1
|
Kelly GT, Faraj R, Zhang Y, Maltepe E, Fineman JR, Black SM, Wang T. Pulmonary Endothelial Mechanical Sensing and Signaling, a Story of Focal Adhesions and Integrins in Ventilator Induced Lung Injury. Front Physiol 2019; 10:511. [PMID: 31105595 PMCID: PMC6498899 DOI: 10.3389/fphys.2019.00511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Patients with critical illness such as acute lung injury often undergo mechanical ventilation in the intensive care unit. Though lifesaving in many instances, mechanical ventilation often results in ventilator induced lung injury (VILI), characterized by overdistension of lung tissue leading to release of edemagenic agents, which further damage the lung and contribute to the mortality and progression of pulmonary inflammation. The endothelium is particularly sensitive, as VILI associated mechanical stress results in endothelial cytoskeletal rearrangement, stress fiber formation, and integrity loss. At the heart of these changes are integrin tethered focal adhesions (FAs) which participate in mechanosensing, structure, and signaling. Here, we present the known roles of FA proteins including c-Src, talin, FAK, paxillin, vinculin, and integrins in the sensing and response to cyclic stretch and VILI associated stress. Attention is given to how stretch is propagated from the extracellular matrix through integrins to talin and other FA proteins, as well as signaling cascades that include FA proteins, leading to stress fiber formation and other cellular responses. This unifying picture of FAs aids our understanding in an effort to prevent and treat VILI.
Collapse
Affiliation(s)
- Gabriel T Kelly
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Reem Faraj
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Yao Zhang
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Stephen M Black
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Ting Wang
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| |
Collapse
|
2
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Figueroa DS, Kemeny SF, Clyne AM. Glycated Collagen Decreased Endothelial Cell Fibronectin Alignment in Response to Cyclic Stretch Via Interruption of Actin Alignment. J Biomech Eng 2014; 136:101010. [DOI: 10.1115/1.4028037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/18/2014] [Indexed: 11/08/2022]
Abstract
Hyperglycemia is a defining characteristic of diabetes, and uncontrolled blood glucose in diabetes is associated with accelerated cardiovascular disease. Chronic hyperglycemia glycates extracellular matrix (ECM) collagen, which can lead to endothelial cell dysfunction. In healthy conditions, endothelial cells respond to mechanical stimuli such as cyclic stretch (CS) by aligning their actin cytoskeleton. Other cell types, specifically fibroblasts, align their ECM in response to CS. We previously demonstrated that glycated collagen inhibits endothelial cell actin alignment in response to CS. The aim of this study was to determine the effect of glycated collagen on ECM remodeling and protein alignment in response to stretch. Porcine aortic endothelial cells (PAEC) seeded on native or glycated collagen coated elastic substrates were exposed to 10% CS. Cells on native collagen aligned subcellular fibronectin fibers in response to stretch, whereas cells on glycated collagen did not. The loss of fibronectin alignment was due to inhibited actin alignment in response to CS, since fibronectin alignment did not occur in cells on native collagen when actin alignment was inhibited with cytochalasin. Further, while ECM protein content did not change in cells on native or glycated collagen in response to CS, degradation activity decreased in cells on glycated collagen. Matrix metalloproteinase 2 (MMP-2) and membrane-associated type 1 matrix metalloproteinase (MT1-MMP) protein levels decreased, and therefore MMP-2 activity also decreased. These MMP changes may relate to c-Jun N-terminal kinase (Jnk) phosphorylation inhibition with CS, which has previously been linked to focal adhesion kinase (FAK). These data demonstrate the importance of endothelial cell actin tension in remodeling and aligning matrix proteins in response to mechanical stimuli, which is critical to vascular remodeling in health and disease.
Collapse
Affiliation(s)
- Dannielle S. Figueroa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
| | - Steven F. Kemeny
- Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
| | - Alisa Morss Clyne
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
- Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 e-mail:
| |
Collapse
|
4
|
Kemeny SF, Cicalese S, Figueroa DS, Clyne AM. Glycated collagen and altered glucose increase endothelial cell adhesion strength. J Cell Physiol 2013; 228:1727-36. [PMID: 23280505 DOI: 10.1002/jcp.24313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/10/2012] [Indexed: 01/08/2023]
Abstract
Cell adhesion strength is important to cell survival, proliferation, migration, and mechanotransduction, yet changes in endothelial cell adhesion strength have not yet been examined in diseases such as diabetes with high rates of cardiovascular complications. We therefore investigated porcine aortic endothelial cell adhesion strength on native and glycated collagen-coated substrates and in low, normal, and high glucose culture using a spinning disc apparatus. Adhesion strength increased by 30 dynes/cm(2) in cells on glycated collagen as compared to native collagen. Attachment studies revealed that cells use higher adhesion strength αv β3 integrins to bind to glycated collagen instead of the typical α2 β1 integrins used to bind to native collagen. Similarly, endothelial cells cultured in low and high glucose had 15 dynes/cm(2) higher adhesion strength than cells in normal glucose after 2 days. Increased adhesion strength was due to elevated VEGF release and intracellular PKC in low and high glucose cells, respectively. Thus glucose increased endothelial cell adhesion strength via different underlying mechanisms. These adhesion strength changes could contribute to diabetic vascular disease, including accelerated atherosclerosis and disordered angiogenesis.
