1
|
Zeng L, Ke Y, Zheng C, Song H, Liu Z, Hu X, Zhou X. Remote Loading of Hydrophilic Drug into Cubosomes by Transmembrane pH-Gradient and Characterization of Drug-Loaded Cubosomes Prepared by Different Method. J Pharm Sci 2023; 112:1119-1129. [PMID: 36596394 DOI: 10.1016/j.xphs.2022.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
The encapsulation efficiency (EE) of hydrophobic drug into cubosomes was high by conventional methods, while poor for the hydrophilic drug. In this study, a remote loading method based on transmembrane pH-gradient was applied to prepare hydrophilic drug loaded cubosomes. Several hydrophilic drugs were selected and studied. Results showed just part of the investigated drugs were successfully loaded into cubosomes by the remote loading method, whereas all the drugs failed to be encapsulated by the high-pressure homogenization method. The EE based on remote loading method was affected by the solubility, LogP, number of rings, and polarizability of the drug independent of the number of hydrogen acceptor and hydrogen donor. And the drugs that had high EE by remote loading method were BCS class 1 or 2. In addition, the EE base on remote loading method was significantly affected by the external water pH of cubosomes and drug concentration. The size of drug-loaded cubosomes by remote loading method mainly depended on the pre-formed blank cubosomes, which was bigger than that by high-pressure homogenization method. The preparation method affected the liquid crystalline structure of acidic drug loaded cubosomes, while showed no obvious effect on that of basic drug loaded cubosomes. The release of drug was susceptible to the pH of release medium independent of the preparation method. The drug-loaded cubosomes prepared by different method all showed favorable stability during storage. The remote loading method was a promising approach for the efficient encapsulation of hydrophilic drug into cubosomes. This study laid a foundation for the application of remote loading method on the preparation of hydrophilic drug loaded cubosomes.
Collapse
Affiliation(s)
- Lingjun Zeng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou 350025, PR China
| | - Yuejiao Ke
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou 350025, PR China
| | - Changqing Zheng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou 350025, PR China
| | - Hongtao Song
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou 350025, PR China
| | - Zhihong Liu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou 350025, PR China.
| | - Xiaomu Hu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou 350025, PR China.
| | - Xin Zhou
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou 350025, PR China.
| |
Collapse
|
2
|
Vaccine implants: current status and recent advancements. Emerg Top Life Sci 2020; 4:319-330. [DOI: 10.1042/etls20200164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023]
Abstract
Implants have long been used in the field of drug delivery as controlled release vehicles and are now being investigated as single-shot vaccine technologies. Implants have shown great promise, minimizing the need for multiple immunizations while stimulating potent immune responses with reduced doses of vaccine. Synchronous release of vaccine components from implants over an appropriate period of time is important in order to avoid issues including immune tolerance, sequestration or deletion. Traditionally, implants require surgical implantation and removal, which can be a barrier to their widespread use. Degradable and in situ implants are now being developed that can be administered using minimally invasive subcutaneous or intramuscular injection techniques. Injectable hydrogels remain the most commonly studied approach for sustained vaccine delivery due to their ease of administration and tunable degradation properties. Despite exciting advancements in the field of vaccine implants, few technologies have progressed to clinical trials. To increase the likelihood of clinical translation of vaccine implants, strategic testing of disease-relevant antigens in appropriate species is essential. In this review, the significance of vaccine implants and the different types of implants being developed to deliver vaccines are discussed.
