1
|
Savari MN. Fe 3O 4@Chitosan@ZIF-8@RVG29, an anti-glioma nanoplatform guided by fixed and activated by alternating magnetic field. Sci Rep 2024; 14:7000. [PMID: 38523150 PMCID: PMC10961307 DOI: 10.1038/s41598-024-57565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
There is considerable interest in developing anti-glioma nanoplatforms. They make the all-in-one combination of therapies possible. Here we show how the selective Glioblastoma multiforme (GBM) cell killing of the here-established nanoplatforms increased after each coating and how the here-established vibration-inducing Alternating magnetic field (AMF) decreased the treatment time from 72 h to 30 s. Thanks to their magnetite core, these nanoplatforms can be guided to the tumor's specific site by a Fixed magnetic field, they bypass the Blood-Brain Barrier (BBB) and accumulate at the tumor site thanks to the RVG29 bonding to the G-protein on the ion-gated channel receptor known as the nicotinic acetylcholine receptor (nAchR), which expresses on BBB cells and overexpresses on GBM cells, and thanks to the positive charge gained by both chitosan and RVG29's peptide. Both ZIF-8 and its mediate adherence, Chitosan increases the drug loading capacity that stimuli response to the tumor's acidic environment. The Zn2+ ions generated from ZIF-8 sustained degradation in such an environment kill the GBM cells. Dynamic Light Scattering (DLS) evaluated these nanoplatform's mean size 155 nm indicating their almost optimum size for brain applications. Based on their elements' intrinsic properties, these nanoplatforms can enhance and combine other adjuvant therapies.
Collapse
|
2
|
Thirumalai A, Girigoswami K, Pallavi P, Harini K, Gowtham P, Girigoswami A. Cancer therapy with iRGD as a tumor-penetrating peptide. Bull Cancer 2023; 110:1288-1300. [PMID: 37813754 DOI: 10.1016/j.bulcan.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
One of the primary threats in tumor treatment revolves around the limited ability to penetrate tumor sites, leading to reduced therapeutic effectiveness, which remains a critical concern. Recently gaining importance are novel peptides, namely CRGDK/RGPD/EC (iRGD), that possess enhanced tumor-penetrating and inhibitory properties. These peptides specifically target and penetrate tumors by binding to αvβ integrins, namely αvβ3 and αvβ5, as well as NRP-1 receptors. Remarkably abundant on both the vasculature and tumor cell surfaces, these peptides show promising potential for improving tumor treatment outcomes. As a result, iRGD penetrated deep into the tumor tissues with biological products, contrast agents (imaging agents), antitumor drugs, and immune modulators after co-injecting them with peptides or chemically linked to peptides. The synthesis of iRGD peptides is a relatively straightforward process compared to the synthesis of other traditional peptides, and they significantly improved tumor tissue penetration inhibiting tumor metastasis effectively. Recent studies demonstrate the effectiveness of iRGD-driven dual-targeting chemotherapeutics on cancer cells, and the nanocarriers were modified with iRGD, serving as a favorable delivery strategy of payloads for deeper tumor regions. This review aims to provide an overview to emphasize the recent advancements and advantages of iRGD in treating and imaging various cancers.
Collapse
Affiliation(s)
- Anbazhagan Thirumalai
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Koyeli Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pragya Pallavi
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Karthick Harini
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pemula Gowtham
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Agnishwar Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India.
| |
Collapse
|
3
|
D’Amore V, Donati G, Lenci E, Ludwig BS, Kossatz S, Baiula M, Trabocchi A, Kessler H, Di Leva FS, Marinelli L. Molecular View on the iRGD Peptide Binding Mechanism: Implications for Integrin Activity and Selectivity Profiles. J Chem Inf Model 2023; 63:6302-6315. [PMID: 37788340 PMCID: PMC10598797 DOI: 10.1021/acs.jcim.3c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 10/05/2023]
Abstract
Receptor-selective peptides are widely used as smart carriers for specific tumor-targeted delivery. A remarkable example is the cyclic nonapeptide iRGD (CRGDKPGDC, 1) that couples intrinsic cytotoxic effects with striking tumor-homing properties. These peculiar features are based on a rather complex multistep mechanism of action, where the primary event is the recognition of RGD integrins. Despite the high number of preclinical studies and the recent success of a phase I trial for the treatment of pancreatic ductal adenocarcinoma (PDAC), there is little information available about the iRGD three-dimensional (3D) structure and integrin binding properties. Here, we re-evaluate the peptide's affinity for cancer-related integrins including not only the previously known targets αvβ3 and αvβ5 but also the αvβ6 isoform, which is known to drive cell growth, migration, and invasion in many malignancies including PDAC. Furthermore, we use parallel tempering in the well-tempered ensemble (PT-WTE) metadynamics simulations to characterize the in-solution conformation of iRGD and extensive molecular dynamics calculations to fully investigate its binding mechanism to integrin partners. Finally, we provide clues for fine-tuning the peptide's potency and selectivity profile, which, in turn, may further improve its tumor-homing properties.
