1
|
Greco G, Sarpietro MG. Liposome-Assisted Drug Delivery in the Treatment of Multiple Sclerosis. Molecules 2024; 29:4689. [PMID: 39407617 PMCID: PMC11477494 DOI: 10.3390/molecules29194689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the nervous system that leads to neurological dysfunctions and severe disabilities. It is worth noting that conventional pharmacotherapy is poorly selective and causes toxicity problems and several systemic side effects. Thus, there is a need to develop new approaches to this medical challenge. The use of nanocarriers for drug delivery represents a good strategy to overcome several issues such as high therapeutic drug doses with side effects, such as diarrhea, nausea, and abdominal pain, and drug degradation processes; in addition, nanocarriers can provide controlled and targeted drug release. This review describes the application of liposomes for the delivery of pharmaceutical actives to target MS. Firstly, MS is explained. Then, liposomes are described along with their preparation, characterization, and stability. The literature about the use of liposomes for the treatment of MS is then analyzed.
Collapse
Affiliation(s)
- Giuliana Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Maria Grazia Sarpietro
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
2
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Atia HA, Shahien MM, Ibrahim S, Ahmed EH, Elariny HA, Abdallah MH. Plant-Based Nanovesicular Gel Formulations Applied to Skin for Ameliorating the Anti-Inflammatory Efficiency. Gels 2024; 10:525. [PMID: 39195054 DOI: 10.3390/gels10080525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Inflammation is a vascular response that occurs when the immune system responds to a range of stimuli including viruses, allergens, damaged cells, and toxic substances. Inflammation is accompanied by redness, heat, swelling, discomfort, and loss of function. Natural products have been shown to have considerable therapeutic benefits, and they are increasingly being regarded as feasible alternatives for clinical preventative, diagnostic, and treatment techniques. Natural products, in contrast to developed medications, not only contain a wide variety of structures, they also display a wide range of biological activities against a variety of disease states and molecular targets. This makes natural products appealing for development in the field of medicine. In spite of the progress that has been made in the application of natural products for clinical reasons, there are still factors that prevent them from reaching their full potential, including poor solubility and stability, as well limited efficacy and bioavailability. In order to address these problems, transdermal nanovesicular gel systems have emerged as a viable way to overcome the hurdles that are encountered in the therapeutic use of natural products. These systems have a number of significant advantages, including the ability to provide sustained and controlled release, a large specific surface area, improved solubility, stability, increased targeting capabilities and therapeutic effectiveness. Further data confirming the efficacy and safety of nanovesicles-gel systems in delivering natural products in preclinical models has been supplied by extensive investigations conducted both in vitro and in vivo. This study provides a summary of previous research as well as the development of novel nanovesicular gel formulations and their application through the skin with a particular emphasis on natural products used for treatment of inflammation.
Collapse
Affiliation(s)
- Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Mona M Shahien
- Department of Pediatrics, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Somaia Ibrahim
- Department of Pediatrics, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Marwa H Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
4
|
Dessai A, Nayak UY, Nayak Y. Precision nanomedicine to treat non-small cell lung cancer. Life Sci 2024; 346:122614. [PMID: 38604287 DOI: 10.1016/j.lfs.2024.122614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Lung cancer is a major cause of death worldwide, being often detected at a later stage due to the non-appearance of early symptoms. Therefore, specificity of the treatment is of utmost importance for its effective treatment. Precision medicine is a personalized therapy based on the genomics of the patient to design a suitable drug approach. Genetic mutations render the tumor resistant to specific mutations and the therapy is in vain even though correct medications are prescribed. Therefore, Precision medicine needs to be explored for the treatment of Non-small cell lung cancer (NSCLC). Nanoparticles are widely explored to give personalized interventions to treat lung cancer due to their various advantages like the ability to reach cancer cells, enhanced permeation through tissues, specificity, increased bioavailability, etc. Various nanoparticles (NPs) including gold nanoparticles, carbon nanotubes, aptamer-based NPs etc. were conjugated with biomarkers/diagnostic agents specific to cancer type and were delivered. Various biomarker genes have been identified through precision techniques for the diagnosis and treatment of NSCLC like EGFR, RET, KRAS, ALK, ROS-1, NTRK-1, etc. By incorporating of drug with the nanoparticle through bioconjugation, the specificity of the treatment can be enhanced with this revolutionary treatment. Additionally, integration of theranostic cargos in the nanoparticle would allow diagnosis as well as treatment by targeting the site of disease progression. Therefore, to target NSCLC effectively precision nanomedicine has been adopted in recent times. Here, we present different nanoparticles that are used as precision nanomedicine and their effectiveness against NSCLC disease.
Collapse
Affiliation(s)
- Akanksha Dessai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
5
|
Zorba BI, Boyacıoğlu Ö, Çağlayan T, Reçber T, Nemutlu E, Eroğlu İ, Korkusuz P. CB65 and novel CB65 liposomal system suppress MG63 and Saos-2 osteosarcoma cell growth in vitro. J Liposome Res 2024; 34:274-287. [PMID: 37740901 DOI: 10.1080/08982104.2023.2262025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
Curable approaches for primary osteosarcoma are inadequate and urge investigation of novel therapeutic formulations. Cannabinoid ligands exert antiproliferative and apoptotic effect on osteosarcoma cells via cannabinoid 2 (CB2) or transient receptor potential vanilloid type (TRPV1) receptors. In this study, we confirmed CB2 receptor expression in MG63 and Saos-2 osteosarcoma cells by qRT-PCR and flow cytometry (FCM), then reported the reduction effect of synthetic specific CB2 receptor agonist CB65 on the proliferation of osteosarcoma cells by WST-1 (water-soluble tetrazolium-1) and RTCA (real-time impedance-based proliferation). CB65 revealed an IC50 (inhibitory concentration) for MG63 and Saos-2 cells as 1.11 × 10-11 and 4.95 × 10-11 M, respectively. The specific antiproliferative effect of CB65 on osteosarcoma cells was inhibited by CB2 antagonist AM630. CB65 induced late apoptosis of MG63 and Saos-2 cells at 24 and 48 h, respectively by FCM when applied submaximal concentration. A novel CB65 liposomal system was generated by a thin film hydration method with optimal particle size (141.7 ± 0.6 nm), polydispersity index (0.451 ± 0.026), and zeta potential (-10.9 ± 0.3 mV) values. The encapsulation efficiency (EE%) of the CB65-loaded liposomal formulation was 51.12%. The CB65 and CB65-loaded liposomal formulation releasing IC50 of CB65 reduced proliferation by RTCA and invasion by scratch assay and induced late apoptosis of MG63 and Saos-2 cells, by FCM. Our results demonstrate the CB2 receptor-mediated antiproliferative and apoptotic effect of a new liposomal CB65 delivery system on osteosarcoma cells that can be used as a targeted and intelligent tool for bone tumors to ameliorate pediatric bone cancers following in vivo validation.
Collapse
Affiliation(s)
- Başak Işıl Zorba
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Özge Boyacıoğlu
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Medical Biochemistry, Atılım University, Ankara, Turkey
| | - Tuğba Çağlayan
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Tuba Reçber
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey
| | - İpek Eroğlu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
G Popova P, Chen SP, Liao S, Sadarangani M, Blakney AK. Clinical perspective on topical vaccination strategies. Adv Drug Deliv Rev 2024; 208:115292. [PMID: 38522725 DOI: 10.1016/j.addr.2024.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Vaccination is one of the most successful measures in modern medicine to combat diseases, especially infectious diseases, and saves millions of lives every year. Vaccine design and development remains critical and involves many aspects, including the choice of platform, antigen, adjuvant, and route of administration. Topical vaccination, defined herein as the introduction of a vaccine to any of the three layers of the human skin, has attracted interest in recent years as an alternative vaccination approach to the conventional intramuscular administration because of its potential to be needle-free and induce a superior immune response against pathogens. In this review, we describe recent progress in developing topical vaccines, highlight progress in the development of delivery technologies for topical vaccines, discuss potential factors that might impact the topical vaccine efficacy, and provide an overview of the current clinical landscape of topical vaccines.
