1
|
Grafted dinuclear zinc complexes for selective recognition of phosphatidylserine: Application to the capture of extracellular membrane microvesicles. J Inorg Biochem 2023; 239:112065. [PMID: 36403435 DOI: 10.1016/j.jinorgbio.2022.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
Microvesicles (MVs) are key markers in human body fluids that reflect cellular activation related to diseases as thrombosis. These MVs display phosphatidylserine at the outer leaflet of their plasma membrane as specific recognition moieties. The work reported in this manuscript focuses on the development of an original method where MVs are captured by bimetallic zinc complexes. A set of ligands have been synthetized based on a phenol spacer bearing in para position an amine group appended to a short or a longer alkyl chain (for grafting on surface) and bis(dipicolylamine) arms in ortho position (for zinc coordination). The corresponding dibridged zinc phenoxido and hydroxido complexes have been prepared in acetronitrile in presence of triethylamine and characterized by several spectroscopic techniques. The pH-driven interconversion studies for both complexes in H2O:DMSO (70:30) evidence that at physiologic pH the main species are mono-bridged by the phenoxido spacer. An X-Ray structure obtained from complex 2 (based on the ligand with the amine group on the short chain) in aqueous medium confirms the presence of a mono-bridged complex. Then, the complexes have been used for interaction studies with short-chain phospholipids. Both have established the selective recognition of the anionic phosphatidylserine model versus zwitterionic phospholipids (in solution by 31P NMR and after immobilization on solid support by surface plasmon resonance (SPR)). Moreover, both complexes have also demonstrated their ability to capture MVs isolated from human plasma. These complexes are thus promising candidates for MVs probing by a new approach based on coordination chemistry.
Collapse
|
2
|
Lo CF, Chiu TY, Liu YT, Pan PY, Liu KL, Hsu CY, Fang MY, Huang YC, Yeh TK, Hsu TA, Chen CT, Huang LR, Tsou LK. Targeting the Phosphatidylserine-Immune Checkpoint with a Small-Molecule Maytansinoid Conjugate. J Med Chem 2022; 65:12802-12824. [PMID: 36153998 PMCID: PMC9574934 DOI: 10.1021/acs.jmedchem.2c00631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Ligand-targeting drug delivery systems have made significant
strides
for disease treatments with numerous clinical approvals in this era
of precision medicine. Herein, we report a class of small molecule-based
immune checkpoint-targeting maytansinoid conjugates. From the ligand
targeting ability, pharmacokinetics profiling, in vivo anti-pancreatic cancer, triple-negative breast cancer, and sorafenib-resistant
liver cancer efficacies with quantitative mRNA analysis of treated-tumor
tissues, we demonstrated that conjugate 40a not only
induced lasting regression of tumor growth, but it also rejuvenated
the once immunosuppressive tumor microenvironment to an “inflamed
hot tumor” with significant elevation of gene expressions that
were not accessible in the vehicle-treated tumor. In turn, the immune
checkpoint-targeting small molecule drug conjugate from this work
represents a new pharmacodelivery strategy that can be expanded with
combination therapy with existing immune-oncology treatment options.
Collapse
Affiliation(s)
- Chen-Fu Lo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Tai-Yu Chiu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Yu-Tzu Liu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Pei-Yun Pan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Kuan-Liang Liu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Chia-Yu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Ming-Yu Fang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Yu-Chen Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Tsu-An Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| |
Collapse
|
4
|
Wang G, Platas-Iglesias C, Angelovski G. Europium(III) Macrocyclic Chelates Appended with Tyrosine-based Chromophores and Di-(2-picolyl)amine-based Receptors: Turn-On Luminescent Chemosensors Selective to Zinc(II) Ions. Chempluschem 2020; 85:806-814. [PMID: 31967740 DOI: 10.1002/cplu.201900731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Indexed: 11/06/2022]
Abstract
Zinc ions play an important role in many biological processes in the human body. To selectively detect Zn2+ , two EuDO3A-based complexes (DO3A=1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylic acid) appended with tyrosine as a chromophore and di-(2-picolyl)amine (DPA) as the Zn2+ recognition moiety were developed as suitable luminescent sensors. Their luminescence intensity is affected by the photoinduced electron transfer mechanism. Upon addition of Zn2+ , both probes display an up to sevenfold enhancement in Eu3+ emission. Competition experiments demonstrated their specificity toward Zn2+ over other metal ions, while also revealing the nonspecificity of the derivatives lacking the DPA-moiety, thus confirming the essential role of the DPA for the recognition of Zn2+ . The induced emission changes of Eu3+ allow for precise quantitative analysis of Zn2+ , establishing these lanthanide-based complexes as viable chemosensors for biological applications.
Collapse
Affiliation(s)
- Gaoji Wang
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Facultade de Ciencias, Universidade da Coruña, A Coruña, Galicia, Spain
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| |
Collapse
|
5
|
Zinc(II)-Dipicolylamine Coordination Complexes as Targeting and Chemotherapeutic Agents for Leishmania major. Antimicrob Agents Chemother 2016; 60:2932-40. [PMID: 26926632 DOI: 10.1128/aac.00410-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 01/11/2023] Open
Abstract
Cutaneous leishmaniasis is a neglected tropical disease that causes painful lesions and severe disfigurement. Modern treatment relies on a few chemotherapeutics with serious limitations, and there is a need for more effective alternatives. This study describes the selective targeting of zinc(II)-dipicolylamine (ZnDPA) coordination complexes toward Leishmania major, one of the species responsible for cutaneous leishmaniasis. Fluorescence microscopy of L. major promastigotes treated with a fluorescently labeled ZnDPA probe indicated rapid accumulation of the probe within the axenic promastigote cytosol. The antileishmanial activities of eight ZnDPA complexes were measured using an in vitro assay. All tested complexes exhibited selective toxicity against L. major axenic promastigotes, with 50% effective concentration values in the range of 12.7 to 0.3 μM. Similar toxicity was observed against intracellular amastigotes, but there was almost no effect on the viability of mammalian cells, including mouse peritoneal macrophages. In vivo treatment efficacy studies used fluorescence imaging to noninvasively monitor changes in the red fluorescence produced by an infection of mCherry-L. major in a mouse model. A ZnDPA treatment regimen reduced the parasite burden nearly as well as the reference care agent, potassium antimony(III) tartrate, and with less necrosis in the local host tissue. The results demonstrate that ZnDPA coordination complexes are a promising new class of antileishmanial agents with potential for clinical translation.