Collapse
Affiliation(s)
- Vincenzo
Maria D’Amore
- Department
of Pharmacy, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Greta Donati
- Department
of Pharmacy, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Elena Lenci
- Department
of Chemistry “Ugo Schiff″, University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Florence, Italy
| | - Beatrice Stefanie Ludwig
- Department
of Nuclear Medicine, University Hospital Klinikum Rechts der Isar
and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, Munich 81675, Germany
| | - Susanne Kossatz
- Department
of Nuclear Medicine, University Hospital Klinikum Rechts der Isar
and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, Munich 81675, Germany
- Department
of Chemistry, Institute for Advanced Study, Technical University Munich, Garching 85748, Germany
| | - Monica Baiula
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Andrea Trabocchi
- Department
of Chemistry “Ugo Schiff″, University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Florence, Italy
| | - Horst Kessler
- Department
of Chemistry, Institute for Advanced Study, Technical University Munich, Garching 85748, Germany
| | - Francesco Saverio Di Leva
- Department
of Pharmacy, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Luciana Marinelli
- Department
of Pharmacy, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
4
|
Liang Q, Zhuo Y, Wu X, Zheng S, Zhuang J, Wang K, Chen S. Curcumin combining temozolomide formed localized nanogel for inhibition of postsurgical chemoresistant glioblastoma. Nanomedicine (Lond) 2023; 18:907-921. [PMID: 37466022 DOI: 10.2217/nnm-2023-0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Aim: To investigate the use of nanoparticle (NP)-encapsulated injectable thermosensitive hydrogel-formed nanogel for inhibition of postsurgical residual temozolomide (TMZ)-resistant glioblastoma (GBM) recurrence. Materials & methods: Curcumin (Cur) was coloaded with TMZ into PEG-PLGA NPs, then NPs were further encapsulated into a thermosensitive hydrogel to form a nanogel, which was injected into the resection cavity of the GBM postsurgery. Results: The prepared nanogel displayed excellent drug-loading capacity and long-term drug release. Estimated survival characteristics demonstrated that the nanogel could play a significant role in TMZ-resistant tumor inhibition with low drug-induced toxicity. The originally designed ratio of Cur/TMZ was sustained, making it an effective therapeutic outcome. Conclusion: Cur-combined TMZ-formed nanogels can be a promising candidate for the local inhibition of GBM recurrence.
Collapse
Affiliation(s)
- Qiong Liang
- Shengli Clinical Medical College of Fujian Medical University & Department of Pharmacy, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Yanhang Zhuo
- Shengli Clinical Medical College of Fujian Medical University & Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Xiaoran Wu
- College of Chemistry & Chemical Engineering, Huangshan University, Huangshan, Anhui, 245021, China
| | - Shihao Zheng
- Shengli Clinical Medical College of Fujian Medical University & Department of Neurosurgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Jie Zhuang
- Shengli Clinical Medical College of Fujian Medical University & Department of Pharmacy, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Kaiyu Wang
- Shengli Clinical Medical College of Fujian Medical University & Department of Neurosurgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Sunhui Chen
- Shengli Clinical Medical College of Fujian Medical University & Department of Pharmacy, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| |
Collapse
|
5
|
Ruiz-Molina D, Mao X, Alfonso-Triguero P, Lorenzo J, Bruna J, Yuste VJ, Candiota AP, Novio F. Advances in Preclinical/Clinical Glioblastoma Treatment: Can Nanoparticles Be of Help? Cancers (Basel) 2022; 14:4960. [PMID: 36230883 PMCID: PMC9563739 DOI: 10.3390/cancers14194960] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GB) is the most aggressive and frequent primary malignant tumor in the central nervous system (CNS), with unsatisfactory and challenging treatment nowadays. Current standard of care includes surgical resection followed by chemotherapy and radiotherapy. However, these treatments do not much improve the overall survival of GB patients, which is still below two years (the 5-year survival rate is below 7%). Despite various approaches having been followed to increase the release of anticancer drugs into the brain, few of them demonstrated a significant success, as the blood brain barrier (BBB) still restricts its uptake, thus limiting the therapeutic options. Therefore, enormous efforts are being devoted to the development of novel nanomedicines with the ability to cross the BBB and specifically target the cancer cells. In this context, the use of nanoparticles represents a promising non-invasive route, allowing to evade BBB and reducing systemic concentration of drugs and, hence, side effects. In this review, we revise with a critical view the different families of nanoparticles and approaches followed so far with this aim.
Collapse
Affiliation(s)
- Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Xiaoman Mao
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Paula Alfonso-Triguero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Bellvitge University Hospital-ICO (IDIBELL), Avinguda de la Gran Via de l’Hospitalet, 199-203, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Victor J. Yuste
- Instituto de Neurociencias. Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Fernando Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Wang H, Zhou J, Fu Y, Zheng Y, Shen W, Zhou J, Yin T. Deeply Infiltrating iRGD-Graphene Oxide for the Intensive Treatment of Metastatic Tumors through PTT-Mediated Chemosensitization and Strengthened Integrin Targeting-Based Antimigration. Adv Healthc Mater 2021; 10:e2100536. [PMID: 34137204 DOI: 10.1002/adhm.202100536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/19/2021] [Indexed: 12/16/2022]
Abstract
A limited infiltration and the subsequent low effective drug concentration result in poor chemotherapeutic outcomes against tumors, and even further promote tumor resistance and metastatic. Herein, iRGD-modified graphene oxide (GO) nanosheets (IPHG) are developed for the intensive treatment of metastatic tumors using focus-specific penetrated delivery together with photothermal therapy-mediated chemosensitization and photothermal therapy-strengthened integrin targeting-based antimigration. In vitro and in vivo data verified the mechanism of the tumor-selective infiltration of IPHG is based on a rigid 2D structure-associated advantage regarding hemodynamics and endothelial contact, followed by iRGD-endowed transendothelial and intratumoral transport. Once IPHG-DOX-penetrated 4T1 tumors are exposed to near-infrared irradiation, hyperthermia stress and photothermal therapy-elevated effective drug concentrations result in chemosensitization and prominent tumor suppression. Meanwhile, the specific binding of iRGD to integrins and photothermal therapy leads to the synergistic perturbation of cytoskeleton remodeling and subsequent impairment of cell motility and metastasis. The tailored design of IPHG validates a promising paradigm for drug delivery to combat tumor resistance and metastasis resulting from poor target access for single chemotherapy.
