1
|
Rao K, Abdullah M, Ahmed U, Wehelie HI, Shah MR, Siddiqui R, Khan NA, Alawfi BS, Anwar A. Self-assembled micelles loaded with itraconazole as anti-Acanthamoeba nano-formulation. Arch Microbiol 2024; 206:134. [PMID: 38433145 DOI: 10.1007/s00203-024-03854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
Acanthamoeba castellanii are opportunistic pathogens known to cause infection of the central nervous system termed: granulomatous amoebic encephalitis, that mostly effects immunocompromised individuals, and a sight threatening keratitis, known as Acanthamoeba keratitis, which mostly affects contact lens wearers. The current treatment available is problematic, and is toxic. Herein, an amphiphilic star polymer with AB2 miktoarms [A = hydrophobic poly(ℇ-Caprolacton) and B = hydrophilic poly (ethylene glycol)] was synthesized by ring opening polymerization and CuI catalyzed azide-alkyne cycloaddition. Characterization by 1H and 13C NMR spectroscopy, size-exclusion chromatography and fluorescence spectroscopy was accomplished. The hydrophobic drug itraconazole (ITZ) was incorporated in self-assembled micellar structure of AB2 miktoarms through co-solvent evaporation. The properties of ITZ loaded (ITZ-PCL-PEG2) and blank micelles (PCL-PEG2) were investigated through zeta sizer, scanning electron microscopy and Fourier-transform infrared spectroscopy. Itraconazole alone (ITZ), polymer (DPB-PCL), empty polymeric micelles (PCL-PEG2) alone, and itraconazole loaded in polymeric micelles (ITZ-PCL-PEG2) were tested for anti-amoebic potential against Acanthamoeba, and the cytotoxicity on human cells were determined. The polymer was able to self-assemble in aqueous conditions and exhibited low value for critical micelle concentration (CMC) 0.05-0.06 µg/mL. The maximum entrapment efficiency of ITZ was 68%. Of note, ITZ, DPB, PCL-PEG2 and ITZ-PCL-PEG2 inhibited amoebae trophozoites by 37.34%, 36.30%, 35.77%, and 68.24%, respectively, as compared to controls. Moreover, ITZ-PCL-PEG2 revealed limited cytotoxicity against human keratinocyte cells. These results are indicative that ITZ-PCL-PEG2 micelle show significantly better anti-amoebic effects as compared to ITZ alone and thus should be investigated further in vivo to determine its clinical potential.
Collapse
Affiliation(s)
- Komal Rao
- International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, Karachi University, Karachi, 75270, Pakistan
| | - Muhammad Abdullah
- International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, Karachi University, Karachi, 75270, Pakistan
| | - Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Hashi Isse Wehelie
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, Karachi University, Karachi, 75270, Pakistan
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh, Edinburgh, EH14 4AS, UK
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey
| | - Naveed A Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| | - Bader S Alawfi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, 42353, Madinah, Saudi Arabia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
2
|
Han GS, Domaille DW. Connecting the Dynamics and Reactivity of Arylboronic Acids to Emergent and Stimuli-Responsive Material Properties. J Mater Chem B 2022; 10:6263-6278. [DOI: 10.1039/d2tb00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past two decades, arylboronic acid-functionalized biomaterials have been used in a variety of sensing and stimuli-responsive scaffolds. Their diverse applications result from the diverse reactivity of arylboronic acids,...
Collapse
|
3
|
Lotocki V, Yazdani H, Zhang Q, Gran ER, Nyrko A, Maysinger D, Kakkar A. Miktoarm Star Polymers with Environment-Selective ROS/GSH Responsive Locations: From Modular Synthesis to Tuned Drug Release through Micellar Partial Corona Shedding and/or Core Disassembly. Macromol Biosci 2020; 21:e2000305. [PMID: 33620748 DOI: 10.1002/mabi.202000305] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Branched architectures with asymmetric polymeric arms provide an advantageous platform for the construction of tailored nanocarriers for therapeutic interventions. Simple and adaptable synthetic methodologies to amphiphilic miktoarm star polymers have been developed in which spatial location of reactive oxygen species (ROS) and glutathione (GSH) responsive entities is articulated to be on the corona shell surface or inside the core. The design of such architectures is facilitated through versatile building blocks and selected combinations of ring-opening polymerization, Steglich esterification, and alkyne-azide click reactions. Soft nanoparticles from aqueous self-assembly of these stimuli responsive miktoarm stars have low critical micelle concentrations and high drug loading efficiencies. Partial corona shedding upon response to ROS is accompanied by an increase in drug release, without significant changes to overall micelle morphology. The location of the GSH responsive unit at the core leads to micelle disassembly and complete drug release. Curcumin loaded soft nanoparticles show higher efficiencies in preventing ROS generation in extracellular and cellular environments, and in ROS scavenging in human glioblastoma cells. The ease in synthetic elaboration and an understanding of structure-property relationships in stimuli responsive nanoparticles offer a facile venue for well-controlled drug delivery, based on the extra- and intracellular concentrations of ROS and GSH.