Collapse
|
3
|
von Halling Laier C, Gibson B, Moreno JAS, Rades T, Hook S, Nielsen LH, Boisen A. Microcontainers for protection of oral vaccines, in vitro and in vivo evaluation. J Control Release 2019; 294:91-101. [DOI: 10.1016/j.jconrel.2018.11.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022]
|
4
|
Jia C, Yang T, Liu Y, Zhu A, Yin F, Wang Y, Xu L, Wang Y, Yan M, Cai Q, Liang X, Ju R, Chen J, Wang L. A Novel Human Papillomavirus 16 L1 Pentamer-Loaded Hybrid Particles Vaccine System: Influence of Size on Immune Responses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35745-35759. [PMID: 30360122 DOI: 10.1021/acsami.8b11556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cervical cancer remains the second-most prevalent female malignancy around the world, leading to a great majority of cancer-related mortality that occurs mainly in developing countries. Developing an effective and low-cost vaccine against human papillomavirus (HPV) infection, especially in medically underfunded areas, is urgent. Compared with vaccines based on HPV L1 viruslike particles (VLPs) in the market, recombinant HPV L1 pentamer expressed in Escherichia coli represents a promising and potentially cost-effective vaccine for preventing HPV infection. Hybrid particles comprising a polymer core and lipid shell have shown great potential compared to conventional aluminum salts adjuvant and is urgently needed for HPV L1 pentamer vaccines. It is well-reported that particle sizes are crucial in regulating immune responses. Nevertheless, reports on the relationship between the particulate size and the resultant immune response have been in conflict, and there is no answer to how the size of particles regulates specific immune response for HPV L1 pentamer-based candidate vaccines. Here, we fabricated HPV 16 L1 pentamer-loaded poly(d,l-lactide- co-glycolide) (PLGA)/lecithin hybrid particles with uniform sizes (0.3, 1, and 3 μm) and investigated the particle size effects on antigen release, activation of lymphocytes, dendritic cells (DCs) activation and maturation, follicular helper CD4+ T (TFH) cells differentiation, and release of pro-inflammatory cytokines and chemokines. Compared with the other particle sizes, 1 μm particles induced more powerful antibody protection and yielded more persistent antibody responses, as well as more heightened anamnestic responses upon repeat vaccination. The superior immune responses might be attributed to sustainable antigen release and robust antigen uptake and transport and then further promoted a series of cascade reactions, including enhanced DCs maturation, increased lymphocytes activation, and augmented TFH cells differentiation in draining lymph nodes (DLNs). Here, a powerful and economical platform for HPV vaccine and a comprehensive understanding of particle size effect on immune responses for HPV L1 pentamer-based candidate vaccines are provided.
Collapse
Affiliation(s)
- Chengcheng Jia
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Tingyuan Yang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yongjiang Liu
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Ali Zhu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Fei Yin
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Yajun Wang
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Lan Xu
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Yan Wang
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Mei Yan
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Qingman Cai
- Beijing Institute of Petrochemical Technology , Beijing 102617 , P.R. China
| | - Xiaoxu Liang
- Beijing Institute of Petrochemical Technology , Beijing 102617 , P.R. China
| | - Ruijun Ju
- Beijing Institute of Petrochemical Technology , Beijing 102617 , P.R. China
| | - Jianping Chen
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Lianyan Wang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
5
|
Spray dried cubosomes with ovalbumin and Quil-A as a nanoparticulate dry powder vaccine formulation. Int J Pharm 2018; 550:35-44. [DOI: 10.1016/j.ijpharm.2018.08.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 01/30/2023]
|
6
|
Bobbala S, Gibson B, Gamble AB, McDowell A, Hook S. Poloxamer 407-chitosan grafted thermoresponsive hydrogels achieve synchronous and sustained release of antigen and adjuvant from single-shot vaccines. Immunol Cell Biol 2018; 96:656-665. [PMID: 29499080 DOI: 10.1111/imcb.12031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 01/22/2023]
Abstract
Sustained-release vaccine delivery systems may enhance the immunogenicity of subunit vaccines and reduce the need for multiple vaccinations. The aim of this study was to develop a thermoresponsive hydrogel using poloxamer 407-chitosan (CP) grafted copolymer as a delivery system for single-shot sustained-release vaccines. The CP copolymer was synthesized using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and N-hydroxysuccinimide chemistry. The CP copolymer was a free flowing solution at ambient temperature and transformed rapidly into a gel at body temperature. The hydrogels were loaded with vaccine antigen and adjuvants or the vaccine components were encapsulated in poly (lactic-co-glycolic acid) nanoparticles in order to ensure synchronous release. The CP hydrogels were stable for up to 18 days in vitro. Release of both nanoparticles and the individual components was complete, with release of the individual components being modulated by incorporation into nanoparticles. In vivo, a single dose of CP hydrogel vaccine induced strong, long lasting, cellular and humoral responses that could protect against the development of tumors in a murine melanoma model.