Collapse
Affiliation(s)
- Honglan Wang
- Department of Pharmaceutics China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Jiyuan Zhou
- Department of Pharmaceutics China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Ying Fu
- Department of Pharmaceutics China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Yuzhao Zheng
- Department of Pharmaceutics China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Weiyang Shen
- School of Science China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Jianping Zhou
- Department of Pharmaceutics China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Tingjie Yin
- Department of Pharmaceutics China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| |
Collapse
|
8
|
Tan J, Duan X, Zhang F, Ban X, Mao J, Cao M, Han S, Shuai X, Shen J. Theranostic Nanomedicine for Synergistic Chemodynamic Therapy and Chemotherapy of Orthotopic Glioma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2003036. [PMID: 33344142 PMCID: PMC7740078 DOI: 10.1002/advs.202003036] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Indexed: 05/17/2023]
Abstract
Glioma is a common primary brain malignancy with a poor prognosis. Chemotherapy is the first-line treatment for brain tumors but low efficiency of drugs in crossing the blood-brain barrier (BBB) and drug resistance related to tumor hypoxia thwart its efficacy. Herein, a theranostic nanodrug (iRPPA@TMZ/MnO) is developed by incorporating oleic acid-modified manganese oxide (MnO) and temozolomide (TMZ) into a polyethylene glycol-poly(2-(diisopropylamino)ethyl methacrylate-based polymeric micelle containing internalizing arginine-glycine-aspartic acid (iRGD). The presence of iRGD provides the nanodrug with a high capacity of crossing the BBB and penetrating the tumor tissue. After accumulation in glioma, the nanodrug responds to the tumor microenvironment to simultaneously release TMZ, Mn2+, and O2. The released TMZ induces tumor cell apoptosis and the released Mn2+ causes intracellular oxidative stress that kill tumor cells via a Fenton-like reaction. The O2 produced in situ alleviates tumor hypoxia and enhances the chemotherapy/chemodynamic therapeutic effects against glioma. The Mn2+ can also serve as a magnetic resonance imaging (MRI) contrast agent for tumor imaging during therapy. The study demonstrates the great potential of this multifunctional nanodrug for MRI-visible therapy of brain glioma.
Collapse
Affiliation(s)
- Junyi Tan
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Xiaohui Duan
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Fang Zhang
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xiaohua Ban
- Department of RadiologySun Yat‐sen University Cancer CentreSun Yat‐sen UniversityGuangzhou510060China
| | - Jiaji Mao
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Minghui Cao
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Shisong Han
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Xintao Shuai
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Jun Shen
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| |
Collapse
|
9
|
Ortiz N, Vásquez PA, Vidal F, Díaz CF, Guzmán JL, Jiménez VA, Alderete JB. Polyamidoamine-based nanovector for the efficient delivery of methotrexate to U87 glioma cells. Nanomedicine (Lond) 2020; 15:2771-2784. [PMID: 33073670 DOI: 10.2217/nnm-2020-0305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The purpose of this study was to design a polyamidoamine (PAMAM)-based nanovector for the efficient delivery of methotrexate to U87 glioma cells. To this end, 0-100% acetylated PAMAM dendrimers of the fourth generation were synthesized and evaluated using drug encapsulation measurements, molecular dynamics simulations, neurotoxicity assays and neuronal internalization experiments. The best system was tested as a nanovector for methotrexate delivery to U87 glioma cells. The authors found that 25% acetylated PAMAM dendrimers of the fourth-generation combine low intrinsic toxicity, large drug complexation capacity and efficient internalization into hippocampal neurons. Nanovector complexation enhances the cytotoxic response of methotrexate against U87 glioma cells compared with free drug solutions. In conclusion, 25% acetylated PAMAM dendrimers of the fourth-generation increase drug uptake by glioma cells and thereby act as efficient nanovectors for methotrexate delivery.
Collapse
Affiliation(s)
- Natalia Ortiz
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Pilar A Vásquez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Felipe Vidal
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Carola F Díaz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Talcahuano 4260000, Chile
| | - José L Guzmán
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Talcahuano 4260000, Chile
| | - Joel B Alderete
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
10
|
Kang S, Lee S, Park S. iRGD Peptide as a Tumor-Penetrating Enhancer for Tumor-Targeted Drug Delivery. Polymers (Basel) 2020; 12:E1906. [PMID: 32847045 PMCID: PMC7563641 DOI: 10.3390/polym12091906] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The unique structure and physiology of a tumor microenvironment impede intra-tumoral penetration of chemotherapeutic agents. A novel iRGD peptide that exploits the tumor microenvironment can activate integrin-dependent binding to tumor vasculatures and neuropilin-1 (NRP-1)-dependent transport to tumor tissues. Recent studies have focused on its dual-targeting ability to achieve enhanced penetration of chemotherapeutics for the efficient eradication of cancer cells. Both the covalent conjugation and the co-administration of iRGD with chemotherapeutic agents and engineered delivery vehicles have been explored. Interestingly, the iRGD-mediated drug delivery also enhances penetration through the blood-brain barrier (BBB). Recent studies have shown its synergistic effect with BBB disruptive techniques. The efficacy of immunotherapy involving immune checkpoint blockades has also been amplified by using iRGD as a targeting moiety. In this review, we presented the recent advances in iRGD technology, focusing on cancer treatment modalities, including the current clinical trials using iRGD. The iRGD-mediated nano-carrier system could serve as a promising strategy in drug delivery to the deeper tumor regions, and be combined with various therapeutic interventions due to its novel targeting ability.
