1
|
Karmakar K, Roy A, Dhibar S, Majumder S, Bhattacharjee S, Rahaman SKM, Saha R, Chatterjee P, Ray SJ, Saha B. Exploration of a wide bandgap semiconducting supramolecular Mg(II)-metallohydrogel derived from an aliphatic amine: a robust resistive switching framework for brain-inspired computing. Sci Rep 2023; 13:22318. [PMID: 38102201 PMCID: PMC10724216 DOI: 10.1038/s41598-023-48936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
A rapid metallohydrogelation strategy has been developed of magnesium(II)-ion using trimethylamine as a low molecular weight gelator in water medium at room temperature. The mechanical property of the synthesized metallohydrogel material is established through the rheological analysis. The nano-rose like morphological patterns of Mg(II)-metallohydrogel are characterized through field emission scanning electron microscopic study. The energy dispersive X-ray elemental mapping analysis confirms the primary gel forming elements of Mg(II)-metallohydrogel. The possible metallohydrogel formation strategy has been analyzed through FT-IR spectroscopic study. In this work, magnesium(II) metallohydrogel (Mg@TMA) based metal-semiconductor-metal structures have been developed and charge transport behaviour is studied. Here, it is confirmed that the magnesium(II) metallohydrogel (Mg@TMA) based resistive random access memory (RRAM) device is showing bipolar resistive switching behaviour at room temperature. We have also explored the mechanism of resistive switching behaviour using the formation (rupture) of conductive filaments between the metal electrodes. This RRAM devices exhibit excellent switching endurance over 10,000 switching cycles with a large ON/OFF ratio (~ 100). The easy fabrication techniques, robust resistive switching behaviour and stability of the present system makes these structures preferred candidate for applications in non-volatile memory design, neuromorphic computing, flexible electronics and optoelectronics etc.
Collapse
Affiliation(s)
- Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| | - Shantanu Majumder
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713303, India
| | - S K Mehebub Rahaman
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 752050, India
| | - Priyajit Chatterjee
- University Science Instrumentation Centre, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India.
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
2
|
Dhibar S, Pal B, Karmakar K, Roy S, Hafiz SA, Roy A, Bhattacharjee S, Ray SJ, Ray PP, Saha B. A 5-aminoisophthalic acid low molecular weight gelator based novel semiconducting supramolecular Zn(ii)-metallogel: unlocking an efficient Schottky barrier diode for microelectronics. NANOSCALE ADVANCES 2023; 5:6714-6723. [PMID: 38024309 PMCID: PMC10662173 DOI: 10.1039/d3na00671a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
A novel method has been successfully developed for creating supramolecular metallogels using zinc(ii) ions and 5-aminoisophthalic acid as the gelator (low molecular weight gelator) in a dimethylformamide (DMF) solvent at room temperature. Comprehensive rheological investigations confirm the robust mechanical strength of the resulting zinc(ii)-metallogel. Microstructural analysis conducted through field-emission scanning electron microscopy (FESEM) unveils a unique flake-like morphology, with energy-dispersive X-ray (EDX) elemental mapping confirming the prevalence of zinc as the primary constituent of the metallogel. To understand the formation mechanism of this metallogel, Fourier-transform infrared (FT-IR) spectroscopy was employed. Notably, these supramolecular zinc(ii)-metallogel assemblies exhibit electrical conductivity reminiscent of metal-semiconductor (MS) junction electronic components. Surprisingly, the metallogel-based thin film device showcases an impressive electrical conductivity of 1.34 × 10-5 S m-1. The semiconductor characteristics of the synthesized zinc(ii)-metallogel devices, including their Schottky barrier diode properties, have been extensively investigated. This multifaceted study opens up a promising avenue for designing functional materials tailored for electronic applications. It harnesses the synergistic properties of supramolecular metallogels and highlights their significant potential in the development of semiconductor devices. This work represents a novel approach to the creation of advanced materials with unique electronic properties, offering exciting prospects for future innovations in electronic and semiconductor technologies.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Baishakhi Pal
- Department of Physics, Jadavpur University Jadavpur Kolkata 700032 India +91 3324572844
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Sanjay Roy
- Department of Chemistry, School of Sciences, Kalyani Regional Centre, Netaji Subhas Open University West Bengal India
| | - Sk Abdul Hafiz
- Department of Chemistry, KaziNazrul University Asansol 713303 West Bengal India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | | | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Partha Pratim Ray
- Department of Physics, Jadavpur University Jadavpur Kolkata 700032 India +91 3324572844
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
3
|