Collapse
Affiliation(s)
- Petya G Popova
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sunny P Chen
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Suiyang Liao
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pediatrics, University of British Columbia, 4480 Oak St, Vancouver, BC V6H 0B3, Canada
| | - Anna K Blakney
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
7
|
Wang H, Song M, Xu J, Liu Z, Peng M, Qin H, Wang S, Wang Z, Liu K. Long-Acting Strategies for Antibody Drugs: Structural Modification, Controlling Release, and Changing the Administration Route. Eur J Drug Metab Pharmacokinet 2024; 49:295-316. [PMID: 38635015 DOI: 10.1007/s13318-024-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Because of their high specificity, high affinity, and targeting, antibody drugs have been widely used in the treatment of many diseases and have become the most favored new drugs for research in the world. However, some antibody drugs (such as small-molecule antibody fragments) have a short half-life and need to be administered frequently, and are often associated with injection-site reactions and local toxicities during use. Increasing attention has been paid to the development of antibody drugs that are long-acting and have fewer side effects. This paper reviews existing strategies to achieve long-acting antibody drugs, including modification of the drug structure, the application of drug delivery systems, and changing their administration route. Among these, microspheres have been studied extensively regarding their excellent tolerance at the injection site, controllable loading and release of drugs, and good material safety. Subcutaneous injection is favored by most patients because it can be quickly self-administered. Subcutaneous injection of microspheres is expected to become the focus of developing long-lasting antibody drug strategies in the near future.
Collapse
Affiliation(s)
- Hao Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Mengdi Song
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Jiaqi Xu
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Zhenjing Liu
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Mingyue Peng
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Haoqiang Qin
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Shaoqian Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Ziyang Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Kehai Liu
- College of Food, Shanghai Ocean University, 999 Hucheng Ring Road, Nanhui New Town, Pudong New Area, Shanghai, 201306, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China.
| |
Collapse
|
8
|
Kazancı F, Kılıç MS, Uru ŞK, Aydın RST. A novel nanoliposome model platform mimicking SARS-CoV-2 as a bioreceptor to dissect the amperometric response in biosensor applications. Int J Biol Macromol 2024; 264:130530. [PMID: 38437936 DOI: 10.1016/j.ijbiomac.2024.130530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
In this study, we proposed to investigate the response of an electrochemical-based immunosensor via nanoliposomes carrying the SARS-CoV-2 Spike-S1 protein. In this regard, we prepared RNA encapsulated nanoliposome functionalized with a specific SARS-CoV-2 Spike-S1 protein as a SARS-CoV-2 model. Then, this new nanoliposome mimicking SARS-CoV-2 was used as the bio-recognizing agent of an immunosensor developed to detect the SARS-CoV-2 within the scope of the study. The working electrode of the immunosensor was coated with chitosan polymer, decorated with SARS-CoV-2 Spike antibody, to achieve antibody-antigen matching on the electrode surface. SARS-CoV-2 mimicking nanoliposomes at various concentrations was used to achieve an amperometric response and the analytical parameters of the sensor were calculated from the relationship between the immunosensor's current values depending on the number of these matches with regard to varying antigen concentrations. Linear measurement range, LOD and measurement sensitivity were calculated as 53 pM-8 nM, 3.79 pM and 55.47 μA nM-1 cm-2, respectively. The standard deviation of the same measurements in the developed immunosensor was 0.33 %.
Collapse
Affiliation(s)
- Füsun Kazancı
- Department of Nanotechnology Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey
| | - M Samet Kılıç
- Department of Biomedical Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey
| | - Şeyda Korkut Uru
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey
| | - R Seda Tığlı Aydın
- Department of Nanotechnology Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey; Department of Biomedical Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey.
| |
Collapse
|
9
|
Hajimolaali M, Dorkoosh FA, Antimisiaris SG. Review of recent preclinical and clinical research on ligand-targeted liposomes as delivery systems in triple negative breast cancer therapy. J Liposome Res 2024:1-26. [PMID: 38520185 DOI: 10.1080/08982104.2024.2325963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Triple-negative breast Cancer (TNBC) is one of the deadliest types, making up about 20% of all breast cancers. Chemotherapy is the traditional manner of progressed TNBC treatment; however, it has a short-term result with a high reversibility pace. The lack of targeted treatment limited and person-dependent treatment options for those suffering from TNBC cautions to be the worst type of cancer among breast cancer patients. Consequently, appropriate treatment for this disease is considered a major clinical challenge. Therefore, various treatment methods have been developed to treat TNBC, among which chemotherapy is the most common and well-known approach recently studied. Although effective methods are chemotherapies, they are often accompanied by critical limitations, especially the lack of specific functionality. These methods lead to systematic toxicity and, ultimately, the expansion of multidrug-resistant (MDR) cancer cells. Therefore, finding novel and efficient techniques to enhance the targeting of TNBC treatment is an essential requirement. Liposomes have demonstrated that they are an effective method for drug delivery; however, among a large number of liposome-based drug delivery systems annually developed, a small number have just received authorization for clinical application. The new approaches to using liposomes target their structure with various ligands to increase therapeutic efficiency and diminish undesired side effects on various body tissues. The current study describes the most recent strategies and research associated with functionalizing the liposomes' structure with different ligands as targeted drug carriers in treating TNBCs in preclinical and clinical stages.
Collapse
Affiliation(s)
- Mohammad Hajimolaali
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Sophia G Antimisiaris
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
- Institute of Chemical Engineering, Foundation for Research and Technology Hellas, FORTH/ICEHT, Patras, Greece
| |
Collapse
|
10
|
Ashby G, Keng KE, Hayden CC, Stachowiak JC. A live cell imaging-based assay for tracking particle uptake by clathrin-mediated endocytosis. Methods Enzymol 2024; 700:413-454. [PMID: 38971609 DOI: 10.1016/bs.mie.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
A popular strategy for therapeutic delivery to cells and tissues is to encapsulate therapeutics inside particles that cells internalize via endocytosis. The efficacy of particle uptake by endocytosis is often studied in bulk using flow cytometry and Western blot analysis and confirmed using confocal microscopy. However, these techniques do not reveal the detailed dynamics of particle internalization and how the inherent heterogeneity of many types of particles may impact their endocytic uptake. Toward addressing these gaps, here we present a live-cell imaging-based method that utilizes total internal reflection fluorescence microscopy to track the uptake of a large ensemble of individual particles in parallel, as they interact with the cellular endocytic machinery. To analyze the resulting data, we employ an open-source tracking algorithm in combination with custom data filters. This analysis reveals the dynamic interactions between particles and endocytic structures, which determine the probability of particle uptake. In particular, our approach can be used to examine how variations in the physical properties of particles (size, targeting, rigidity), as well as heterogeneity within the particle population, impact endocytic uptake. These data impact the design of particles toward more selective and efficient delivery of therapeutics to cells.
Collapse
Affiliation(s)
- Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Kayla E Keng
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Carl C Hayden
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin; Department of Chemical Engineering, The University of Texas at Austin.
| |
Collapse
|
11
|
Sesarman A, Luput L, Rauca VF, Patras L, Licarete E, Meszaros MS, Dume BR, Negrea G, Toma VA, Muntean D, Porfire A, Banciu M. Targeting of M2 macrophages with IL-13-functionalized liposomal prednisolone inhibits melanoma angiogenesis in vivo. J Liposome Res 2024:1-12. [PMID: 38379249 DOI: 10.1080/08982104.2024.2315452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The intricate cooperation between cancer cells and nontumor stromal cells within melanoma microenvironment (MME) enables tumor progression and metastasis. We previously demonstrated that the interplay between tumor-associated macrophages (TAMs) and melanoma cells can be disrupted by using long-circulating liposomes (LCLs) encapsulating prednisolone phosphate (PLP) (LCL-PLP) that inhibited tumor angiogenesis coordinated by TAMs. In this study, our goal was to improve LCL specificity for protumor macrophages (M2-like (i.e., TAMs) macrophages) and to induce a more precise accumulation at tumor site by loading PLP into IL-13-conjugated liposomes (IL-13-LCL-PLP), since IL-13 receptor is overexpressed in this type of macrophages. The IL-13-LCL-PLP liposomal formulation was obtained by covalent attachment of thiolated IL-13 to maleimide-functionalized LCL-PLP. C57BL/6 mice bearing B16.F10 s.c melanoma tumors were used to investigate the antitumor action of LCL-PLP and IL-13-LCL-PLP. Our results showed that IL-13-LCL-PLP formulation remained stable in biological fluids after 24h and it was preferentially taken up by M2 polarized macrophages. IL-13-LCL-PLP induced strong tumor growth inhibition compared to nonfunctionalized LCL-PLP at the same dose, by altering TAMs-mediated angiogenesis and oxidative stress, limiting resistance to apoptosis and invasive features in MME. These findings suggest IL-13-LCL-PLP might become a promising delivery platform for chemotherapeutic agents in melanoma.