Collapse
Affiliation(s)
| | | | - Soyeun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea; (S.K.); (S.L.)
| |
Collapse
|
11
|
Aparicio-Blanco J, Sanz-Arriazu L, Lorenzoni R, Blanco-Prieto MJ. Glioblastoma chemotherapeutic agents used in the clinical setting and in clinical trials: Nanomedicine approaches to improve their efficacy. Int J Pharm 2020; 581:119283. [DOI: 10.1016/j.ijpharm.2020.119283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
|
12
|
Li J, Zhao J, Tan T, Liu M, Zeng Z, Zeng Y, Zhang L, Fu C, Chen D, Xie T. Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: A Comprehensive Review. Int J Nanomedicine 2020; 15:2563-2582. [PMID: 32368041 PMCID: PMC7173867 DOI: 10.2147/ijn.s243223] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/21/2020] [Indexed: 12/22/2022] Open
Abstract
Gliomas are the most common tumor of the central nervous system. However, the presence of the brain barrier blocks the effective delivery of drugs and leads to the treatment failure of various drugs. The development of a nanoparticle drug delivery system (NDDS) can solve this problem. In this review, we summarized the brain barrier (including blood-brain barrier (BBB), blood-brain tumor barriers (BBTB), brain-cerebrospinal fluid barrier (BCB), and nose-to-brain barrier), NDDS of glioma (such as passive targeting systems, active targeting systems, and environmental responsive targeting systems), and NDDS efficacy improvement strategies and deficiencies. The research prospect of drug-targeted delivery systems for glioma is also discussed.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiaqian Zhao
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Tiantian Tan
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Mengmeng Liu
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhaowu Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yiying Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Lele Zhang
- School of Medicine, Chengdu University, Chengdu, People’s Republic of China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Dajing Chen
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
13
|
Cell-penetrating corosolic acid liposome as a functional carrier for delivering chemotherapeutic drugs. Acta Biomater 2020; 106:301-313. [PMID: 32081779 DOI: 10.1016/j.actbio.2020.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022]
Abstract
Corosolic acid (CA), a natural pentacyclic triterpenoid, exhibits antitumor and synergistic therapy effect with chemotherapeutic drugs mainly through inhibiting STAT3 activation. In this study, it is found that CA possesses cholesterol-like properties in liposome by regulating membrane phase behavior to form stable cholesterol-free CA liposomes (CALP). Compared with traditional cholesterol liposomes (CHOLP), CALP exhibit stronger membrane fusion and higher cellular uptake, and other functions including inhibition of STAT3 activation and suppression of the recruitment of macrophages to tumor microenvironment. Therefore, CALP is used as a functional carrier, and doxorubicin-loaded CALP (DOX/CALP) based on PEGylated liposomal doxorubicin (DOXILⓇ) are prepared by replacing its cholesterol with CA. The physicochemical properties and biological activities are compared with those of doxorubicin-loaded cholesterol liposomes (DOX/LP). Both DOX/CALP and DOX/LP possess approximately similar physical properties and exhibit high stability and low drug leakage as shown by the published data of DOXILⓇ. Nevertheless, it is noteworthy that DOX/CALP displays higher in vitro cellular uptake and tumor spheroid permeation along with stronger cytotoxicity against tumor cells than DOX/LP. Despite DOX/CALP has the same PK parameters, normal tissue biodistribution, and safety profile as DOX/LP, the results of an in vivo study in 4T1-bearing mice indicate that the DOX/CALP treatment group exhibit higher tumor accumulation, more significant tumor growth inhibition, and longer life span than the DOX/LP group. Overall, DOX/CALP is a representative example of CA-doped liposomes, suggesting that CALP as a functional drug carrier for solving low efficacy of present liposomal drugs might have promising application potential. STATEMENT OF SIGNIFICANCE: An original drug delivery nanocarrier, corosolic acid liposome (CALP), was developed in this study. It was found that CA possesses cholesterol-like function to regulate phospholipid membrane phase behavior. By replacing the cholesterol with CA, the liposomes were converted into high cellular uptake carriers, possessing anti-inflammatory activity and synergism with chemotherapeutic drugs. The variability of CALP formulations enabled to deliver therapeutic agents. The use of CALP to deliver doxorubicin not only significantly enhanced the therapeutic efficacy compared with the classic PEGylated liposomal doxorubicin, but also maintained the improved safety. Because CALP can be obtained by conventional liposome preparation methods, its use as functional drug carriers for solving low efficacy of present liposomal drugs would have promising application potential.
