1
|
Kiss-Szemán AJ, Harmat V, Menyhárd DK. Achieving Functionality Through Modular Build-up: Structure and Size Selection of Serine Oligopeptidases. Curr Protein Pept Sci 2019; 20:1089-1101. [PMID: 31553292 DOI: 10.2174/1389203720666190925103339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/13/2019] [Accepted: 04/12/2019] [Indexed: 01/13/2023]
Abstract
Enzymes of the prolyl oligopeptidase family (S9 family) recognize their substrates not only by the specificity motif to be cleaved but also by size - they hydrolyze oligopeptides smaller than 30 amino acids. They belong to the serine-protease family, but differ from classical serine-proteases in size (80 kDa), structure (two domains) and regulation system (size selection of substrates). This group of enzymes is an important target for drug design as they are linked to amnesia, schizophrenia, type 2 diabetes, trypanosomiasis, periodontitis and cell growth. By comparing the structure of various members of the family we show that the most important features contributing to selectivity and efficiency are: (i) whether the interactions weaving the two domains together play a role in stabilizing the catalytic triad and thus their absence may provide for its deactivation: these oligopeptidases can screen their substrates by opening up, and (ii) whether the interaction-prone β-edge of the hydrolase domain is accessible and thus can guide a multimerization process that creates shielded entrance or intricate inner channels for the size-based selection of substrates. These cornerstones can be used to estimate the multimeric state and selection strategy of yet undetermined structures.
Collapse
Affiliation(s)
- Anna J Kiss-Szemán
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eotvos Lorand University, Budapest, Hungary
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eotvos Lorand University, Budapest, Hungary.,MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Dóra K Menyhárd
- MTA-ELTE Protein Modelling Research Group, Eotvos Lorand University, Budapest, Hungary
| |
Collapse
|
2
|
Benzyloxycarbonyl-proline-prolinal (ZPP): Dual complementary roles for neutrophil inhibition. Biochem Biophys Res Commun 2019; 517:691-696. [PMID: 31400851 DOI: 10.1016/j.bbrc.2019.07.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/28/2019] [Indexed: 12/22/2022]
Abstract
Neutrophil influx and activation contributes to organ damage in several major lung diseases. This inflammatory influx is initiated and propagated by both classical chemokines such as interleukin-8 and by downstream mediators such as the collagen fragment cum neutrophil chemokine Pro-Gly-Pro (PGP), which share use of the ELR + CXC receptor family. Benzyloxycarbonyl-proline-prolinal (ZPP) is known to suppress the PGP pathway via inhibition of prolyl endopeptidase (PE), the terminal enzyme in the generation of PGP from collagen. However, the structural homology of ZPP and PGP suggests that ZPP might also directly affect classical glutamate-leucine-arginine positive (ELR+) CXC chemokine signaling. In this investigation, we confirm that ZPP inhibits PE in vitro, demonstrate that ZPP inhibits both ELR + CXC and PGP-mediated chemotaxis in human and murine neutrophils, abrogates neutrophil influx induced by murine intratracheal challenge with LPS, and attenuates human neutrophil chemotaxis to sputum samples of human subjects with cystic fibrosis. Cumulatively, these data demonstrate that ZPP has dual, complementary inhibitory effects upon neutrophil chemokine/matrikine signaling which make it an attractive compound for clinical study of neutrophil inhibition in conditions (such as cystic fibrosis and chronic obstructive pulmonary disease) which evidence concurrent harmful increases of both chemokine and matrikine signaling.
Collapse
|
3
|
Dynamics and ligand-induced conformational changes in human prolyl oligopeptidase analyzed by hydrogen/deuterium exchange mass spectrometry. Sci Rep 2017; 7:2456. [PMID: 28550305 PMCID: PMC5446394 DOI: 10.1038/s41598-017-02550-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/12/2017] [Indexed: 11/08/2022] Open
Abstract
Prolyl oligopeptidase (PREP) is conserved in many organisms across life. It is involved in numerous processes including brain function and neuropathology, that require more than its strict proteolytic role. It consists of a seven-bladed β-propeller juxtaposed to a catalytic α/β-hydrolase domain. The conformational dynamics of PREP involved in domain motions and the gating mechanism that allows substrate accessibility remain elusive. Here we used Hydrogen Deuterium eXchange Mass Spectrometry (HDX-MS) to derive the first near-residue resolution analysis of global PREP dynamics in the presence or absence of inhibitor bound in the active site. Clear roles are revealed for parts that would be critical for the activation mechanism. In the free state, the inter-domain interface is loose, providing access to the catalytic site. Inhibitor binding "locks" the two domains together exploiting prominent interactions between the loop of the first β-propeller blade and its proximal helix from the α/β-hydrolase domain. Loop A, thought to drive gating, is partially stabilized but remains flexible and dynamic. These findings provide a conformational guide for further dissection of the gating mechanism of PREP, that would impact drug development. Moreover, they offer a structural framework against which to study proteolysis-independent interactions with disordered proteins like α-synuclein involved in neurodegenerative disease.