Collapse
Affiliation(s)
- Alina Sesarman
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lavinia Luput
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Valentin-Florian Rauca
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Patras
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences of Babes-Bolyai University, Cluj-Napoca, Romania
| | - Marta-Szilvia Meszaros
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Bogdan Razvan Dume
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Giorgiana Negrea
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Experimental Biology and Biochemistry, nstitute of Biological Research, branch of NIRDBS Bucharest, Cluj-Napoca, Romania
| | - Dana Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Goleij P, Sanaye PM, Rezaee A, Tabari MAK, Arefnezhad R, Motedayyen H. RNA therapeutics for kidney injury. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:69-95. [PMID: 38458744 DOI: 10.1016/bs.pmbts.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
RNA therapy involves utilizing RNA-based molecules to control biological pathways, aiming to cure specific diseases. As our understanding of RNA functions and their roles has expanded, the application of RNA therapies has broadened to target various therapeutic points. This approach holds promise for treating a range of diseases, including kidney diseases. Therapeutic RNA can be employed to target specific genes or pathways implicated in the development of kidney conditions, such as inflammation, fibrosis, and oxidative stress. This review highlights the therapeutic potential of RNA-based therapies across different types of kidney diseases, encompassing infection, inflammation, nephrotoxicity, and ischemia/reperfusion injury. Furthermore, studies have pinpointed the specific kidney cells involved in RNA therapy. To address challenges hindering the potential impact of RNA-based drugs on their targets, nanotechnology is integrated, and RNA-loaded vehicles with ligands are explored for more efficient outcomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Jiang Y, Li W, Wang Z, Lu J. Lipid-Based Nanotechnology: Liposome. Pharmaceutics 2023; 16:34. [PMID: 38258045 PMCID: PMC10820119 DOI: 10.3390/pharmaceutics16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Over the past several decades, liposomes have been extensively developed and used for various clinical applications such as in pharmaceutical, cosmetic, and dietetic fields, due to its versatility, biocompatibility, and biodegradability, as well as the ability to enhance the therapeutic index of free drugs. However, some challenges remain unsolved, including liposome premature leakage, manufacturing irreproducibility, and limited translation success. This article reviews various aspects of liposomes, including its advantages, major compositions, and common preparation techniques, and discusses present U.S. FDA-approved, clinical, and preclinical liposomal nanotherapeutics for treating and preventing a variety of human diseases. In addition, we summarize the significance of and challenges in liposome-enabled nanotherapeutic development and hope it provides the fundamental knowledge and concepts about liposomes and their applications and contributions in contemporary pharmaceutical advancement.
Collapse
Affiliation(s)
- Yanhao Jiang
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Wenpan Li
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Zhiren Wang
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Jianqin Lu
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
- Clinical and Translational Oncology Program, NCI-Designated University of Arizona Comprehensive Cancer Center, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
14
|
Wen X, Xi K, Tang Y, Bian J, Qin Y, Xiao W, Pan T, Cheng X, Ge Z, Cui W. Immunized Microspheres Engineered Hydrogel Membrane for Reprogramming Macrophage and Mucosal Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207030. [PMID: 36604983 DOI: 10.1002/smll.202207030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The "double-edged sword" effect of macrophages under the influence of different microenvironments determines the outcome and prognosis of tissue injury. Accurate and stable reprogramming macrophages (Mφ) are the key to rapid wound healing. In this study, an immunized microsphere-engineered GelMA hydrogel membrane is constructed for oral mucosa treatment. The nanoporous poly(lactide-co-glycolide) (PLGA) microsphere drug delivery system combined with the photo-cross-linkable hydrogel is used to release the soybean lecithin (SL)and IL-4 complexes (SL/IL-4) sustainedly. In this way, it is realized effective wound fit, improvement of drug encapsulation, and stable triphasic release of interleukin-4 (IL-4). In both in vivo and in vitro experiments, it is demonstrated that the hydrogel membrane can reprogram macrophages in the microenvironment into M2Mφ anti-inflammatory types, thereby inhibiting the local excessive inflammatory response. Meanwhile, high levels of platelet-derived growth factor (PDGF) secreted by M2Mφ macrophages enhanced neovascular maturation by 5.7-fold, which assisted in achieving rapid healing of oral mucosa. These findings suggest that the immuno-engineered hydrogel membrane system can re-modulating the biological effects of Mφ, and potentiating the maturation of neovascularization, ultimately achieving the rapid repair of mucosal tissue. This new strategy is expected to be a safe and promising immunomodulatory biomimetic material for clinical translation.
Collapse
Affiliation(s)
- Xiao Wen
- Department of Stomatology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Kun Xi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yu Tang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Jie Bian
- Department of Stomatology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yu Qin
- Department of Stomatology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wanshu Xiao
- Department of Stomatology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Tingzheng Pan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Xiaoming Cheng
- Department of Stomatology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Zili Ge
- Department of Stomatology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
15
|
Al-Hetty HRAK, Kadhim MS, Al-Tamimi JHZ, Ahmed NM, Jalil AT, Saleh MM, Kandeel M, Abbas RH. Implications of biomimetic nanocarriers in targeted drug delivery. EMERGENT MATERIALS 2023; 6:1-13. [PMID: 36686331 PMCID: PMC9846706 DOI: 10.1007/s42247-023-00453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Nanomaterials and nanostructures have shown fascinating performances in various biomedicine fields, from cosmetic to cancer diagnosis and therapy. Engineered nanomaterials can encapsulate both lipophilic and hydrophilic substances/drugs to eliminate their limitations in the free forms, such as low bioavailability, multiple drug administration, off-target effects, and various side effects. Moreover, it is possible to deliver the loaded cargo to the desired site of action using engineered nanomaterials. One approach that has made nanocarriers more sophisticated is the "biomimetic" concept. In this scenario, biomolecules (e.g., natural proteins, peptides, phospholipids, cell membranes) are used as building blocks to construct nanocarriers and/or modify agents. For instance, it has been reported that specific cells tend to migrate to a particular site during specific circumstances (e.g., inflammation, tumor formation). Employing the cell membrane of these cells as a coating for nanocarriers confers practical targeting approaches. Accordingly, we introduce the biomimetic concept in the current study, review the recent studies, challenge the issues, and provide practical solutions.
Collapse
Affiliation(s)
| | - Maitha Sameer Kadhim
- Department of Prevention Dentistry, Al-Rafidain University College, Baghdad, Iraq
| | | | - Nahid Mahmood Ahmed
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001 Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, 31982 Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, 33516 Egypt
| | - Ruaa H. Abbas
- Communication Technical Engineering, Collage of Technical Engineering, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
16
|
The potential of RNA-based therapy for kidney diseases. Pediatr Nephrol 2023; 38:327-344. [PMID: 35507149 PMCID: PMC9066145 DOI: 10.1007/s00467-021-05352-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/10/2023]
Abstract
Inherited kidney diseases (IKDs) are a large group of disorders affecting different nephron segments, many of which progress towards kidney failure due to the absence of curative therapies. With the current advances in genetic testing, the understanding of the molecular basis and pathophysiology of these disorders is increasing and reveals new potential therapeutic targets. RNA has revolutionized the world of molecular therapy and RNA-based therapeutics have started to emerge in the kidney field. To apply these therapies for inherited kidney disorders, several aspects require attention. First, the mRNA must be combined with a delivery vehicle that protects the oligonucleotides from degradation in the blood stream. Several types of delivery vehicles have been investigated, including lipid-based, peptide-based, and polymer-based ones. Currently, lipid nanoparticles are the most frequently used formulation for systemic siRNA and mRNA delivery. Second, while the glomerulus and tubules can be reached by charge- and/or size-selectivity, delivery vehicles can also be equipped with antibodies, antibody fragments, targeting peptides, carbohydrates or small molecules to actively target receptors on the proximal tubule epithelial cells, podocytes, mesangial cells or the glomerular endothelium. Furthermore, local injection strategies can circumvent the sequestration of RNA formulations in the liver and physical triggers can also enhance kidney-specific uptake. In this review, we provide an overview of current and potential future RNA-based therapies and targeting strategies that are in development for kidney diseases, with particular interest in inherited kidney disorders.