Collapse
|
14
|
Ullah I, Chung K, Bae S, Li Y, Kim C, Choi B, Nam HY, Kim SH, Yun CO, Lee KY, Kumar P, Lee SK. Nose-to-Brain Delivery of Cancer-Targeting Paclitaxel-Loaded Nanoparticles Potentiates Antitumor Effects in Malignant Glioblastoma. Mol Pharm 2020; 17:1193-1204. [PMID: 31944768 DOI: 10.1021/acs.molpharmaceut.9b01215] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive tumor with no curative treatment. The tumor recurrence after resection often requires chemotherapy or radiation to delay the infiltration of tumor remnants. Intracerebral chemotherapies are preferentially being used to prevent tumor regrowth, but treatments remain unsuccessful because of the poor drug distribution in the brain. In this study, we investigated the therapeutic efficacy of cancer-targeting arginyl-glycyl-aspartic tripeptide (RGD) conjugated paclitaxel (PTX)-loaded nanoparticles (NPs) against GBM by nose-to-brain delivery. Our results demonstrated that RGD-modified PTX-loaded NPs showed cancer-specific delivery and enhanced anticancer effects in vivo. The intranasal (IN) inoculation of RGD-PTX-loaded NPs effectively controls the tumor burden (75 ± 12% reduction) by inducing apoptosis and/or inhibiting cancer cell proliferation without affecting the G0 stage of normal brain cells. Our data provide therapeutic evidence supporting the use of intranasally delivered cancer-targeted PTX-loaded NPs for GBM therapy.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea.,Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven 06510, United States
| | - Kunho Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Sumin Bae
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Yan Li
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea.,National Cancer Center, Gyeonggi-do, Goyang 10408, Korea
| | - Chunggu Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Boyoung Choi
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea.,Samyang Biopharmaceuticals Co., Seoul 13488, Korea
| | | | - Sun Hwa Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Chae-Ok Yun
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Kuen Yong Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven 06510, United States
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
15
|
Zhong Y, Su T, Shi Q, Feng Y, Tao Z, Huang Q, Li L, Hu L, Li S, Tan H, Liu S, Yang H. Co-Administration Of iRGD Enhances Tumor-Targeted Delivery And Anti-Tumor Effects Of Paclitaxel-Loaded PLGA Nanoparticles For Colorectal Cancer Treatment. Int J Nanomedicine 2019; 14:8543-8560. [PMID: 31802868 PMCID: PMC6830451 DOI: 10.2147/ijn.s219820] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Nanoparticles exhibit great promise for improving the solubility and tissue-specific distribution of chemotherapeutic agents; however, the passive and highly variable enhanced permeability and retention (EPR) effects observed in tumors frequently leads to insufficient delivery of nanodrugs into tumors. The tumor-penetrating peptide iRGD can actively enhance tumor-selective delivery of nanoparticles into tumors by binding to integrin and interacting with tissue-penetrating receptor neuropilin-1. MATERIALS AND METHODS To improve colorectal cancer treatment, in this study, we prepared a paclitaxel (PTX)-loaded PLGA nanoparticle (PLGA-PTX) and evaluated its tumor-targeting and antitumor activity by co-administration with iRGD. RESULTS Compared to free PTX, encapsulated PTX retained preferential cytotoxicity toward various colorectal cancer cells while effectively sparing healthy cells. PLGA-PTX treatment resulted in cell cycle arrest at the G2/M phase and apoptosis, leading to inhibition of cancer cell migration and invasion. PLGA-PTX combined with iRGD displayed little enhancement of cytotoxicity in vitro. Despite this, iRGD receptors integrin and neuropilin-1 were found to be primarily overexpressed on abundant tumor vessels in mice bearing colorectal tumors. Consequently, co-administration of nanoparticles with iRGD promoted the selective delivery of nanoparticles into tumor tissues in vivo. Additionally, the combined regimen enhanced the antitumor effects compared to those of each individual reagent. CONCLUSION Our findings suggest that PLGA nanoparticles combined with the iRGD peptide provide a promising drug delivery strategy for facilitating active drug accumulation into tumors, given that iRGD receptors are overexpressed on tumor vessels. This co-administration system lacking covalent conjugation provides a more convenient means to combine various therapeutic agents with iRGD to achieve personalized nanotherapy.
Collapse
Affiliation(s)
- Yi Zhong
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Tao Su
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Qiuxiao Shi
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Yanru Feng
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Ze Tao
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Qiuxia Huang
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Lan Li
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Liqiang Hu
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Shengfu Li
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Hong Tan
- Department of General Surgery, Chengdu Integrated TCM & Western Medicine Hospital (Chengdu First People’s Hospital), Chengdu610041, People’s Republic of China
| | - Shan Liu
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610072, People’s Republic of China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| |
Collapse
|
16
|
iRGD: A Promising Peptide for Cancer Imaging and a Potential Therapeutic Agent for Various Cancers. JOURNAL OF ONCOLOGY 2019; 2019:9367845. [PMID: 31346334 PMCID: PMC6617877 DOI: 10.1155/2019/9367845] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Poor penetration into the tumor parenchyma and the reduced therapeutic efficacy of anticancer drugs and other medications are the major problems in tumor treatment. A new tumor-homing and penetrating peptide, iRGD (CRGDK/RGPD/EC), can be effectively used to combine and deliver imaging agents or anticancer drugs into tumors. The different “vascular zip codes” expressed in different tissues can serve as targets for docking-based (synaptic) delivery of diagnostic and therapeutic molecules. αv-Integrins are abundantly expressed in the tumor vasculature, where they are recognized by peptides containing the RGD integrin recognition motif. The iRGD peptide follows a multistep tumor-targeting process: First, it is proteolytically cleaved to generate the CRGDK fragment by binding to the surface of cells expressing αv integrins (αvβ3 and αvβ5). Then, the fragment binds to neuropilin-1 and penetrates the tumor parenchyma more deeply. Compared with conventional RGD peptides, the affinity of iRGD for αv integrins is in the mid to low nanomolar range, and the CRGDK fragment has a stronger affinity for neuropilin-1 than that for αv integrins because of the C-terminal exposure of a conditional C-end Rule (CendR) motif (R/KXXR/K), whose receptor proved to be neuropilin-1. Consequently, these advantages facilitate the transfer of CRGDK fragments from integrins to neuropilin-1 and consequently deeper penetration into the tumor. Due to its specific binding and strong affinity, the iRGD peptide can deliver imaging agents and anticancer drugs into tumors effectively and deeply, which is useful in detecting the tumor, blocking tumor growth, and inhibiting tumor metastasis. This review aims to focus on the role of iRGD in the imaging and treatment of various cancers.
