and proliferation of cells to support the building of engineered tissue. In this study, pectin hydrogel nanofiber scaffolds with two different oxidation degrees (25 and 50%) were prepared by a multistep methodology including periodate oxidation, electrospinning, and adipic acid dihydrazide crosslinking. Scanning electron microscopy (SEM) images showed that the obtained pectin nanofiber mats have a nano-sized fibrous structure with 300-400 nm fiber diameter. Physicochemical property testing using Fourier transform infrared (FTIR) spectra, atomic force microscopy (AFM) nanoindentations, and contact angle measurements demonstrated that the stiffness and hydrophobicity of the fiber mat could be manipulated by adjusting the oxidation and crosslinking levels of the pectin hydrogels. Live/Dead staining showed high viability of the mesenchymal stem cells (MSCs) cultured on the pectin hydrogel fiber scaffold for 14 days. In addition, the potential application of pectin hydrogel nanofiber scaffolds of different stiffness in stem cell differentiation into vascular cells was assessed by gene expression analysis. Real-time polymerase chain reaction (RT-PCR) results showed that the stiffer scaffold facilitated the differentiation of MSCs into vascular smooth muscle cells, while the softer fiber mat promoted MSC differentiation into endothelial cells. Altogether, our results indicate that the pectin hydrogel nanofibers have the capability of providing mechanical cues that induce MSC differentiation into vascular cells and can be potentially applied in stem cell-based tissue engineering.
Collapse
Affiliation(s)
- Na Li
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States
| | - Fuxin Xue
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, P. R. China
| | - Hui Zhang
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, P. R. China
| | - Hanna J. Sanyour
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States
| | - Alex P. Rickel
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States
| | - Andrew Uttecht
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States
| | - Betty Fanta
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States
- BioSNTR, Sioux Falls, South Dakota 57107, United States
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, P. R. China
| | - Zhongkui Hong
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota 57107, United States
- BioSNTR, Sioux Falls, South Dakota 57107, United States
| |
Collapse
|
5
|
Fares MM, Shirzaei Sani E, Portillo Lara R, Oliveira RB, Khademhosseini A, Annabi N. Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering. Biomater Sci 2018; 6:2938-2950. [PMID: 30246835 PMCID: PMC11110880 DOI: 10.1039/c8bm00474a] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The design of new hydrogel-based biomaterials with tunable physical and biological properties is essential for the advancement of applications related to tissue engineering and regenerative medicine. For instance, interpenetrating polymer network (IPN) and semi-IPN hydrogels have been widely explored to engineer functional tissues due to their characteristic microstructural and mechanical properties. Here, we engineered IPN and semi-IPN hydrogels comprised of a tough pectin grafted polycaprolactone (pectin-g-PCL) component to provide mechanical stability, and a highly cytocompatible gelatin methacryloyl (GelMA) component to support cellular growth and proliferation. IPN hydrogels were formed by calcium ion (Ca2+)-crosslinking of pectin-g-PCL chains, followed by photocrosslinking of the GelMA precursor. Conversely, semi-IPN networks were formed by photocrosslinking of the pectin-g-PCL and GelMA mixture, in the absence of Ca2+ crosslinking. IPN and semi-IPN hydrogels synthesized with varying ratios of pectin-g-PCL to GelMA, with and without Ca2+-crosslinking, exhibited a broad range of mechanical properties. For semi-IPN hydrogels, the aggregation of microcrystalline cores led to formation of hydrogels with compressive moduli ranging from 3.1 to 10.4 kPa. For IPN hydrogels, the mechanistic optimization of pectin-g-PCL, GelMA, and Ca2+ concentrations resulted in hydrogels with comparatively higher compressive modulus, in the range of 39 kPa-5029 kPa. Our results also showed that IPN hydrogels were cytocompatible in vitro and could support the growth of three-dimensionally (3D) encapsulated MC3T3-E1 preosteoblasts in vitro. The simplicity, technical feasibility, low cost, tunable mechanical properties, and cytocompatibility of the engineered semi-IPN and IPN hydrogels highlight their potential for different tissue engineering and biomedical applications.