Collapse
Affiliation(s)
- Sharan Bobbala
- School of Pharmacy, University of Otago, Dunedin, New Zealand.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Blake Gibson
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Bobbala S, Hook S. Is There an Optimal Formulation and Delivery Strategy for Subunit Vaccines? Pharm Res 2016; 33:2078-97. [DOI: 10.1007/s11095-016-1979-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022]
|
8
|
Bobbala S, Tamboli V, McDowell A, Mitra AK, Hook S. Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines. AAPS JOURNAL 2015; 18:261-9. [PMID: 26589309 DOI: 10.1208/s12248-015-9843-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023]
Abstract
The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.
Collapse
Affiliation(s)
- Sharan Bobbala
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Viral Tamboli
- School of Pharmacy, UMKC, Kansas City, Missouri, USA
| | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Ashim K Mitra
- School of Pharmacy, UMKC, Kansas City, Missouri, USA
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
9
|
Even MP, Bobbala S, Kooi KL, Hook S, Winter G, Engert J. Impact of implant composition of twin-screw extruded lipid implants on the release behavior. Int J Pharm 2015; 493:102-10. [DOI: 10.1016/j.ijpharm.2015.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
|
10
|
Chitosan hydrogel vaccine generates protective CD8 T cell memory against mouse melanoma. Immunol Cell Biol 2015; 93:634-40. [PMID: 25708538 DOI: 10.1038/icb.2015.14] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 12/22/2022]
Abstract
CD8(+) T cells are important in the control of viral infections and cancers because of their cytolytic activity. A vaccine able to generate these cells could be beneficial in the prevention or treatment of these diseases. Chitosan hydrogel is a promising vaccine formulation that has previously been shown to generate effector CD8(+) T cells in a mouse model. This vaccine promotes sustained release of antigen and adjuvant, which generates a robust effector response. For longer lasting immunity, a memory population of these CD8(+) T cells is required to control further disease. We found that vaccination with chitosan hydrogel or dendritic cells using ovalbumin protein as a model antigen and Quil-A adjuvant provided protection in a subcutaneous melanoma challenge 30 days later. Ovalbumin-specific memory CD8(+) T cells were detectable following vaccination with the chitosan hydrogel but not the dendritic cell vaccine and an in vivo cytotoxicity assay demonstrated specific lysis of target cells in chitosan hydrogel vaccinated mice but not those receiving dendritic cell vaccination. These results demonstrate that vaccination with chitosan hydrogel is equally effective as dendritic cell vaccination in tumour protection but has more readily detectable immune correlates of protection. This may be advantageous in predetermining protection in vaccinated individuals.
Collapse
|
11
|
Engert J. Implants as Sustained Release Delivery Devices for Vaccine Antigens. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-1-4939-1417-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems. Eur J Pharm Biopharm 2014; 89:74-81. [PMID: 25481034 DOI: 10.1016/j.ejpb.2014.11.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/19/2014] [Accepted: 11/26/2014] [Indexed: 01/06/2023]
Abstract
Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil A and monophosphoryl lipid A), were free-flowing liquids at room temperature and formed stable gels at physiological temperatures. Rheological results showed that both systems meet the criteria of being thermoresponsive gels. The P407-25R4 sol-gels did not significantly sustain the release of antigen in vivo while the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate synchronous vaccine release and may in fact retard release, reducing efficacy in some cases. From these results, chitosan-MC sol-gels show potential as sustained release vaccine delivery systems, as compared to the P407-25R4 system that had a limited ability to sustain antigen release.