Collapse
|
4
|
Canning P, Rea D, Morty RE, Fülöp V. Crystal structures of Trypanosoma brucei oligopeptidase B broaden the paradigm of catalytic regulation in prolyl oligopeptidase family enzymes. PLoS One 2013; 8:e79349. [PMID: 24265767 PMCID: PMC3827171 DOI: 10.1371/journal.pone.0079349] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
Oligopeptidase B cleaves after basic amino acids in peptides up to 30 residues. As a virulence factor in bacteria and trypanosomatid pathogens that is absent in higher eukaryotes, this is a promising drug target. Here we present ligand-free open state and inhibitor-bound closed state crystal structures of oligopeptidase B from Trypanosoma brucei, the causative agent of African sleeping sickness. These (and related) structures show the importance of structural dynamics, governed by a fine enthalpic and entropic balance, in substrate size selectivity and catalysis. Peptides over 30 residues cannot fit the enzyme cavity, preventing the complete domain closure required for a key propeller Asp/Glu to fix the catalytic His and Arg in the catalytically competent conformation. This size exclusion mechanism protects larger peptides and proteins from degradation. Similar bacterial prolyl endopeptidase and archael acylaminoacyl peptidase structures demonstrate this mechanism is conserved among oligopeptidase family enzymes across all three domains of life.
Collapse
Affiliation(s)
- Peter Canning
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Dean Rea
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Rory E. Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vilmos Fülöp
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Papaleo E, Renzetti G. Coupled motions during dynamics reveal a tunnel toward the active site regulated by the N-terminal α-helix in an acylaminoacyl peptidase. J Mol Graph Model 2012; 38:226-34. [PMID: 23085164 DOI: 10.1016/j.jmgm.2012.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 06/15/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Acylaminoacyl peptidase (AAP) subfamily belongs to the prolyl oligopeptidase (POP) family of serine-proteases. There is a great interest in the definition of molecular mechanisms related to the activity and substrate recognition of these complex multi-domain enzymes. The active site relies at the interface between the C-terminal catalytic domain and the β-propeller domain, whose N-terminal region acts as a bridge to the hydrolase domain. In AAP, the N-terminal extension is characterized by a structurally conserved α1-helix, which is known to affect thermal stability and thermal dependence of the catalytic activity. In the present contribution, results from hundreds nanosecond all-atom molecular dynamics simulations, along with analyses of the networks of cross-correlated motions of a member of the AAP subfamily are discussed. The MD investigation identifies a tunnel that from the surrounding of the N-terminal α1-helix bring to the catalytic site. This cavity seems to be regulated by conformational changes of the α1-helix itself during the dynamics. The evidence here provided can be a useful guide for a better understanding of the mechanistic aspects related to AAP activity, but also for drug design purposes.
Collapse
Affiliation(s)
- Elena Papaleo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy.
| | | |
Collapse
|
6
|
Kaszuba K, Róg T, Danne R, Canning P, Fülöp V, Juhász T, Szeltner Z, St. Pierre JF, García-Horsman A, Männistö PT, Karttunen M, Hokkanen J, Bunker A. Molecular dynamics, crystallography and mutagenesis studies on the substrate gating mechanism of prolyl oligopeptidase. Biochimie 2012; 94:1398-411. [DOI: 10.1016/j.biochi.2012.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/13/2012] [Indexed: 01/10/2023]
|
7
|
Kaushik S, Sowdhamini R. Structural analysis of prolyl oligopeptidases using molecular docking and dynamics: insights into conformational changes and ligand binding. PLoS One 2011; 6:e26251. [PMID: 22132071 PMCID: PMC3223163 DOI: 10.1371/journal.pone.0026251] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 09/23/2011] [Indexed: 11/28/2022] Open
Abstract
Prolyl oligopeptidase (POP) is considered as an important pharmaceutical target for the treatment of numerous diseases. Despite enormous studies on various aspects of POPs structure and function still some of the questions are intriguing like conformational dynamics of the protein and interplay between ligand entry/egress. Here, we have used molecular modeling and docking based approaches to unravel questions like differences in ligand binding affinities in three POP species (porcine, human and A. thaliana). Despite high sequence and structural similarity, they possess different affinities for the ligands. Interestingly, human POP was found to be more specific, selective and incapable of binding to a few planar ligands which showed extrapolation of porcine POP in human context is more complicated. Possible routes for substrate entry and product egress were also investigated by detailed analyses of molecular dynamics (MD) simulations for the three proteins. Trajectory analysis of bound and unbound forms of three species showed differences in conformational dynamics, especially variations in β-propeller pore size, which was found to be hidden by five lysine residues present on blades one and seven. During simulation, β-propeller pore size was increased by ∼2 Å in porcine ligand-bound form which might act as a passage for smaller product movement as free energy barrier was reduced, while there were no significant changes in human and A. thaliana POPs. We also suggest that these differences in pore size could lead to fundamental differences in mode of product egress among three species. This analysis also showed some functionally important residues which can be used further for in vitro mutagenesis and inhibitor design. This study can help us in better understanding of the etiology of POPs in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Swati Kaushik