Collapse
|
17
|
Sun Y, Li X, Zhang L, Liu X, Jiang B, Long Z, Jiang Y. Cell Permeable NBD Peptide-Modified Liposomes by Hyaluronic Acid Coating for the Synergistic Targeted Therapy of Metastatic Inflammatory Breast Cancer. Mol Pharm 2019; 16:1140-1155. [PMID: 30668131 DOI: 10.1021/acs.molpharmaceut.8b01123] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic inflammation is closely related to the development, deterioration, and metastasis of tumors. Recently, many studies have shown that down-regulating the expression of inflammation by blocking nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways could significantly inhibit tumor growth and metastasis. The combined application of curcumin (CUR) and celecoxib (CXB) has been proven to exert a synergistic antitumor effect via inhibiting the activation of NF-κB and STAT3. TAT-NBD (TN) peptide, a fusion peptide of NF-κB essential modulator (NEMO)-binding domain peptide (NBD) and cell-penetrating peptide (TAT), can selectively block NF-κB activating pathway resulting in tumor growth inhibition. In the present study, a novel TN-modified liposome coloading both CXB and CUR (TN-CCLP) at a synergistic ratio was first constructed with the property of synchronous release, then hyaluronic acid (HA) as CD44 targeting moiety was coated on the surface of the cationic liposome via electrostatic interaction to prepare the anionic HA/TN-CCLP. In vitro results of cytotoxicity, macrophage migration inhibition, and anti-inflammation efficacy revealed that TN-CCLP and HA/TN-CCLP were significantly superior to TN-LP and CCLP, while TN-CCLP exhibited better effects than HA/TN-CCLP due to higher cellular uptake ability. Different from in vitro data, after systematically treating 4T1 breast tumor-bearing mice, HA/TN-CCLP exerted the most striking effects on anti-inflammation, inhibition of macrophage recruitment, and antitumor because of the longest circulation time and maximum tumor accumulation. In particular, HA/TN-CCLP could availably block the lung metastasis of breast cancer. Taken together, the novel CD44 targeted TN-CCLP exhibited the potential for inhibiting tumor development and metastasis through improving inflammatory infiltration of tumor tissue.
Collapse
Affiliation(s)
- Yuqing Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 200032 , China
| | - Xuqian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 200032 , China
| | - Lili Zhang
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Xiao Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 200032 , China
| | - Baohong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Zhiguo Long
- Department of Hematology, Shanghai Pudong Hospital , Fudan University , Shanghai 201399 , China
| | - Yanyan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 200032 , China
| |
Collapse
|
18
|
Chandra Kaushik A, Wang YJ, Wang X, Kumar A, Singh SP, Pan CT, Shiue YL, Wei DQ. Evaluation of anti-EGFR-iRGD recombinant protein with GOLD nanoparticles: synergistic effect on antitumor efficiency using optimized deep neural networks. RSC Adv 2019; 9:19261-19270. [PMID: 35519377 PMCID: PMC9065452 DOI: 10.1039/c9ra01975h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
NP screening through a deep learning approach against Anti-EGFR and validation through docking with AuNP. Biochemical pathway and simulation of AuNP with Anti-EGFR and further implementation in biological circuits.
Collapse
Affiliation(s)
- Aman Chandra Kaushik
- The State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yan-Jing Wang
- The State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Xiangeng Wang
- The State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Ajay Kumar
- Institute of Biomedical Sciences
- National Sun Yat-Sen University
- Kaohsiung City 804
- Taiwan
- Department of Mechanical and Electro-Mechanical Engineering
| | - Satya P. Singh
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore
| | - Cheng-Tang Pan
- Department of Mechanical and Electro-Mechanical Engineering
- National Sun Yat-sen University
- Kaohsiung City 804
- Taiwan
- Institute of Medical Science and Technology
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences
- National Sun Yat-Sen University
- Kaohsiung City 804
- Taiwan
| | - Dong-Qing Wei
- The State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
- China
| |
Collapse
|
19
|
Jiang Y, Pang X, Liu R, Xiao Q, Wang P, Leung AW, Luan Y, Xu C. Design of an Amphiphilic iRGD Peptide and Self-Assembling Nanovesicles for Improving Tumor Accumulation and Penetration and the Photodynamic Efficacy of the Photosensitizer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31674-31685. [PMID: 30133254 DOI: 10.1021/acsami.8b11699] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photodynamic therapy (PDT) is a minimally invasive treatment for many diseases, including infections and tumors. Nevertheless, clinical utilization of PDT is severely restricted due to the shortcomings of the photosensitizers, especially their low water solubility and poor tumor selectivity. iRGD (internalizing RGD, CRGDKGPDC), a nine-unit cyclic peptide, was applied as an active ligand to realize tumor homing and tissue penetration. Herein, we innovatively fabricated a novel OFF-ON mode iRGD-based peptide amphiphile (PA) to self-assemble into spherical nanovesicles to enhance the tumor-targeting and tumor-penetrating efficacy of PDT. To introduce the self-assembling feature into iRGD, a hydrophilic arginine-rich sequence and hydrophobic alkyl chains were sequentially linked to the iRGD motif. A short proline sequence was selected to control the morphology of the self-assembled aggregates. Next, the photosensitizer hypocrellin B (HB) was encapsulated into PA vesicles with a high loading efficiency. The aggregation-caused quenching effect inactivated HB in the PA vesicles; however, the iRGD-peptide-based material was able to be selectively degraded in tumor cells. Thus, the HB fluorescence was recovered to achieve tumor-targeted imaging. This approach endows HB-loaded PA vesicles (HB-PA) with tumor-targeted activation, preferable tumor accumulation, and deep tumor penetration, thus leading to an excellent fluorescence-imaging-guided photodynamic efficacy both in vitro and in vivo. These amphiphilic iRGD aggregates provide a novel strategy for improving the accumulation, penetration, and imaging-guided photodynamic efficacy of photosensitizers.