Collapse
|
13
|
In vivo investigation of twin-screw extruded lipid implants for vaccine delivery. Eur J Pharm Biopharm 2014; 87:338-46. [DOI: 10.1016/j.ejpb.2014.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 11/22/2022]
|
14
|
Rattanapak T, Birchall JC, Young K, Kubo A, Fujimori S, Ishii M, Hook S. Dynamic visualization of dendritic cell-antigen interactions in the skin following transcutaneous immunization. PLoS One 2014; 9:e89503. [PMID: 24586830 PMCID: PMC3933627 DOI: 10.1371/journal.pone.0089503] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
Delivery of vaccines into the skin provides many advantages over traditional parenteral vaccination and is a promising approach due to the abundance of antigen presenting cells (APC) residing in the skin including Langerhans cells (LC) and dermal dendritic cells (DDC). However, the main obstacle for transcutaneous immunization (TCI) is the effective delivery of the vaccine through the stratum corneum (SC) barrier to the APC in the deeper skin layers. This study therefore utilized microneedles (MN) and a lipid-based colloidal delivery system (cubosomes) as a synergistic approach for the delivery of vaccines to APC in the skin. The process of vaccine uptake and recruitment by specific types of skin APC was investigated in real-time over 4 hours in B6.Cg-Tg (Itgax-EYFP) 1 Mnz/J mice by two-photon microscopy. Incorporation of the vaccine into a particulate delivery system and the use of MN preferentially increased vaccine antigen uptake by a highly motile subpopulation of skin APC known as CD207⁺ DC. No uptake of antigen or any response to immunisation by LC could be detected.
Collapse
Affiliation(s)
| | - James C Birchall
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Katherine Young
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Atsuko Kubo
- Laboratory of Cellular Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Sayumi Fujimori
- Laboratory of Cellular Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences and Laboratory of Cellular Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
|
16
|
Manipulation of the surface pegylation in combination with reduced vesicle size of cationic liposomal adjuvants modifies their clearance kinetics from the injection site, and the rate and type of T cell response. J Control Release 2012; 164:331-7. [DOI: 10.1016/j.jconrel.2012.07.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/25/2012] [Accepted: 07/08/2012] [Indexed: 01/22/2023]
|
17
|
Christensen D, Henriksen-Lacey M, Kamath AT, Lindenstrøm T, Korsholm KS, Christensen JP, Rochat AF, Lambert PH, Andersen P, Siegrist CA, Perrie Y, Agger EM. A cationic vaccine adjuvant based on a saturated quaternary ammonium lipid have different in vivo distribution kinetics and display a distinct CD4 T cell-inducing capacity compared to its unsaturated analog. J Control Release 2012; 160:468-76. [PMID: 22709414 DOI: 10.1016/j.jconrel.2012.03.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 10/28/2022]
Abstract
Adjuvants are often composed of different constituents that can be divided into two groups based on their primary activity: the delivery system which carries and presents the vaccine antigen to antigen-presenting cells, and the immunostimulator that activates and modulates the ensuing immune response. Herein, we have investigated the importance of the delivery system and in particular its physical characteristics by comparing the delivery properties of two lipids which differ only in the degree of saturation of the acyl chains, rendering the liposomes either rigid (DDA, dimethyldioctadecylammonium) or highly fluid (DODA, dimethyldioleoylammonium) at physiological temperature. We show that these delivery systems are remarkably different in their ability to prime a Th1-directed immune response with the rigid DDA-based liposomes inducing a response more than 100 times higher compared to that obtained with the fluid DODA-based liposomes. Upon injection with a vaccine antigen, DDA-based liposomes form a vaccine depot that results in a continuous attraction of antigen-presenting cells that engulf a high amount of adjuvant and are subsequently efficiently activated as measured by an elevated expression of the co-stimulatory molecules CD40 and CD86. In contrast, the fluid DODA-based liposomes are more rapidly removed from the site of injection resulting in a lower up-regulation of co-stimulatory CD40 and CD86 molecules on adjuvant-positive antigen-presenting cells. Additionally, the vaccine antigen is readily dissociated from the DODA-based liposomes leading to a population of antigen-presenting cells that are antigen-positive but adjuvant-negative and consequently are not activated. These studies demonstrate the importance of studying in vivo characteristics of the vaccine components and furthermore show that physicochemical properties of the delivery system have a major impact on the vaccine-induced immune response.