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- * E-mail:
| |
Collapse
|
8
|
Orłowski A, St-Pierre JF, Magarkar A, Bunker A, Pasenkiewicz-Gierula M, Vattulainen I, Róg T. Properties of the Membrane Binding Component of Catechol-O-methyltransferase Revealed by Atomistic Molecular Dynamics Simulations. J Phys Chem B 2011; 115:13541-50. [DOI: 10.1021/jp207177p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Adam Orłowski
- Department of Computational Biophysics and Bioinformatics, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Gronostajowa 7, Poland
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Jean-François St-Pierre
- Departement de Physique and Regroupement Quebecois sur les Materiaux de Pointe, Universite de Montreal, C.P. 6128, Succursale Centre-ville, Montreal (Quebec), Canada
| | - Aniket Magarkar
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Alex Bunker
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, University of Helsinki, Finland
- Department of Chemistry, Aalto University School of Science, P.O. Box 6100, FI-02015, AALTO, Espoo, Finland
| | - Marta Pasenkiewicz-Gierula
- Department of Computational Biophysics and Bioinformatics, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Gronostajowa 7, Poland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
- Department of Applied Physics, Aalto University School of Science, Finland
- MEMPHYS−Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| |
Collapse
|
9
|
St-Pierre JF, Karttunen M, Mousseau N, Róg T, Bunker A. Use of Umbrella Sampling to Calculate the Entrance/Exit Pathway for Z-Pro-Prolinal Inhibitor in Prolyl Oligopeptidase. J Chem Theory Comput 2011; 7:1583-94. [PMID: 26596426 DOI: 10.1021/ct1007058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Prolyl oligopeptidase (POP), a member of the prolyl endopeptidase family, is known to play a role in several neurological disorders. Its primary function is to cleave a wide range of small oligopeptides, including neuroactive peptides. We have used force biased molecular dynamics simulation to study the binding mechanism of POP. We examined three possible binding pathways using Steered Molecular Dynamics (SMD) and Umbrella Sampling (US) on a crystal structure of porcine POP with bound Z-pro-prolinal (ZPP). Using SMD, an exit pathway between the first and seventh blade of the β-propeller domain of POP was found to be a nonviable route. US on binding pathways through the β-propeller tunnel and the TYR190-GLN208 flexible loop at the interface between both POP domains allowed us to isolate the flexible loop pathway as the most probable. Further analysis of that pathway suggests a long-range covariation of the interdomain H-bond network, which indicates the possibility of large-scale domain reorientation observed in bacterial homologues and hypothesized to also occur in human POP.
Collapse
Affiliation(s)
- Jean-François St-Pierre
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal , C.P. 6128, succursale centre-ville, Montréal (Québec), Canada H3C 3J7
| | - Mikko Karttunen
- Department of Applied Mathematics, The University of Western Ontario , 1151 Richmond Street North, London (Ontario), Canada N6A 5B7
| | - Normand Mousseau
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal , C.P. 6128, succursale centre-ville, Montréal (Québec), Canada H3C 3J7
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Alex Bunker
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki , P.O. Box 56, FI-00014, University of Helsinki, Finland.,Department of Chemistry, Aalto University , PO Box 6100, FI-02015, Aalto, Finland
| |
Collapse
|
10
|
Kaszuba K, Róg T, Bryl K, Vattulainen I, Karttunen M. Molecular Dynamics Simulations Reveal Fundamental Role of Water As Factor Determining Affinity of Binding of β-Blocker Nebivolol to β2-Adrenergic Receptor. J Phys Chem B 2010; 114:8374-86. [PMID: 20524635 DOI: 10.1021/jp909971f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karol Kaszuba
- Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Physics and Biophysics, University of Warmia and Mazury, Olsztyn, Poland, University of Southern Denmark, Odensee, Denmark, Department of Applied Physics, Aalto University School of Science and Technology, Aalto, Finland, and Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Physics and Biophysics, University of Warmia and Mazury, Olsztyn, Poland, University of Southern Denmark, Odensee, Denmark, Department of Applied Physics, Aalto University School of Science and Technology, Aalto, Finland, and Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada
| | - Krzysztof Bryl
- Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Physics and Biophysics, University of Warmia and Mazury, Olsztyn, Poland, University of Southern Denmark, Odensee, Denmark, Department of Applied Physics, Aalto University School of Science and Technology, Aalto, Finland, and Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Physics and Biophysics, University of Warmia and Mazury, Olsztyn, Poland, University of Southern Denmark, Odensee, Denmark, Department of Applied Physics, Aalto University School of Science and Technology, Aalto, Finland, and Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada
| | - Mikko Karttunen
- Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Physics and Biophysics, University of Warmia and Mazury, Olsztyn, Poland, University of Southern Denmark, Odensee, Denmark, Department of Applied Physics, Aalto University School of Science and Technology, Aalto, Finland, and Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada
| |
Collapse
|