Collapse
Affiliation(s)
- Yue Jiang
- School of Pharmaceutical Science , Shandong University , 44 West Wenhua Road , Jinan 250012 , Shandong , P. R. China
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| | - Xin Pang
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| | - Ruiling Liu
- School of Pharmaceutical Science , Shandong University , 44 West Wenhua Road , Jinan 250012 , Shandong , P. R. China
| | - Qicai Xiao
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| | - Pan Wang
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| | - Albert Wingnang Leung
- Division of Chinese Medicine, School of Professional and Continuing Education , The University of Hong Kong , Hong Kong , P. R. China
| | - Yuxia Luan
- School of Pharmaceutical Science , Shandong University , 44 West Wenhua Road , Jinan 250012 , Shandong , P. R. China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| |
Collapse
|
20
|
Shevtsov M, Nikolaev B, Marchenko Y, Yakovleva L, Skvortsov N, Mazur A, Tolstoy P, Ryzhov V, Multhoff G. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs). Int J Nanomedicine 2018; 13:1471-1482. [PMID: 29559776 PMCID: PMC5856030 DOI: 10.2147/ijn.s152461] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Glioblastoma is the most devastating primary brain tumor of the central nervous system in adults. Magnetic nanocarriers may help not only for a targeted delivery of chemotherapeutic agents into the tumor site but also provide contrast enhancing properties for diagnostics using magnetic resonance imaging (MRI). Methods Synthesized hybrid chitosan-dextran superparamagnetic nanoparticles (CS-DX-SPIONs) were characterized using transmission electron microscopy (TEM) and relaxometry studies. Nonlinear magnetic response measurements were employed for confirming the superparamagnetic state of particles. Following in vitro analysis of nanoparticles cellular uptake tumor targeting was assessed in the model of the orthotopic glioma in rodents. Results CS-DX-SPIONs nanoparticles showed a uniform diameter of 55 nm under TEM and superparamagentic characteristics as determined by T1 (spin-lattice relaxation time) and T2 (spin-spin relaxation time) proton relaxation times. Application of the chitosan increased the charge from +8.9 to +19.3 mV of the dextran-based SPIONs. The nonlinear magnetic response at second harmonic of CS-DX-SPIONs following the slow change of stationary magnetic fields with very low hysteresis evidenced superparamagnetic state of particles at ambient temperatures. Confocal microscopy and flow cytometry studies showed an enhanced internalization of the chitosan-based nanoparticles in U87, C6 glioma and HeLa cells as compared to dextran-coated particles. Cytotoxicity assay demonstrated acceptable toxicity profile of the synthesized nanoparticles up to a concentration of 10 μg/ml. Intravenously administered CS-DX-SPIONs in orthotopic C6 gliomas in rats accumulated in the tumor site as shown by high-resolution MRI (11.0 T). Retention of nanoparticles resulted in a significant contrast enhancement of the tumor image that was accompanied with a dramatic drop in T2 values (P<0.001). Subsequent histological studies proved the accumulation of the nanoparticles inside glioblastoma cells. Conclusion Hybrid chitosan-dextran magnetic particles demonstrated high MR contrast enhancing properties for the delineation of the brain tumor. Due to a significant retention of the particles in the tumor an application of the CS-DX-SPIONs could not only improve the tumor imaging but also could allow a targeted delivery of chemotherapeutic agents.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Department of Cell Biotechnology, Institute of Cytology of the Russian Academy of Sciences, St Petersburg, Russia.,Department of Radiation Immuno Oncology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany.,Department of Biotechnology, Pavlov First Saint Petersburg State Medical University, St Petersburg, Russia.,Department of Pediatric Neurosurgery, Polenov Russian Scientific Research Institute of Neurosurgery, St Petersburg, Russia
| | - Boris Nikolaev
- Department of Nanomedicine, Research Institute of Highly Pure Biopreparations, St Petersburg, Russia
| | - Yaroslav Marchenko
- Department of Nanomedicine, Research Institute of Highly Pure Biopreparations, St Petersburg, Russia
| | - Ludmila Yakovleva
- Department of Nanomedicine, Research Institute of Highly Pure Biopreparations, St Petersburg, Russia
| | - Nikita Skvortsov
- Department of Nanomedicine, Research Institute of Highly Pure Biopreparations, St Petersburg, Russia
| | - Anton Mazur
- Department of NMR, Saint Petersburg State University, St Petersburg, Russia
| | - Peter Tolstoy
- Department of NMR, Saint Petersburg State University, St Petersburg, Russia
| | - Vyacheslav Ryzhov
- Department of NMR, NRC "Kurchatov Institute", Petersburg Nuclear Physics Institute, Gatchina, Russia
| | - Gabriele Multhoff
- Department of Radiation Immuno Oncology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
21
|
Lu H, Stenzel MH. Multicellular Tumor Spheroids (MCTS) as a 3D In Vitro Evaluation Tool of Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702858. [PMID: 29450963 DOI: 10.1002/smll.201702858] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/13/2017] [Indexed: 05/23/2023]
Abstract
Multicellular tumor spheroid models (MCTS) are often coined as 3D in vitro models that can mimic the microenvironment of tissues. MCTS have gained increasing interest in the nano-biotechnology field as they can provide easily accessible information on the performance of nanoparticles without using animal models. Considering that many countries have put restrictions on animals testing, which will only tighten in the future as seen by the recent developments in the Netherlands, 3D models will become an even more valuable tool. Here, an overview on MCTS is provided, focusing on their use in cancer research as most nanoparticles are tested in MCTS for treatment of primary tumors. Thereafter, various types of nanoparticles-from self-assembled block copolymers to inorganic nanoparticles, are discussed. A range of physicochemical parameters including the size, shape, surface chemistry, ligands attachment, stability, and stiffness are found to influence nanoparticles in MCTS. Some of these studies are complemented by animal studies confirming that lessons from MCTS can in part predict the behaviour in vivo. In summary, MCTS are suitable models to gain additional information on nanoparticles. While not being able to replace in vivo studies, they can bridge the gap between traditional 2D in vitro studies and in vivo models.