Collapse
Affiliation(s)
- Victor Lotocki
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Hossein Yazdani
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.,Department of Chemistry, Shahid Beheshti University G.C., Tehran, 1983963113, Iran
| | - Qiaochu Zhang
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.,Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Evan Rizzel Gran
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Anastasiia Nyrko
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
4
|
Pieszka M, Han S, Volkmann C, Graf R, Lieberwirth I, Landfester K, Ng DYW, Weil T. Controlled Supramolecular Assembly Inside Living Cells by Sequential Multistaged Chemical Reactions. J Am Chem Soc 2020; 142:15780-15789. [PMID: 32812422 PMCID: PMC7499420 DOI: 10.1021/jacs.0c05261] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Synthetic assembly within living cells represents an innovative way to explore purely chemical tools that can direct and control cellular behavior. We use a simple and modular platform that is broadly accessible and yet incorporates highly intricate molecular recognition, immolative, and rearrangement chemistry. Short bimodular peptide sequences undergo a programmed sequence of events that can be tailored within the living intracellular environment. Each sequential stage of the pathways beginning with the cellular uptake, intracellular transport, and localization imposes distinct structural changes that result in the assembly of fibrillar architectures inside cells. The observation of apoptosis, which is characterized by the binding of Annexin V, demonstrates that programmed cell death can be promoted by the peptide assembly. Higher complexity of the assemblies was also achieved by coassembly of two different sequences, resulting in intrinsically fluorescent architectures. As such, we demonstrate that the in situ construction of architectures within cells will broaden the community's perspective toward how structure formation can impact a living system.
Collapse
Affiliation(s)
- Michaela Pieszka
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Shen Han
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christiane Volkmann
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - David Y W Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
5
|
António JPM, Russo R, Carvalho CP, Cal PMSD, Gois PMP. Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chem Soc Rev 2019; 48:3513-3536. [DOI: 10.1039/c9cs00184k] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes boronic acid's contribution to the development of bioconjugates with a particular focus on the molecular mechanisms underlying its role in the construction and function of the bioconjugate, namely as a bioconjugation warhead, as a payload and as part of a bioconjugate linker.
Collapse
Affiliation(s)
- João P. M. António
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Roberto Russo
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Cátia Parente Carvalho
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Pedro M. S. D. Cal
- Instituto de Medicina Molecular
- Faculty of Medicine
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| |
Collapse
|
6
|
Seidler C, Zegota MM, Raabe M, Kuan SL, Ng DYW, Weil T. Dynamic Core-Shell Bioconjugates for Targeted Protein Delivery and Release. Chem Asian J 2018; 13:3474-3479. [PMID: 30036452 PMCID: PMC6283003 DOI: 10.1002/asia.201800843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/19/2018] [Indexed: 12/17/2022]
Abstract
Dynamic covalent chemistry is a versatile and powerful tool that integrates both stable chemical bonds and stimulus responsiveness into the construction of smart biotherapeutics. With minimalistic molecular design, a dynamic covalent protein assembly that incorporates selective targeting and intracellular release upon pH stimulus is presented. The construct comprises an active enzymatic protein core (cytochrome c) self-assembled with cancer cell targeting motifs (somatostatin) through boronic acid/salicylhydroxamate chemistry. The bioorthogonal assembly takes place rapidly under neutral aqueous conditions while the release of the protein is initiated under acidic conditions found within cellular vesicles during uptake. By demonstrating that these modular components act in synergy, we show the broad applicability of such chemical strategies to advance the frontier of modern nanomedicine.
Collapse
Affiliation(s)
- Christiane Seidler
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | | | - Marco Raabe
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - David Y. W. Ng
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
7
|
Zegota MM, Wang T, Seidler C, Wah Ng DY, Kuan SL, Weil T. "Tag and Modify" Protein Conjugation with Dynamic Covalent Chemistry. Bioconjug Chem 2018; 29:2665-2670. [PMID: 29949347 DOI: 10.1021/acs.bioconjchem.8b00358] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of small protein tags that exhibit bioorthogonality, bond stability, and reversibility, as well as biocompatibility, holds great promise for applications in cellular environments enabling controlled drug delivery or for the construction of dynamic protein complexes in biological environments. Herein, we report the first application of dynamic covalent chemistry both for purification and for reversible assembly of protein conjugates using interactions of boronic acid with diols and salicylhydroxamates. Incorporation of the boronic acid (BA) tag was performed in a site-selective fashion by applying disulfide rebridging strategy. As an example, a model protein enzyme (lysozyme) was modified with the BA tag and purified using carbohydrate-based column chromatography. Subsequent dynamic covalent "click-like" bioconjugation with a salicylhydroxamate modified fluorescent dye (BODIPY FL) was accomplished while retaining its original enzymatic activity.
Collapse
Affiliation(s)
- Maksymilian Marek Zegota
- Max-Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.,Institute of Inorganic Chemistry I , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany
| | - Tao Wang
- Institute of Inorganic Chemistry I , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany.,School of Materials Science and Engineering , Southwest Jiaotong University , 610031 Chengdu , P.R. China
| | - Christiane Seidler
- Max-Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.,Institute of Inorganic Chemistry I , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany
| | - David Yuen Wah Ng
- Max-Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.,Institute of Inorganic Chemistry I , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany
| | - Seah Ling Kuan
- Max-Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.,Institute of Inorganic Chemistry I , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany
| | - Tanja Weil
- Max-Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.,Institute of Inorganic Chemistry I , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany
| |
Collapse
|
8
|
Martínez-Aguirre MA, Flores-Alamo M, Yatsimirsky AK. Thermodynamic and structural study of complexation of phenylboronic acid with salicylhydroxamic acid and related ligands. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Marcos Flores-Alamo
- Facultad de Química; Universidad Nacional Autónoma de México; 04510 México D.F. Mexico
| | | |
Collapse
|
9
|
|
10
|
Han G, Wang JT, Ji X, Liu L, Zhao H. Nanoscale Proteinosomes Fabricated by Self-Assembly of a Supramolecular Protein–Polymer Conjugate. Bioconjug Chem 2017; 28:636-641. [DOI: 10.1021/acs.bioconjchem.6b00704] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guangda Han
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Jin-Tao Wang
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Xiaotian Ji
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Li Liu
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|