Collapse
|
6
|
Hu Q, Gao M, Feng G, Chen X, Liu B. A cell apoptosis probe based on fluorogen with aggregation induced emission characteristics. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4875-4882. [PMID: 25671791 DOI: 10.1021/am508838z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A fluorogen-based aggregation-induced emission zinc-dipicolylamine (AIE-ZnDPA) probe with aggregation-induced emission characteristics has been designed and synthesized to detect cell apoptosis. AIE-ZnDPA does not respond to healthy cells but selectively stains and lights up fluorescence in the membranes of early stage apoptotic cells as well as the nuclei of late stage apoptotic cells. Without zinc coordination, the precursor lipophilic AIE dipicolylamine (AIE-DPA) probe stains healthy cells and shows high affinity for lipid droplets (LDs).
Collapse
Affiliation(s)
- Qinglian Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore , Singapore 117576, Singapore
| | | | | | | | | |
Collapse
|
7
|
Plaunt AJ, Harmatys KM, Wolter WR, Suckow MA, Smith BD. Library synthesis, screening, and discovery of modified Zinc(II)-Bis(dipicolylamine) probe for enhanced molecular imaging of cell death. Bioconjug Chem 2014; 25:724-37. [PMID: 24575875 PMCID: PMC3993938 DOI: 10.1021/bc500003x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Zinc(II)-bis(dipicolylamine)
(Zn-BDPA) coordination complexes selectively
target the surfaces of dead and dying mammalian cells, and they have
promise as molecular probes for imaging cell death. A necessary step
toward eventual clinical imaging applications is the development of
next-generation Zn-BDPA complexes with enhanced affinity for the cell
death membrane biomarker, phosphatidylserine (PS). This study employed
an iterative cycle of library synthesis and screening, using a novel
rapid equilibrium dialysis assay, to discover a modified Zn-BDPA structure
with high and selective affinity for vesicles containing PS. The lead
structure was converted into a deep-red fluorescent probe and its
targeting and imaging performance was compared with an unmodified
control Zn-BDPA probe. The evaluation process included a series of
FRET-based vesicle titration studies, cell microscopy experiments,
and rat tumor biodistribution measurements. In all cases, the modified
probe exhibited comparatively higher affinity and selectivity for
the target membranes of dead and dying cells. The results show that
this next-generation deep-red fluorescent Zn-BDPA probe is well suited
for preclinical molecular imaging of cell death in cell cultures and
animal models. Furthermore, it should be possible to substitute the
deep-red fluorophore with alternative reporter groups that enable
clinically useful, deep-tissue imaging modalities, such as MRI and
nuclear imaging.
Collapse
Affiliation(s)
- Adam J Plaunt
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall and ‡Department of Biological Science, Galvin Life Sciences, University of Notre Dame , Notre Dame, 46556 Indiana, United States
| | | | | | | | | |
Collapse
|
8
|
Fang Q, Chen B, Lin Y, Guan Y. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 48:279-88. [PMID: 24289306 DOI: 10.1021/es403711y] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The pH-dependent adsorption of perchlorate (ClO4(-)) by wood-derived biochars produced at 200-700 °C (referred as FB200-FB700) was investigated to probe the anion retention mechanisms of biochars and to identify the interactions of water and biochar. ClO4(-) adsorption was controlled by the surface polarities and structural compositions of the organic components of biochars, rather than their inorganic mineral components. FB500-FB700 biochars with low polarity and high aromaticity displayed a superior ClO4(-) adsorption capacity, but which was affected by solution pH. Besides electrostatic interaction, hydrogen bonding to oxygen-containing groups on biochars was proposed the dominant force for perchlorate adsorption, which led to the maximum adsorption occurring near pHIEP, where surface charge equals zero. The dissociation of these surface oxygen-containing groups was monitored by zeta potential curves, which indicated that the H-bonds donors on biochar surface for ClO4(-) binding were changed from -COOH (ClO4(-)···HOOC-) and -OH (ClO4(-)···HO-) to -OH alone with an increase in pH. The H-bond force was strengthened by the condensed aromatic surfaces, since high temperature biochars provided a hydrophobic microenvironment to accommodate weakly hydrated perchlorate and facilitated the H-bonds for ClO4(-) binding to functional groups by the large π subunit of their aromatic substrate. Lastly, the batch and column tests of ClO4(-) adsorption showed that biochars like FB700 are effective adsorbents for anion pollutant removal via H-bonding interaction.
Collapse
Affiliation(s)
- Qile Fang
- Department of Environmental Science, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | | | | | | |
Collapse
|
9
|
Abstract
A fluorine-labelled zinc(II)-dipicolylamine coordination complex reports the presence of phosphate anions in aqueous solution, especially pyrophosphate and ADP, and is used to monitor the enzymatic hydrolysis of ATP.
Collapse
Affiliation(s)
| | | | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN
| |
Collapse
|