Collapse
|
17
|
de Freitas JVB, Reis AVF, Silva ADO, de Sousa ACC, Martins JRP, Nogueira KAB, da Silva Moreira T, Petrilli R, Eloy JO. Monoclonal Antibodies in Nanosystems as a Strategy for Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
18
|
Recent developments of nanomedicine delivery systems for the treatment of pancreatic cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Wu X, Wei Z, Feng H, Chen H, Xie J, Huang Y, Wang M, Yao C, Huang J. Targeting Effect of Betulinic Acid Liposome Modified by Hyaluronic Acid on Hepatoma Cells In Vitro. J Pharm Sci 2022; 111:3047-3053. [PMID: 35779664 DOI: 10.1016/j.xphs.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022]
Abstract
Betulinic acid (BA) is a natural pentacyclic triterpenoid with broad-spectrum anticancer activity, which has great development potential as an anti-cancer drug. In this study, a novel hyaluronic acid (HA)-modified BA liposome (BA-L) was developed for use in targeted liver cancer therapy. The size, polymer dispersity index (PDI), zeta potential, and entrapment efficiency were measured. Cell viability, cell migration and clonogenicity, cellular uptake, immunohistochemistry of CD44, and protein expression of ROCK1/IP3/RAS were also investigated. BA, BA-L, and HA-BA-L had no inhibitory effect on the activity of LO2 normal hepatocytes, but they inhibited the proliferation of HepG2 and SMMC-7721 cells in a dose- and time-dependent manner, with HA-BA-L exhibiting the most prominent inhibitory effect. Compared with the BA-L group, the expression of CD44 in HepG2 cells in the HA-BA-L group was decreased. The results of WB showed that BA, BA-L, and HA-BA-L downregulated the expression of ROCK1, IP3, and RAS in HepG2 cells, and the expression level in the HA-BA-L group was significantly decreased. The easily prepared HA-BA-L was demonstrated to be an excellent CD44-mediated intracellular delivery system capable of targeting effects. Further mechanistic research revealed that the inhibition of HA-BA-L on HepG2 cells may be mediated by blocking the ROCK1/IP3/RAS signaling pathways.
Collapse
Affiliation(s)
- Xiaomei Wu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Zhumei Wei
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Hui Feng
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Hongli Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Jiaxiu Xie
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Yupeng Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Mengyao Wang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Chanjuan Yao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Jianchun Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| |
Collapse
|
20
|
Kesharwani P, Kumari K, Gururani R, Jain S, Sharma S. Approaches to Address PK-PD Challenges of Conventional Liposome Formulation with Special Reference to Cancer, Alzheimer's, Diabetes, and Glaucoma: An Update on Modified Liposomal Drug Delivery System. Curr Drug Metab 2022; 23:678-692. [PMID: 35692131 DOI: 10.2174/1389200223666220609141459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/03/2022] [Accepted: 03/31/2022] [Indexed: 01/05/2023]
Abstract
Liposomes nowadays have become a preferential drug delivery system since they provide facilitating properties to drugs, such as improved therapeutic index of encapsulated drug, target and controlled drug delivery, and less toxicity. However, conventional liposomes have shown some disadvantages, such as less drug loading capacity, poor retention, clearance by kidney or reticuloendothelial system, and less release of hydrophilic drugs. Thus, to overcome these disadvantages recently, scientists have explored new approaches and methods, viz., ligand conjugation, polymer coating, and liposome hybrids, including surface-modified liposomes, biopolymer-incorporated liposomes, guest-in-cyclodextrin-in-liposome, liposome-in-hydrogel, liposome-in-film, liposome-in-nanofiber, etc. These approaches have been shown to improve the physiochemical and pharmacokinetic properties of encapsulated drugs. Lately, pharmacokinetic-pharmacodynamic (PK-PD) computational modeling has emerged as a beneficial tool for analyzing the impact of formulation and system-specific factors on the target disposition and therapeutic efficacy of liposomal drugs. There has been an increasing number of liposome-based therapeutic drugs, both FDA approved and those undergoing clinical trials, having application in cancer, Alzheimer's, diabetes, and glaucoma. To meet the continuous demand of health sectors and to produce the desired product, it is important to perform pharmacokinetic studies. This review focuses on the physical, physicochemical, and chemical factors of drugs that influence the target delivery of drugs. It also explains various physiological barriers, such as systemic clearance and extravasation. A novel approach, liposomal-hybrid complex, an innovative approach as a vesicular drug delivery system to overcome limited membrane permeability and bioavailability, has been discussed in the review. Moreover, this review highlights the pharmacokinetic considerations and challenges of poorly absorbed drugs along with the applications of a liposomal delivery system in improving PKPD in various diseases, such as cancer, Alzheimer's, diabetes, and glaucoma.
Collapse
Affiliation(s)
- Payal Kesharwani
- Department of Pharmacy, Banasthali Vidyapith University, Banasthali, P.O. Rajasthan, India
| | - Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith University, Banasthali, P.O. Rajasthan, India
| | - Ritika Gururani
- Department of Pharmacy, Banasthali Vidyapith University, Banasthali, P.O. Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith University, Banasthali, P.O. Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith University, Banasthali, P.O. Rajasthan, India
| |
Collapse
|
21
|
Tang H, Xie Y, Zhu M, Jia J, Liu R, Shen Y, Zheng Y, Guo X, Miao D, Pei J. Estrone-Conjugated PEGylated Liposome Co-Loaded Paclitaxel and Carboplatin Improve Anti-Tumor Efficacy in Ovarian Cancer and Reduce Acute Toxicity of Chemo-Drugs. Int J Nanomedicine 2022; 17:3013-3041. [PMID: 35836838 PMCID: PMC9274295 DOI: 10.2147/ijn.s362263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/27/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose Ovarian cancer is the most lethal gynecologic malignancy. The combination of paclitaxel (PTX) and carboplatin (CBP) is the first-line remedy for clinical ovarian cancer. However, due to the limitations of adverse reaction and lacking of targeting ability, the chemotherapy of ovarian cancer is still poorly effective. Here, a novel estrone (ES)-conjugated PEGylated liposome co-loaded PTX and CBP (ES-PEG-Lip-PTX/CBP) was designed for overcoming the above disadvantages. Methods ES-PEG-Lip-PTX/CBP was prepared by film hydration method and could recognize estrogen receptor (ER) over-expressing on the surface of SKOV-3 cells. The characterizations, stability and in vitro release of ES-PEG-Lip-PTX/CBP were studied. In vitro cellular uptake and its mechanism were observed by fluorescence microscope. In vivo targeting effect in tumor-bearing mice was determined. Pharmacokinetics and biodistribution were studied in ICR mice. In vitro cytotoxicity and in vivo anti-tumor efficacy were evaluated on SKOV-3 cells and tumor-bearing mice, respectively. Finally, the acute toxicity in ICR mice was explored for assessing the preliminary safety of ES-PEG-Lip-PTX/CBP. Results Our results showed that ES-PEG-Lip-PTX/CBP was spherical shape without aggregation. ES-PEG-Lip-PTX/CBP exhibited the optimum targeting effect on uptake in vitro and in vivo. The pharmacokinetics demonstrated ES-PEG-Lip-PTX/CBP had improved the pharmacokinetic behavior. In vitro cytotoxicity showed that ES-PEG-Lip-PTX/CBP maximally inhibited SKOV-3 cell proliferation and its IC50 values was 1.6 times lower than that of non-ES conjugated liposomes at 72 h. The in vivo anti-tumor efficacy study demonstrated that ES-PEG-Lip-PTX/CBP could lead strong SKOV-3 tumor growth suppression with a tumor volume inhibitory rate of 81.8%. Meanwhile, acute toxicity studies confirmed that ES-PEG-Lip-PTX/CBP significantly reduced the toxicity of the chemo drugs. Conclusion ES-PEG-Lip-PTX/CBP was successfully prepared with an optimal physicochemical and ER targeting property. The data of pharmacokinetics, anti-tumor efficacy and safety study indicated that ES-PEG-Lip-PTX/CBP could become a promising therapeutic formulation for human ovarian cancer in the future clinic.