Collapse
Affiliation(s)
- Steven Frank Kemeny
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
5
|
Computational model predicts cell orientation in response to a range of mechanical stimuli. Biomech Model Mechanobiol 2013; 13:227-36. [DOI: 10.1007/s10237-013-0501-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 05/11/2013] [Indexed: 10/26/2022]
|
6
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
7
|
|
8
|
Yazdani SK, Tillman BW, Berry JL, Soker S, Geary RL. The fate of an endothelium layer after preconditioning. J Vasc Surg 2010; 51:174-83. [PMID: 20117500 DOI: 10.1016/j.jvs.2009.08.074] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 08/15/2009] [Accepted: 08/15/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND A strategy in minimizing thrombotic events of vascular constructs is to seed the luminal surface with autologous endothelial cells (ECs). The task of seeding ECs can be achieved via bioreactors, which induce mechanical forces (shear stress, strain, pressure) onto the ECs. Although bioreactors can achieve a confluent layer of ECs in vitro, their acute response to blood remains unclear. Moreover, the necessary mechanical conditions that will increase EC adhesion and function remain unclear. We hypothesize that preconditioning seeded endothelium under physiological flow will enhance their retention and function. OBJECTIVE To determine the role of varying preconditioning protocols on seeded ECs in vitro and in vivo. METHODS Scaffolds derived from decelluarized arteries seeded with autologous ECs were preconditioned for 9 days. Three specific protocols, low steady shear stress (SS), high SS, and cyclic SS were investigated. After preconditioning, the seeded grafts were exposed to 15 minutes of blood via an ex vivo arteriovenous shunt model or alternately an in vivo arteriovenous bypass graft model. RESULTS The shunt model demonstrated ECs remained intact for all conditions. In the arteriovenous bypass model, only the cyclic preconditioned grafts remained intact, maintained morphology, and resisted the attachment of circulating blood elements such as platelets, red blood cells, and leukocytes. Western blotting analysis demonstrated an increase in the protein expression of eNOS and prostaglandin I synthase for the cyclic high shear stress-conditioned cells relative to cells conditioned with high shear stress alone. CONCLUSION Cyclic preconditioning has been shown here to increase the ECs ability to resist blood flow-induced shear stress and the attachment of circulating blood elements, key attributes in minimizing thrombotic events. These studies may ultimately establish protocols for the formation of a more durable endothelial monolayer that may be useful in the context of small vessel arterial reconstruction.
Collapse
Affiliation(s)
- Saami K Yazdani
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winson-Salem, NC, USA.
| | | | | | | | | |
Collapse
|
9
|
Wilson CJ, Kasper G, Schütz MA, Duda GN. Cyclic strain disrupts endothelial network formation on Matrigel. Microvasc Res 2009; 78:358-63. [DOI: 10.1016/j.mvr.2009.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/10/2009] [Indexed: 11/30/2022]
|
10
|
Abstract
Integrins are a class of cell adhesion molecules that regulate interactions between cells and their extracellular matrix (ECM). Several specific integrin receptors have been identified in intervertebral discs, including the fibronectin-binding integrin receptors alpha(5) beta(1), alpha(v) beta(3) and the collagen-binding integrin receptors alpha(1) beta(1), alpha(2) beta(1), and, alpha(v) beta(1). But the integrins expressions in degenerated intervertebral discs are still unknown. In our study, the expressions of alpha(1), alpha(2), alpha(5), alpha(v), beta(1), beta(3) integrin subunits, collagens, and fibronectin in normal and herniated intervertebral discs of human were determined. Specimens of human lumbar intervertebral discs were divided into 3 groups: normal discs (n = 10), protrusion (n = 15), and extrusion (n = 15). Real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) and immunoprecipitation were used to evaluate the alpha(1), alpha(2), alpha(5),alpha(v), beta(1), and beta(3) integrin subunits messenger ribonucleic acid (mRNA) and protein expressions. RT-PCR was also performed to measure the mRNA level of collagen I, collagen II, and fibronectin. The expressions of alpha(5) and beta(1) subunits were increased in herniated discs, especially in the discs of extrusion. But as to alpha(1), alpha(2), alpha(v) and beta(3), their expressions had no difference among the discs. Fibronectin, whose binding integrin receptor was alpha(5) beta(1) was also increased. And in herniated discs, the collagen I was increased, but the collagen II was decreased. The expressions of some integrin subunits were increased in herniated discs. These results may be attributed to the interaction between cells and the ECM in the process of degeneration.
Collapse
Affiliation(s)
- Maosheng Xia
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, PR China
| | | |
Collapse
|