Collapse
Affiliation(s)
- Hongxu Lu
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
22
|
Caponegro MD, Miyauchi JT, Tsirka SE. Contributions of immune cell populations in the maintenance, progression, and therapeutic modalities of glioma. AIMS ALLERGY AND IMMUNOLOGY 2018; 2:24-44. [PMID: 32914058 PMCID: PMC7480949 DOI: 10.3934/allergy.2018.1.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Immunotherapies are becoming a promising strategy for malignant disease. Selectively directing host immune responses to target cancerous tissue is a milestone of human health care. The roles of the innate and adaptive immune systems in both cancer progression and elimination are now being realized. Defining the immune cell environment and identifying the contributions of each sub-population of these cells has lead to an understanding of the immunotherapeutic processes, and demonstrated the potential of the immune system to drive cancer shrinkage and sustained immunity against disease. Poorly treated diseases, such as high-grade glioma, suffer from lack of therapeutic efficacy and rapid progression. Immunotherapeutic success in other solid malignancies, such as melanoma, now provides the principals for which this treatment paradigm can be adapted for primary brain cancers. The central nervous system is complex, and relative contributions of immune sub-populations to high grade glioma progression are not fully characterized. Here, we summarize recent research in both animal and humans which add to the knowledge base of how innate and adaptive immune cells contribute to glioma progression, and outline work which has demonstrated their potential to elicit anti-tumorigenic responses. Additionally, we highlight Neuropilin 1, a cell surface receptor protein, describe its signaling functions in the context of immunity, and point to its potential to slow glioma progression.
Collapse
Affiliation(s)
- Michael D Caponegro
- Department of Pharmacological Sciences, BioMedical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Jeremy Tetsuo Miyauchi
- Department of Pharmacological Sciences, BioMedical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Stella E Tsirka
- Department of Pharmacological Sciences, BioMedical Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
23
|
Razpotnik R, Novak N, Čurin Šerbec V, Rajcevic U. Targeting Malignant Brain Tumors with Antibodies. Front Immunol 2017; 8:1181. [PMID: 28993773 PMCID: PMC5622144 DOI: 10.3389/fimmu.2017.01181] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB) makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs), and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv) with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT). Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs) are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs) and neural stem cells (NSCs) show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts), are making their way into glioma treatment as another type of cell-based therapy using the antibody to bind to the specific target(s). Finally, the current clinical trials are reviewed, showing the most recent progress of attractive approaches to deliver therapeutic antibodies across the BBB aiming at the specific antigen.
Collapse
Affiliation(s)
- Rok Razpotnik
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Neža Novak
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Vladka Čurin Šerbec
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Uros Rajcevic
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
24
|
van den Brand D, Massuger LF, Brock R, Verdurmen WPR. Mimicking Tumors: Toward More Predictive In Vitro Models for Peptide- and Protein-Conjugated Drugs. Bioconjug Chem 2017; 28:846-856. [PMID: 28122451 PMCID: PMC5355905 DOI: 10.1021/acs.bioconjchem.6b00699] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macromolecular drug candidates and nanoparticles are typically tested in 2D cancer cell culture models, which are often directly followed by in vivo animal studies. The majority of these drug candidates, however, fail in vivo. In contrast to classical small-molecule drugs, multiple barriers exist for these larger molecules that two-dimensional approaches do not recapitulate. In order to provide better mechanistic insights into the parameters controlling success and failure and due to changing ethical perspectives on animal studies, there is a growing need for in vitro models with higher physiological relevance. This need is reflected by an increased interest in 3D tumor models, which during the past decade have evolved from relatively simple tumor cell aggregates to more complex models that incorporate additional tumor characteristics as well as patient-derived material. This review will address tissue culture models that implement critical features of the physiological tumor context such as 3D structure, extracellular matrix, interstitial flow, vascular extravasation, and the use of patient material. We will focus on specific examples, relating to peptide-and protein-conjugated drugs and other nanoparticles, and discuss the added value and limitations of the respective approaches.
Collapse
Affiliation(s)
- Dirk van den Brand
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center , Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.,Department of Obstetrics and Gynaecology, Radboud University Medical Center , Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Leon F Massuger
- Department of Obstetrics and Gynaecology, Radboud University Medical Center , Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center , Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Wouter P R Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center , Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|