Collapse
Affiliation(s)
- Huan Tang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Yizhuo Xie
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Ming Zhu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Juan Jia
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Rui Liu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Yujia Shen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Yucui Zheng
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Xin Guo
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Dongfanghui Miao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Jin Pei
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
22
|
Formulation and therapeutic efficacy of PEG-liposomes of sorafenib for the production of NL-PEG-SOR FUM and NL-PEG-SOR TOS. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
24
|
Silva J, Spiess R, Marchesi A, Flitsch SL, Gough JE, Webb SJ. Enzymatic elaboration of oxime-linked glycoconjugates in solution and on liposomes. J Mater Chem B 2022; 10:5016-5027. [PMID: 35723603 PMCID: PMC9258907 DOI: 10.1039/d2tb00714b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
Abstract
Oxime formation is a convenient one-step method for ligating reducing sugars to surfaces, producing a mixture of closed ring α- and β-anomers along with open-chain (E)- and (Z)-isomers. Here we show that despite existing as a mixture of isomers, N-acetylglucosamine (GlcNAc) oximes can still be substrates for β(1,4)-galactosyltransferase (β4GalT1). β4GalT1 catalysed the galactosylation of GlcNAc oximes by a galactose donor (UDP-Gal) both in solution and in situ on the surface of liposomes, with conversions up to 60% in solution and ca. 15-20% at the liposome surface. It is proposed that the β-anomer is consumed preferentially but long reaction times allow this isomer to be replenished by equilibration from the remaining isomers. Adding further enzymes gave more complex oligosaccharides, with a combination of α-1,3-fucosyltransferase, β4GalT1 and the corresponding sugar donors providing Lewis X coated liposomes. However, sialylation using T. cruzi trans-sialidase and sialyllactose provided only very small amounts of sialyl Lewis X (sLex) capped lipid. These observations show that combining oxime formation with enzymatic elaboration will be a useful method for the high-throughput surface modification of drug delivery vehicles, such as liposomes, with cell-targeting oligosaccharides.
Collapse
Affiliation(s)
- Joana Silva
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Reynard Spiess
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Andrea Marchesi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Sabine L Flitsch
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Julie E Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| |
Collapse
|
25
|
Skóra B, Piechowiak T, Szychowski KA. Epidermal growth factor-labeled liposomes as a way to target the toxicity of silver nanoparticles into EGFR-overexpressing cancer cells in vitro. Toxicol Appl Pharmacol 2022; 443:116009. [DOI: 10.1016/j.taap.2022.116009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022]
|
26
|
Zoulikha M, He W. Targeted Drug Delivery for Chronic Lymphocytic Leukemia. Pharm Res 2022; 39:441-461. [DOI: 10.1007/s11095-022-03214-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
|
27
|
Kulkarni S, Prabhakar B, Shende P. Stabilization of lipid vesicles: Upcoming strategic insights for product development. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Poustforoosh A, Nematollahi MH, Hashemipour H, Pardakhty A. Recent advances in Bio-conjugated nanocarriers for crossing the Blood-Brain Barrier in (pre-)clinical studies with an emphasis on vesicles. J Control Release 2022; 343:777-797. [DOI: 10.1016/j.jconrel.2022.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
|
29
|
Jara-Quijada E, Pérez-Won M, Tabilo-Munizaga G, González-Cavieres L, Lemus-Mondaca R. An Overview Focusing on Food Liposomes and Their Stability to Electric Fields. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Carvalheiro M, Ferreira-Silva M, Holovanchuk D, Marinho HS, Moreira JN, Soares H, Corvo ML, Cruz MEM. Antagonist G-targeted liposomes for improved delivery of anticancer drugs in small cell lung carcinoma. Int J Pharm 2022; 612:121380. [PMID: 34915142 DOI: 10.1016/j.ijpharm.2021.121380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
Ligand-mediated targeted liposomes have the potential to increase therapeutic efficacy of anticancer drugs. This work aimed to evaluate the ability of antagonist G, a peptide targeting agent capable of blocking the action of multiple neuropeptides, to selectivity improve targeting and internalization of liposomal formulations (long circulating liposomes, LCL, and stabilized antisense lipid particles containing ionizable amino lipid, SALP) to H69 and H82 small cell lung carcinoma (SCLC) cell lines. Antagonist G-targeted LCL and SALP were prepared by two different methods (either by direct covalent linkage at activated PEG grafted onto the liposomal surface or by post-insertion of DSPE-PEG-antagonist-G-conjugates into pre-formed liposomes). Association of the liposomal formulations with target SCLC cells was studied by fluorescence microscopy using fluorescence-labelled liposomes and confirmed quantitatively with [3H]-CHE-labelled liposomes. An antisense oligodeoxynucleotide against the overexpressed oncogene c-myc(as(c-myc)) was efficiently loaded into SALP formulations, the encapsulation efficiency decreased due to the inclusion of the targeting ligand. Also, liposome size was affected by as(c-myc) physical chemical properties. The amount of antagonist G linked to the surface of the liposomal formulations was dependent on the coupling method and lipid composition used. Covalent attachment of antagonist G increased liposomes cellular association and internalization via receptor-mediated and clathrin-dependent endocytosis, as assessed in SCLC cell lines. Biodistribution studies in healthy mice revealed a preferential lung accumulation of antagonist G-targeted SALP as compared to the non-targeted counterpart. Lung levels of the former were up to 3-fold higher 24 h after administration, highlighting their potential to be used as delivery vectors for SCLC treatment.
Collapse
Affiliation(s)
- Manuela Carvalheiro
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Departamento de Farmácia, Farmacologia e Tecnologias em Saúde, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Margarida Ferreira-Silva
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Denys Holovanchuk
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - H Susana Marinho
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal
| | - M Luisa Corvo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Departamento de Farmácia, Farmacologia e Tecnologias em Saúde, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Eugénia M Cruz
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
31
|
Shah P, Shende P. Biotherapy using sperm cell-oriented transportation of therapeutics in female reproductive tract cancer. Curr Pharm Biotechnol 2022; 23:1359-1366. [PMID: 35049429 DOI: 10.2174/1389201023666220113111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022]
Abstract
Female reproductive tract cancers like ovarian, cervical, vaginal, etc. have led to a serious concern for reproductive health as well as an increase in physical and psychological stresses amongst women. Various conventional techniques like surgery, radiation and chemotherapy are employed but possess limitations such as organ toxicity, infection, nausea, vomiting, etc. Also, several nanotechnology-based synthetic vehicle delivery systems like liposomes, nanoparticles, etc. are used but they lack targeting efficiency that results in poor propulsion and control. Therefore, there is a need for naturally-driven drug carriers to overcome such limitations. Sperm-based drug delivery is the new area for targeted delivery that offers self-propulsion to tumor sites, higher biocompatibility, longer lifespan and increased tissue penetration with enhanced localization. Drug-loaded sperm cells are harnessed with micro/nanomotor that will guide them to the intended target site. The critical analysis of the sperm-based drug delivery system was executed and summarized along with the current challenges. This article deals with the art of delivering the anticancer drug to female reproductive cancer sites with proof-of-concept-based research data and critical discussion on challenges in formulating the sperm-based delivery with a future perspective.
Collapse
Affiliation(s)
- Priyank Shah
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM' S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM' S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
32
|
Jordan S, Zielinski M, Kortylewski M, Kuhn T, Bystritsky A. Noninvasive Delivery of Biologicals to the Brain. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:64-70. [PMID: 35746928 PMCID: PMC9063603 DOI: 10.1176/appi.focus.20210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the past, psychotherapy and neuropharmacological approaches have been the most common treatments for disordered thoughts, moods, and behaviors. One new path of brain therapeutics is in the deployment of noninvasive approaches designed to reprogram brain function at the cellular level. Treatment at the cellular level may be considered for a wide array of disorders, ranging from mood disorders to neurodegenerative disorders. Brain-targeted biological therapy may provide minimally invasive and accurate delivery of treatment. The present article discusses the hurdles and advances that characterize the pathway to this goal.