A novel citric acid facilitated supramolecular Zinc(II)-metallogel: Toward semiconducting device applications. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Dhibar S, Dey A, Dalal A, Bhattacharya S, Sahu R, Sahoo R, Mondal A, Mehebub Rahaman SK, Kundu S, Saha B. An Organic Acid consisted Multiresponsive Self-Healing Supramolecular Cu(II)-Metallogel: Fabrication and Analysis of semiconducting device. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Dhibar S, Ojha SK, Mohan A, Prabhakaran SPC, Bhattacharjee S, Karmakar K, Karmakar P, Predeep P, Ojha AK, Saha B. A multistimulus-responsive self-healable supramolecular copper( ii)-metallogel derived from l-(+) tartaric acid: an efficient Schottky barrier diode. NEW J CHEM 2022. [DOI: 10.1039/d2nj03086a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A low molecular weight gelator l-(+) tartaric acid- based self-healing supramolecular Cu(ii)-metallogel offers an electronic device of Schottky barrier diode at room temperature.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Saurav Kumar Ojha
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, India
| | - Aiswarya Mohan
- Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology Calicut, Kozhikode-673603, Kerala, India
| | | | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol-713303, West Bengal, India
| | - Kripasindhu Karmakar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Priya Karmakar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Padmanabhan Predeep
- Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology Calicut, Kozhikode-673603, Kerala, India
| | - Animesh Kumar Ojha
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| |
Collapse
|
6
|
Dhibar S, Dey A, Ghosh D, Majumdar S, Dey A, Ray PP, Dey B. Triethylenetetramine-Based Semiconducting Fe(III) Metallogel: Effective Catalyst for Aryl-S Coupling. ACS OMEGA 2020; 5:2680-2689. [PMID: 32095691 PMCID: PMC7033679 DOI: 10.1021/acsomega.9b03194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
A fascinating way to originate a mechanically stable metallogel of ferric ions with metal-coordinating organic ligand triethylenetetramine through direct mixing of their water solutions in a stoichiometric ratio is achieved under ambient conditions. The rheological study established the mechanical property of the Fe(III) metallogel. A cashew-shaped microstructure of the metallogel was observed by FESEM analysis. The electrical property of the Fe(III) metallogel was also carefully scrutinized. The semiconducting features like the Schottky barrier diode property of the Fe(III) metallogel were explored. The catalytic role of the Fe(III) metallogel was also critically explored. The Fe(III) metallogel shows an excellent catalytic property toward the synthesis of aryl thioethers via a C-S coupling reaction under mild reaction conditions without the use of any organic solvent.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Department
of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Arka Dey
- Department
of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sec. III, Salt Lake, Kolkata 700106, India
- Department
of Physics, Jadavpur University, Kolkata 700032, India
| | - Debasish Ghosh
- Department
of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santanu Majumdar
- Department
of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Amiya Dey
- Department
of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | | | - Biswajit Dey
- Department
of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
7
|
Dhibar S, Jana R, Ray PP, Dey B. Monoethanolamine and Fe(III) based metallohydrogel: An efficient Schottky barrier diode. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Malviya N, Sonkar C, Ganguly R, Mukhopadhyay S. Cobalt Metallogel Interface for Selectively Sensing l-Tryptophan among Essential Amino Acids. Inorg Chem 2019; 58:7324-7334. [DOI: 10.1021/acs.inorgchem.9b00455] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Novina Malviya
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Chanchal Sonkar
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 639798
| | - Suman Mukhopadhyay
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
- Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
9
|
Mrowiec A, Jurowska A, Hodorowicz M, Szklarzewicz J. 5-(2-Pyridil)-1H-tetrazole complexes with Mo(iv) and W(iv) cyanides. Dalton Trans 2017; 46:4030-4037. [DOI: 10.1039/c6dt04908g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of tetrazole ligand derived from 2-cyanopyridine with K3Na[Mo(CN)4O2]·6H2O and K3Na[W(CN)4O2]·6H2O in water–ethanol solution result in isolation of two new complexes with the following formulae: (PPh4)2[Mo(CN)3O(pdt)]·2H2O (1) (Hpdt = 5-(2-pyridil)-1H-tetrazole) and (PPh4)2[W(CN)3O(pdt)]·3H2O (2).
Collapse
Affiliation(s)
- A. Mrowiec
- Jagiellonian University in Kraków
- Faculty of Chemistry
- 30-060 Kraków, R. Ingardena 3
- Poland
| | - A. Jurowska
- Jagiellonian University in Kraków
- Faculty of Chemistry
- 30-060 Kraków, R. Ingardena 3
- Poland
| | - M. Hodorowicz
- Jagiellonian University in Kraków
- Faculty of Chemistry
- 30-060 Kraków, R. Ingardena 3
- Poland
| | - J. Szklarzewicz
- Jagiellonian University in Kraków
- Faculty of Chemistry
- 30-060 Kraków, R. Ingardena 3
- Poland
| |
Collapse
|