Collapse
Affiliation(s)
- Mohammad M Fares
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|
6
|
C. M, B.R. K, G. S, N. MK, M. S. Carboxymethylation of pectin: Optimization, characterization and in-vitro drug release studies. Carbohydr Polym 2018; 194:311-318. [DOI: 10.1016/j.carbpol.2018.04.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 11/15/2022]
|
7
|
Ali A, Ahmed S. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6940-6967. [PMID: 29878765 DOI: 10.1021/acs.jafc.8b01052] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The over increasing demand of eco-friendly materials to counter various problems, such as environmental issues, economics, sustainability, biodegradability, and biocompatibility, open up new fields of research highly focusing on nature-based products. Edible polymer based materials mainly consisting of polysaccharides, proteins, and lipids could be a prospective contender to handle such problems. Hydrogels based on edible polymer offer many valuable properties compared to their synthetic counterparts. Edible polymers can contribute to the reduction of environmental contamination, advance recyclability, provide sustainability, and thereby increase its applicability along with providing environmentally benign products. This review is highly emphasizing on toward the development of hydrogels from edible polymer, their classification, properties, chemical modification, and their potential applications. The application of edible polymer hydrogels covers many areas including the food industry, agricultural applications, drug delivery to tissue engineering in the biomedical field and provide more safe and attractive products in the pharmaceutical, agricultural, and environmental fields, etc.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry , Jamia Millia Islamia , New Delhi , 110025 , India
| | - Shakeel Ahmed
- Department of Chemistry , Government Degree College Mendhar , Jammu , Jammu and Kashmir , 185211 , India
- Higher Education Department , Government of Jammu and Kashmir , Jammu , 180001 , India
| |
Collapse
|
8
|
Microwave based synthesis and spectral characterization of thermo-sensitive poly(N,N-diethylacrylamide) grafted pectin copolymer. Int J Biol Macromol 2018; 113:669-680. [DOI: 10.1016/j.ijbiomac.2018.02.155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/08/2017] [Accepted: 02/24/2018] [Indexed: 11/22/2022]
|
9
|
Fares MM. π-Plasmon absorbance films of carboxylic functionalized CNTs coupled with renewable PGP platforms. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mohammad M. Fares
- Department of Chemistry; Jordan University of Science and Technology; PO Box 3030 Irbid 22110 Jordan
| |
Collapse
|
10
|
Kang B, Vales TP, Cho BK, Kim JK, Kim HJ. Development of Gallic Acid-Modified Hydrogels Using Interpenetrating Chitosan Network and Evaluation of Their Antioxidant Activity. Molecules 2017; 22:E1976. [PMID: 29140278 PMCID: PMC6150364 DOI: 10.3390/molecules22111976] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/04/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
In this work, antioxidant hydrogels were prepared by the construction of an interpenetrating chitosan network and functionalization with gallic acid. The poly(2-hydroxyethyl methacrylate) p(HEMA)-based hydrogels were first synthesized and subsequently surface-modified with an interpenetrating polymer network (IPN) structure prepared with methacrylamide chitosan via free radical polymerization. The resulting chitosan-IPN hydrogels were surface-functionalized with gallic acid through an amide coupling reaction, which afforded the antioxidant hydrogels. Notably, gallic-acid-modified hydrogels based on a longer chitosan backbone exhibited superior antioxidant activity than their counterpart with a shorter chitosan moiety; this correlated to the amount of gallic acid attached to the chitosan backbone. Moreover, the surface contact angles of the chitosan-modified hydrogels decreased, indicating that surface functionalization of the hydrogels with chitosan-IPN increased the wettability because of the presence of the hydrophilic chitosan network chain. Our study indicates that chitosan-IPN hydrogels may facilitate the development of applications in biomedical devices and ophthalmic materials.
Collapse
Affiliation(s)
- Byungman Kang
- Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea.
| | - Temmy Pegarro Vales
- Department of Chemistry, Chosun University, Gwangju 61452, Korea.
- Department of Natural Sciences, Caraga State University, Butuan City 8600, Philippines.
| | - Byoung-Ki Cho
- Department of Chemistry, Dankook University, 119, Dandae-ro, Chungnam 31116, Korea.
| | - Jong-Ki Kim
- Department of Biomedical Engineering, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea.
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Korea.
| |
Collapse
|
11
|
Shekhar S, Mukherjee M, Sen AK. Swelling, thermal and mechanical properties of NIPAM-based terpolymeric hydrogel. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1476-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Chen J, Liu W, Liu CM, Li T, Liang RH, Luo SJ. Pectin Modifications: A Review. Crit Rev Food Sci Nutr 2015; 55:1684-98. [DOI: 10.1080/10408398.2012.718722] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Shekhar S, Mukherjee M, Sen AK. Synthesis and Characterization of Thermoresponsive Terpolymer for Protein Separation. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.853668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Men J, Gao B, Wang R, Li C. CPVA Grafted Poly(sodium 4-styrene sulfonate) and Studies on its Colon Specific for Chronotherapy of Nocturnal Asthma. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2013. [DOI: 10.1080/10601325.2013.829671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|