Collapse
|
33
|
Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, Gangadharappa HV, Pardakhty A, Mehrbani M, Dell’Agli M, Nematollahi MH. Phytosomes as Innovative Delivery Systems for Phytochemicals: A Comprehensive Review of Literature. Int J Nanomedicine 2021; 16:6983-7022. [PMID: 34703224 PMCID: PMC8527653 DOI: 10.2147/ijn.s318416] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, medicinal herbs and their phytochemicals have emerged as a great therapeutic option for many disorders. However, poor bioavailability and selectivity might limit their clinical application. Therefore, bioavailability is considered a notable challenge to improve bio-efficacy in transporting dietary phytochemicals. Different methods have been proposed for generating effective carrier systems to enhance the bioavailability of phytochemicals. Among them, nano-vesicles have been introduced as promising candidates for the delivery of insoluble phytochemicals. Due to the easy preparation of the bilayer vesicles and their adaptability, they have been widely used and approved by the scientific literature. The first part of the review is focused on introducing phytosome technology as well as its applications, with emphasis on principles of formulations and characterization. The second part provides a wide overview of biological activities of commercial and non-commercial phytosomes, divided by systems and related pathologies. These results confirm the greater effectiveness of phytosomes, both in terms of biological activity or reduced dosage, highlighting curcumin and silymarin as the most formulated compounds. Finally, we describe the promising clinical and experimental findings regarding the applications of phytosomes. The conclusion of this study encourages the researchers to transfer their knowledge from laboratories to market, for a further development of these products.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 76169-13555, Iran
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Marco Angarano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Mehrnaz Mehrabani
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrzad Mehrbani
- Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
34
|
Zheng M, Du Q, Wang X, Zhou Y, Li J, Xia X, Lu Y, Yin J, Zou Y, Park JB, Shi B. Tuning the Elasticity of Polymersomes for Brain Tumor Targeting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102001. [PMID: 34423581 PMCID: PMC8529491 DOI: 10.1002/advs.202102001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/13/2021] [Indexed: 05/27/2023]
Abstract
Nanoformulations show great potential for delivering drugs to treat brain tumors. However, how the mechanical properties of nanoformulations affect their ultimate brain destination is still unknown. Here, a library of membrane-crosslinked polymersomes with different elasticity are synthesized to investigate their ability to effectively target brain tumors. Crosslinked polymersomes with identical particle size, zeta potential and shape are assessed, but their elasticity is varied depending on the rigidity of incorporated crosslinkers. Benzyl and oxyethylene containing crosslinkers demonstrate higher and lower Young's modulus, respectively. Interestingly, stiff polymersomes exert superior brain tumor cell uptake, excellent in vitro blood brain barrier (BBB) and tumor penetration but relatively shorter blood circulation time than their soft counterparts. These results together affect the in vivo performance for which rigid polymersomes exerting higher brain tumor accumulation in an orthotopic glioblastoma (GBM) tumor model. The results demonstrate the crucial role of nanoformulation elasticity for brain-tumor targeting and will be useful for the design of future brain targeting drug delivery systems for the treatment of brain disease.
Collapse
Affiliation(s)
- Meng Zheng
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
| | - Qiuli Du
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
| | - Xin Wang
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
| | - Yuan Zhou
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
| | - Jia Li
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
| | - Xue Xia
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
| | - Yiqing Lu
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
- School of EngineeringFaculty of Science and EngineeringMacquarie UniversitySydneyNSW2109Australia
| | - Jinlong Yin
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
| | - Yan Zou
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
- Department of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie UniversitySydneyNSW2109Australia
| | - Jong Bae Park
- Department of Cancer Biomedical ScienceGraduate School of Cancer Science and PolicyNational Cancer CenterGoyang10408South Korea
| | - Bingyang Shi
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
- Department of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie UniversitySydneyNSW2109Australia
| |
Collapse
|
35
|
Khaleghi S, Rahbarizadeh F, Nikkhoi SK. Anti-HER2 VHH Targeted Fluorescent Liposome as Bimodal Nanoparticle for Drug Delivery and Optical Imaging. Recent Pat Anticancer Drug Discov 2021; 16:552-562. [PMID: 34365930 DOI: 10.2174/1574892816666210806150929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to formulate fluorescent-labeled targeted immunoliposome to visualize the delivery and distribution of drugs in real-time. METHODS In this study, fluorescent-labeled liposomes were decorated with anti-HER2 VHH or Herceptin to improve the monitoring of intracellular drug delivery and tumor cell tracking with minimal side effects. The conjugation efficiency of antibodies was analyzed by SDS-PAGE silver staining. In addition, the physicochemical characterization of liposomes was performed using DLS and TEM. Finally, confocal microscopy visualized nanoparticles in the target cells. RESULTS Quantitative and qualitative methods characterized the intracellular uptake of 110±10 nm particles with near 70% conjugation efficiency. In addition, live-cell trafficking during hours of incubation was monitored by wide-field microscopy imaging. The results show that the fluorescent-labeled nanoparticles can specifically bind to HER2-positive breast cancer with minimal off-target delivery. CONCLUSION This kind of nanoparticles can have several applications in personalized medicine, especially drug delivery and real-time visualization of cancer therapy. Moreover, this method also can be applied in the targeted delivery of contrast agents in imaging and thermotherapy.
Collapse
Affiliation(s)
- Sepideh Khaleghi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran. Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran. Iran
| | | |
Collapse
|
36
|
Observing the structural variations on binary complex vesicle surfaces and the influence on molecular transportation. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Elamir A, Ajith S, Sawaftah NA, Abuwatfa W, Mukhopadhyay D, Paul V, Al-Sayah MH, Awad N, Husseini GA. Ultrasound-triggered herceptin liposomes for breast cancer therapy. Sci Rep 2021; 11:7545. [PMID: 33824356 PMCID: PMC8024284 DOI: 10.1038/s41598-021-86860-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
The functionalization of liposomes with monoclonal antibodies is a potential strategy to increase the specificity of liposomes and reduce the side-effects associated with chemotherapeutic agents. The active targeting of the Human Epidermal growth factor Receptor 2 (HER2), which is overexpressed in HER2 positive breast cancer cells, can be achieved by coating liposomes with an anti-HER2 monoclonal antibody. In this study, we synthesized calcein and Doxorubicin-loaded immunoliposomes functionalized with the monoclonal antibody Trastuzumab (TRA). Both liposomes were characterized for their size, phospholipid content and antibody conjugation. Exposing the liposomes to low-frequency ultrasound (LFUS) triggered drug release which increased with the increase in power density. Trastuzumab conjugation resulted in enhancing the sensitivity of the liposomes to LFUS. Compared to the control liposomes, TRA-liposomes showed higher cellular toxicity and higher drug uptake by the HER2 + cell line (SKBR3) which was further improved following sonication with LFUS. Combining immunoliposomes with LFUS is a promising technique in the field of targeted drug delivery that can enhance efficiency and reduce the cytotoxicity of antineoplastic drugs.
Collapse
Affiliation(s)
- Amal Elamir
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | - Saniha Ajith
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | - Nour Al Sawaftah
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | - Waad Abuwatfa
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | - Debasmita Mukhopadhyay
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | - Vinod Paul
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | - Mohammad H. Al-Sayah
- grid.411365.40000 0001 2218 0143Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Nahid Awad
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | - Ghaleb A. Husseini
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| |
Collapse
|
38
|
Sarra A, Stanchieri GDP, De Marcellis A, Bordi F, Postorino P, Palange E. Laser Transmission Spectroscopy Based on Tunable-Gain Dual-Channel Dual-Phase LIA for Biological Nanoparticles Characterization. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:177-187. [PMID: 33606634 DOI: 10.1109/tbcas.2021.3060569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Size and absolute concentration of suspensions of nanoparticles are important information for the study and development of new materials and products in different industrial applications spanning from biotechnology and pharmaceutics to food preparation and conservation. Laser Transmission Spectroscopy (LTS) is the only methodology able to measure nanoparticle size and concentration by performing a single measurement. In this paper we report on a new variable gain calibration procedure for LTS-based instruments allowing to decrease of an order of magnitude the experimental indetermination of the particle size respect to the conventional LTS based on the double ratio technique. The variable gain calibration procedure makes use of a specifically designed tunable-gain, dual-channel, dual-phase Lock-In Amplifier (LIA) whose input voltage signals are those ones generated by two Si photodiodes that measure the laser beam intensities passing through the sample containing the nanoparticles and a reference optical path. The LTS variable gain calibration procedure has been validated by firstly using a suspension of NIST standard polystyrene nanoparticles even 36 hours after the calibration procedure was accomplished. The paper reports in detail the LIA implementation describing the design methodologies and the electronic circuits. As a case example of the characterization of biological nanostructures, we demonstrate that a single LTS measurement allowed to determine size density distribution of a population of extracellular vesicles extracted from orange juice (25 nm in size) with the presence of their aggregates having a size of 340 nm and a concentration smaller than 3 orders of magnitude.