Collapse
Affiliation(s)
- Dennis Christensen
- Dept. Infectious Disease Immunology, Statens Serum Institut, Copenhagen S, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gordon S, Young K, Wilson R, Rizwan S, Kemp R, Rades T, Hook S. Chitosan hydrogels containing liposomes and cubosomes as particulate sustained release vaccine delivery systems. J Liposome Res 2011; 22:193-204. [DOI: 10.3109/08982104.2011.637502] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Kojarunchitt T, Hook S, Rizwan S, Rades T, Baldursdottir S. Development and characterisation of modified poloxamer 407 thermoresponsive depot systems containing cubosomes. Int J Pharm 2011; 408:20-6. [PMID: 21272624 DOI: 10.1016/j.ijpharm.2011.01.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
The purpose of this study is to develop a thermoresponsive sustained release delivery system combining phytantriol cubosomes and poloxamer 407 (P407). P407 undergoes thermoreversible gelation, where it exists as a free-flowing liquid at low temperature and gels upon heating. However, this polymer has the major draw back of fast erosion in aqueous environments which needs to be addressed. Three different concentrations of P407 (12%, 15% and 17% (w/v)) were formulated with various additives (methyl cellulose (MC), dextran, carrageenan and Pluronic-R (25R4)). The rheological characteristics and in vitro stability were investigated. The sol-gel transition temperature of P407 was lowered in the presence of the phytantriol cubosomes. The addition of MC and dextran did not affect the sol-gel transition temperature whereas 25R4 increased the gelation temperature. No transition was observed for the carrageenan formulations. The presence of 25R4 allowed the development of formulations that were free flowing liquid at working temperature (22 °C), gelled at body temperature (37 °C) and had improved stability in an aqueous environment. Both rheological and in vitro stability studies suggested that cubosome-loaded 17% (w/v) P407 with 25R4 in 1:1 molar ratio may have a potential as sustained release delivery system.
Collapse
|
20
|
Gordon S, Teichmann E, Young K, Finnie K, Rades T, Hook S. In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur J Pharm Sci 2010; 41:360-8. [DOI: 10.1016/j.ejps.2010.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/10/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
|
21
|
Gordon S, Saupe A, McBurney W, Rades T, Hook S. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.12.0004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
In this work the potential of chitosan nanoparticles (CNP) and thermosensitive chitosan hydrogels as particulate and sustained release vaccine delivery systems was investigated. CNP and chitosan hydrogels were prepared, loaded with the model protein antigen ovalbumin (OVA) and characterised. The immunostimulatory capacity of these vaccine delivery systems was assessed in-vitro and in-vivo. Particle sizing measurements and SEM images showed that optimised OVA-loaded CNP had a size of approximately 200 nm, a polydispersity index < 0.2, and a positive zeta-potential of approximately 18 mV. The amount of OVA adsorbed onto CNP was high with an adsorption efficacy of greater than 96%. Raman spectroscopy indicated conformational changes of OVA when adsorbed onto the surface of CNP. Uptake of the dispersions and immunological activation of murine dendritic cells in-vitro could be demonstrated. Investigation of the release of fluorescently-labelled OVA (FITC-OVA) from CNP and chitosan hydrogels in-vitro showed that approximately 50% of the total protein was released from CNP within a period of ten days; release of antigen from chitosan gel occurred in a more sustained manner, with < 10% of total protein being released after 10 days. The slow release from gel formulations may be explained by the strong interactions of the protein with chitosan. While OVA-loaded CNP showed no significant immunogenicity, formulations of OVA in chitosan gel were able to stimulate both cell-mediated and humoral immunity in-vivo.
Collapse
Affiliation(s)
- Sarah Gordon
- School of Pharmacy, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Anne Saupe
- School of Pharmacy, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Warren McBurney
- School of Pharmacy, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Thomas Rades
- School of Pharmacy, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, P.O. Box 913, Dunedin, New Zealand
| |
Collapse
|
22
|
Immunostimulatory lipid implants containing Quil-A and DC-cholesterol. Int J Pharm 2008; 363:91-8. [DOI: 10.1016/j.ijpharm.2008.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/08/2008] [Accepted: 07/08/2008] [Indexed: 11/19/2022]
|