Collapse
|
39
|
Fan L, Chen Q, Mairiyangu Y, Wang Y, Liu X. Stable vesicle self-assembled from phospholipid and mannosylerythritol lipid and its application in encapsulating anthocyanins. Food Chem 2020; 344:128649. [PMID: 33234436 DOI: 10.1016/j.foodchem.2020.128649] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Stable vesicles were formulated based on the self-assembling of L-α-phosphatidylcholine (PC) and mannosylerythritol lipid-A (MEL-A) in a manner of weak or non-cooperative interactions. Their structural characterization, stability and encapsulation properties were evaluated. The results showed that the predominant average diameters varied ranging from 200 nm to 700 nm with MEL-A/PC ratio changed. In case of the ratio at 5:5, 6:4 or 7:3, the vesicles performed the smaller size or turbidity and larger entrapment efficiency for hydrophilic molecules. Anthocyanins were successfully encapsulated using these vesicles, which was confirmed by the formation of egg-shaped structures with the core size less than 500 nm and an encapsulation efficiency of 54.9 ± 1.6%. Compared with free anthocyanins, the encapsulated anthocyanins displayed higher retention rates when exposed to storage and simulated gastrointestinal fluid conditions, and their antioxidant capacity after simulated intestinal digestion was enhanced by 3-3.5 times because of protection of vesicle encapsulation and possible synergic effects.
Collapse
Affiliation(s)
- Linlin Fan
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Qihe Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yasheng Mairiyangu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Ying Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoli Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
40
|
Yaşacan M, Erikçi A, Eylem CC, Çiftçi SY, Nemutlu E, Ulubayram K, Eroğlu İ. Polymeric Nanoparticle Versus Liposome Formulations: Comparative Physicochemical and Metabolomic Studies as L-Carnitine Delivery Systems. AAPS PharmSciTech 2020; 21:308. [PMID: 33156405 DOI: 10.1208/s12249-020-01852-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022] Open
Abstract
L-Carnitine has attracted much more attention especially in the treatment of crucial diseases such as diabetes, regional slimming, and obesity because of its metabolic activities. However, because of its short half-life, low bioavailability, and inability to be stored in the body, frequent dosing is required. In this study, L-carnitine-loaded liposome (lipo-carnitine) and PLGA nanoparticle (nano-carnitine) formulations were prepared and characterized. For lipo-carnitine and nano-carnitine formulations, particle size values were 97.88 ± 2.96 nm and 250.90 ± 6.15 nm; polydispersity index values were 0.35 ± 0.01 and 0.22 ± 0.03; zeta potential values were 6.36 ± 0.54 mV and - 32.80 ± 2.26 mV; and encapsulation efficiency percentage values were 14.26 ± 3.52% and 21.93 ± 4.17%, respectively. Comparative in vitro release studies of novel formulations and solution of L-carnitine revealed that L-carnitine released 90% of its content at the end of 1st hour. On the other hand, lipo-carnitine and nano-carnitine formulations maintained a controlled-release profile for 12 h. The in vitro efficacy of the formulations on cardiac fibroblasts (CFs) was evaluated by metabolomic studies and pathway analysis. Besides the prolonged release, lipo-carnitine/nano-carnitine formulations were also found to be effective on amino acid, carbohydrate, and lipid metabolisms. As a result, innovative nano-formulations were successfully developed as an alternative to conventional preparations which are available on the market.
Collapse
|
41
|
Matulewicz K, Kaźmierski Ł, Wiśniewski M, Roszkowski S, Roszkowski K, Kowalczyk O, Roy A, Tylkowski B, Bajek A. Ciprofloxacin and Graphene Oxide Combination-New Face of a Known Drug. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4224. [PMID: 32977453 PMCID: PMC7579301 DOI: 10.3390/ma13194224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022]
Abstract
Drug modification with nanomaterials is a new trend in pharmaceutical studies and shows promising results, especially considering carbon-based solutions. Graphene and its derivatives have attracted much research interest for their potential applications in biomedical areas as drug modifiers. The following work is a comprehensive study regarding the toxicity of ciprofloxacin (CIP) modified by graphene oxide (GO). The influence on the morphology, viability, cell death pathway and proliferation of T24 and 786-0 cells was studied. The results show that ciprofloxacin modified with graphene oxide (CGO) shows the highest increase in cytotoxic potential, especially in the case of T24 cells. We discovered a clear connection between CIP modification with GO and the increase in its apoptotic potential. Our results show that drug modification with carbon-based nanomaterials might be a promising strategy to improve the qualities of existing drugs. Nevertheless, it is important to remember that cytotoxicity effects are highly dependent on dose and nanomaterial size. It is necessary to conduct further research to determine the optimal dose of GO for drug modification.
Collapse
Affiliation(s)
- Karolina Matulewicz
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza str. 24, 85-092 Bydgoszcz, Poland; (Ł.K.); (A.B.)
| | - Łukasz Kaźmierski
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza str. 24, 85-092 Bydgoszcz, Poland; (Ł.K.); (A.B.)
- Department of Oncology, Collegium Medicum, Nicolaus Copernicus University, Lukasiewicza str. 1, 85-821 Bydgoszcz, Poland;
| | - Marek Wiśniewski
- Department of Chemistry of Materials Adsorption and Catalysis, Nicolaus Copernicus University, Gagarina str. 7, 87-100 Torun, Poland;
| | - Szymon Roszkowski
- Faculty of Agronomy and Bioengineering, Poznan of Life Sciences, Wojska Polskiego str. 28, 60-637 Poznan, Poland;
| | - Krzysztof Roszkowski
- Department of Oncology, Collegium Medicum, Nicolaus Copernicus University, Lukasiewicza str. 1, 85-821 Bydgoszcz, Poland;
| | - Oliwia Kowalczyk
- Research and Education Unit for Communication in Healthcare, Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland;
| | - Archi Roy
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans, 26. Ed. E4. (C. Sescelades), 43007 Tarragona, Spain;
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, C/Marcellí Domingo s/n, 43007 Tarragona, Spain;
| | - Anna Bajek
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza str. 24, 85-092 Bydgoszcz, Poland; (Ł.K.); (A.B.)
| |
Collapse
|
42
|
Di J, Xie F, Xu Y. When liposomes met antibodies: Drug delivery and beyond. Adv Drug Deliv Rev 2020; 154-155:151-162. [PMID: 32926944 DOI: 10.1016/j.addr.2020.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Drug encapsulated liposomes and monoclonal antibodies (Mabs) are two distinctively different classes of therapeutics, but both aim to become the ultimate "magic bullet". While PEGylated liposomes rely on the enhanced permeability and retention (EPR) effect for accumulation in solid tumor tissues, Mabs are designed to bind tightly to specific surface antigens on target cells to exert effector functions. Immunoliposome (IL) refers to the structural combination of liposomes and antibodies, whereas the antibodies are usually decorated on the liposome surface. ILs can therefore take advantage of interactions between antibodies and cancer cells for more efficient endocytosis and intracellular drug delivery. The antibody structure, affinity, density, as well as the liposome surface properties and drug to lipid ratios all contribute to the IL pharmacokinetic(PK) and pharmacodynamic(PD) behaviors. The optimal formulation parameters may vary for different target cells and tissues. Furthermore, besides the delivery of cytotoxic drugs to cancer cells, new ILs are being developed to interact with multiple target receptors, multiple target cells and trigger multiple therapeutic effects. We envision that the IL format can be a great platform for the molecular engineering of multi-valent, multi-specific interactions to achieve complex biological functions for therapeutic benefits, especially in the area of cancer immunotherapy.
Collapse
Affiliation(s)
- Jiaxing Di
- School of Pharmacy, Shanghai Jiao Tong University, China
| | - Fang Xie
- Department of Biomedical Engineering, Johns Hopkins University, United States of America
| | - Yuhong Xu
- College of Pharmacy and Chemistry, Dali University, China.
| |
Collapse
|
43
|
Liang Y, Yang H, Li Q, Zhao P, Li H, Zhang Y, Cai W, Ma X, Duan Y. Novel biomimetic dual-mode nanodroplets as ultrasound contrast agents with potential ability of precise detection and photothermal ablation of tumors. Cancer Chemother Pharmacol 2020; 86:405-418. [PMID: 32797251 DOI: 10.1007/s00280-020-04124-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/04/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE Molecule-targeted ultrasound imaging has attracted extensive attention for precise diagnosis and targeted therapy of tumors. The aim of this research is to prepare novel biomimetic dual-mode nanoscale ultrasound contrast agents (UCAs), which can not only evade the immune clearance of reticuloendothelial system, but also have the potential ability of precise detection and photothermal ablation of tumors. METHODS In this study, for the first time, the novel biomimetic UCAs were prepared by encapsulating liquid perfluorohexanes with red blood cell membranes carrying IR-780 iodide and named IR780-RBCM@NDs. The characteristics of that were verified through the particle size analyzer, scanning electron microscopy, transmission electron microscopy and laser scanning confocal microscopy. The stability of IR780-RBCM@NDs at 37 °C was explored. The abilities of immune escape, dual-mode imaging and photothermal effect for IR780-RBCM@NDs were verified via in vitro experiments. RESULTS The novel prepared nanodroplets have good characteristics such as mean diameter, zeta potential, and relatively stability. Importantly, the integrin-associated protein expressed on the surface of RBCMs was detected on IR780-RBCM@NDs. Then, compared with control groups, IR780-RBCM@NDs performed excellent immune escape function away from macrophages in vitro. Furthermore, the IR-780 iodide was observed on the new nanodroplets and that was able to perform the dual-mode imaging with near-infrared fluorescence imaging and contrast-enhanced ultrasound imaging after the phase change. Finally, the effective photothermal ablation ability of IR780-RBCM@NDs was verified in tumor cells. CONCLUSION The newly prepared biomimetic IR780-RBCM@NDs provided novel ideas for evading immune clearance, performing precise diagnosis and photothermal ablation of tumor cells.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Hengli Yang
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Xi'an Medical College, Xi'an, China.
| | - Qiaoying Li
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Ping Zhao
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Han Li
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Yuxin Zhang
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Wenbin Cai
- Special Diagnosis Department, General Hospital of Tibet Military Command, Lhasa, China
| | - Xiaoju Ma
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Yunyou Duan
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
44
|
Tezel G, Timur SS, Kuralay F, Gürsoy RN, Ulubayram K, Öner L, Eroğlu H. Current status of micro/nanomotors in drug delivery. J Drug Target 2020; 29:29-45. [PMID: 32672079 DOI: 10.1080/1061186x.2020.1797052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic micro/nanomotors (MNMs) are novel, self-propelled nano or microscale devices that are widely used in drug transport, cell stimulation and isolation, bio-imaging, diagnostic and monitoring, sensing, photocatalysis and environmental remediation. Various preparation methods and propulsion mechanisms make MNMs "tailormade" nanosystems for the intended purpose or use. As the one of the newest members of nano carriers, MNMs open a new perspective especially for rapid drug transport and gene delivery. Although there exists limited number of in-vivo studies for drug delivery purposes, existence of in-vitro supportive data strongly encourages researchers to move on in this field and benefit from the manoeuvre capability of these novel systems. In this article, we reviewed the preparation and propulsion mechanisms of nanomotors in various fields with special attention to drug delivery systems.
Collapse
Affiliation(s)
- Gizem Tezel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Levent Öner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
45
|
Yaman Ü, Aslan M, Ozturk S, Ulubayram K, Eroğlu İ. Surface modified nanoliposome formulations provide sustained release for 5-FU and increase cytotoxicity on A431 cell line. Pharm Dev Technol 2020; 25:1192-1203. [PMID: 32729757 DOI: 10.1080/10837450.2020.1803910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Malignant melanoma is a type of skin cancer with high risk of metastasis. 5-Fluorouracil is commonly used for treatment of skin cancer, however its penetration through the skin is found to be insufficient in some cases. Therefore, we optimized its pharmacokinetics by fabricating 5- Fluorouracil-loaded nanoliposome formulations modified with Poly-L-lysine coating. 5-Fluorouracil-loaded nanoliposome formulations were prepared using dipalmitoylphosphatidylcholine, dicethylphosphate and cholesterol having encapsulation efficiency of 45 ± 9.61%. The particle size, zeta potential, polydispersity index and encapsulation rate of the prepared formulation was found to be 237.9 ± 0.986 nm, 41.4 ± 1.060 mV, 0.233 ± 0.019 and 88.2 ± 7.85%, respectively. Surface characterization, molecular structure and thermal property illumination of the formulations were performed alongside stability studies. The In-vitro release of 5-FU from Lipo-FU6 and PLL-1 formulations was investigated by dialysis membrane method. Within the first 12 hours, the percentage release of 5-FU from Lipo-FU6 and PLL-1 formulations was observed to be 47.17% and 20.84%, respectively. Moreover, the cytotoxicity study on A431 epidermal carcinoma cell lines has revealed that 5-FU-loaded formulations were toxic to cells unlike the 5-FU free formulations. In conclusion, PLL coated nanoliposome formulations showed a potential to be an effective option for further combined drug/gene therapy applications.
Collapse
Affiliation(s)
- Ümran Yaman
- Department of Nanotechnology and Nanomedicine, Institute for Graduate Studies in Science Engineering, Hacettepe University, Ankara, Turkey
| | - Minela Aslan
- Bioengineering Division, Institute for Graduate Studies in Science & Engineering, Hacettepe University, Ankara, Turkey
| | - Sukru Ozturk
- Bioengineering Division, Institute for Graduate Studies in Science & Engineering, Hacettepe University, Ankara, Turkey.,Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Kezban Ulubayram
- Department of Nanotechnology and Nanomedicine, Institute for Graduate Studies in Science Engineering, Hacettepe University, Ankara, Turkey.,Bioengineering Division, Institute for Graduate Studies in Science & Engineering, Hacettepe University, Ankara, Turkey.,Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - İpek Eroğlu
- Department of Nanotechnology and Nanomedicine, Institute for Graduate Studies in Science Engineering, Hacettepe University, Ankara, Turkey.,Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
46
|
Liposomal delivery of antibiotic loaded nucleic acid nanogels with enhanced drug loading and synergistic anti-inflammatory activity against S. aureus intracellular infections. J Control Release 2020; 324:620-632. [PMID: 32525012 DOI: 10.1016/j.jconrel.2020.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/10/2020] [Accepted: 06/03/2020] [Indexed: 12/28/2022]
Abstract
The persistence of Staphylococcus aureus has been accredited to its ability to escape immune response via host cell invasion. Despite the efficacy of many antibiotics against S. aureus, the high extracellular concentrations of conventional antibiotics required for bactericidal activity is limited by their low cellular accumulation and poor intracellular retention. While nanocarriers have received tremendous attention for antibiotic delivery against persistent pathogens, they suffer daunting challenges such as low drug loading, poor retention and untimely release of hydrophilic cargos. Here, a hybrid system (Van_DNL) is fabricated wherein nucleic acid nanogels are caged within a liposomal vesicle for antibiotic delivery. The central principle of this approach relies on exploiting non-covalent electrostatic interactions between cationic cargos and polyanionic DNA to immobilize antibiotics and enable precise temporal release against intracellular S. aureus. In vitro characterization of Van_DNL revealed a stable homogenous formulation with circular morphology and enhanced vancomycin loading efficiency. The hybrid system significantly sustained the release of vancomycin over 24 h compared to liposomal or nanogel controls. Under enzymatic conditions relevant to S. aureus infections, lipase triggered release of vancomycin was observed from the hybrid. While using Van_DNL to treat S. aureus infected macrophages, a dose dependent reduction in intracellular bacterial load was observed over 24 h and exposure to Van_DNL for 48 h caused negligible cellular toxicity. Pre-treatment of macrophages with the antimicrobial hybrid resulted in a strong anti-inflammatory activity in synergy with vancomycin following endotoxin stimulation. Conceptually, these findings highlight these hybrids as a unique and universal platform for synergistic antimicrobial and anti-inflammatory therapy against persistent infections.
Collapse
|
47
|
Liposome Delivery of Natural STAT3 Inhibitors for the Treatment of Cancer. PHARMACEUTICAL FRONTIERS 2019; 1. [PMID: 31886474 DOI: 10.20900/pf20190007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the tumor microenvironment, cytokines, growth factors, and oncogenes mediate constitutive activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway in both cancer cells and infiltrating immune cells. STAT3 activation in cancer cells drives tumorigenic changes that allow for increased survival, proliferation, and resistance to apoptosis. The modulation of immune cells is more complicated and conflicting. STAT3 signaling drives the myeloid cell phenotype towards an immune suppressive state, which mediates T cell inhibition. On the other hand, STAT3 signaling in T cells leads to proliferation and T cell activity required for an anti-tumor response. Targeted delivery of STAT3 inhibitors to cancer cells and myeloid cells could therefore improve therapeutic outcomes. Many compounds that inhibit the STAT3 pathways for cancer treatment include peptide drugs, small molecule inhibitors, and natural compounds. However, natural compounds that inhibit STAT3 are often hydrophobic, which reduces their bioavailability and leads to unfavorable pharmacokinetics. This review focuses specifically on liposome-encapsulated natural STAT3 inhibitors and their ability to target cancer cells and myeloid cells to reduce tumor growth and decrease STAT3-mediated immune suppression. Many of these liposome formulations have led to profound tumor reduction and examples of combination formulations have been shown to eliminate tumors through immune modulation.
Collapse
|