1
|
Lotfi S, Ahmadi S, Azimi A, Kumar P. In silico aquatic toxicity prediction of chemicals toward Daphnia magna and fathead minnow using Monte Carlo approaches. Toxicol Mech Methods 2024:1-13. [PMID: 39397353 DOI: 10.1080/15376516.2024.2416226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The fast-increasing use of chemicals led to large numbers of chemical compounds entering the aquatic environment, raising concerns about their potential effects on ecosystems. Therefore, assessment of the ecotoxicological features of organic compounds on aquatic organisms is very important. Daphnia magna and Fathead minnow are two aquatic species that are commonly tested as standard test organisms for aquatic risk assessment and are typically chosen as the biological model for the ecotoxicology investigations of chemical pollutants. Herein, global quantitative structure-toxicity relationship (QSTR) models have been developed to predict the toxicity (pEC(LC)50) of a large dataset comprising 2106 chemicals toward Daphnia magna and Fathead minnow. The optimal descriptor of correlation weights (DCWs) is calculated using the notation of simplified molecular input line entry system (SMILES) and is used to construct QSTR models. Three target functions, TF1, TF2, and TF3 are utilized to generate 12 QSTR models from four splits, and their statistical characteristics are also compared. The designed QSTR models are validated using both internal and external validation criteria and are found to be reliable, robust, and excellently predictive. Among the models, those generated using the TF3 demonstrate the best statistical quality with R2 values ranging from 0.9467 to 0.9607, Q2 values ranging from 0.9462 to 0.9603 and RMSE values ranging from 0.3764 to 0.4413 for the validation set. The applicability domain and the mechanistic interpretations of generated models were also discussed.
Collapse
Affiliation(s)
- Shahram Lotfi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Shahin Ahmadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Azimi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
2
|
Shavalieva G, Papadokonstantakis S, Peters G. Prior Knowledge for Predictive Modeling: The Case of Acute Aquatic Toxicity. J Chem Inf Model 2022; 62:4018-4031. [PMID: 35998659 PMCID: PMC9472271 DOI: 10.1021/acs.jcim.1c01079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Early assessment of the potential impact of chemicals on health and the environment requires toxicological properties of the molecules. Predictive modeling is often used to estimate the property values in silico from pre-existing experimental data, which is often scarce and uncertain. One of the ways to advance the predictive modeling procedure might be the use of knowledge existing in the field. Scientific publications contain a vast amount of knowledge. However, the amount of manual work required to process the enormous volumes of information gathered in scientific articles might hinder its utilization. This work explores the opportunity of semiautomated knowledge extraction from scientific papers and investigates a few potential ways of its use for predictive modeling. The knowledge extraction and predictive modeling are applied to the field of acute aquatic toxicity. Acute aquatic toxicity is an important parameter of the safety assessment of chemicals. The extensive amount of diverse information existing in the field makes acute aquatic toxicity an attractive area for investigation of knowledge use for predictive modeling. The work demonstrates that the knowledge collection and classification procedure could be useful in hybrid modeling studies concerning the model and predictor selection, addressing data gaps, and evaluation of models' performance.
Collapse
Affiliation(s)
- Gulnara Shavalieva
- Department
of Space, Earth and Environment, Division of Energy Technology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Stavros Papadokonstantakis
- Department
of Space, Earth and Environment, Division of Energy Technology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Gregory Peters
- Department
of Technology Management and Economics, Chalmers University of Technology, SE-411 33 Gothenburg, Sweden
| |
Collapse
|
3
|
Kar S, Ghosh S, Leszczynski J. Is clay-polycation adsorbent future of the greener society? In silico modeling approach with comprehensive virtual screening. CHEMOSPHERE 2019; 220:1108-1117. [PMID: 33395798 DOI: 10.1016/j.chemosphere.2018.12.215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/27/2018] [Accepted: 12/31/2018] [Indexed: 06/12/2023]
Abstract
Presence of organic pollutants in the wastewater and aquatic environment is one of the serious concerns worldwide. Superior adsorption of organic pollutants on modified clays with organocations is well approved nowadays. Among hybrid materials, clay-polyelectrolyte nanocomposites (CPN) are one of the specifically designed materials for the efficient adsorption of diverse organic pollutants. Due to higher surface area of the clay mineral coupled with a polymer coating, they have an explicit affinity for the organic pollutants. In this background, we have developed statistically significant and mechanistically interpretable quantitative structure-property relationship (QSPR) model for adsorption coefficient of diverse organic pollutants to the protonated montmorillonite-poly-4-vinylpyridine-co-styrene (Mt-HPVPcoS), a hybrid CPN. Further, the model was employed to predict the logkd value of ∼0.9 million chemicals from five diverse databases spanning from existing and experimental pharmaceuticals, natural and synthetic chemicals and dyes with unknown logkd value for the mentioned CPN. The reliability of predicted data is checked with two layers confidence screening i.e. the applicability domain study followed by prediction quality check by 'Prediction Reliability Indicator'. Thus, prediction of each compound can be used for data gap filling by environmental regulatory authorities as well as industries. Followed by, maximum common substructure-based (MCS) algorithm is employed for individual database to extract the important structural scaffold for higher logkd to the mentioned CPN.
Collapse
Affiliation(s)
- Supratik Kar
- Interdisciplinary Nanotoxicity Center, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, USA
| | - Shinjita Ghosh
- School of Public Health, Jackson State University, Jackson, MS, USA
| | - Jerzy Leszczynski
- Interdisciplinary Nanotoxicity Center, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
| |
Collapse
|
4
|
Oja M, Sild S, Maran U. Logistic Classification Models for pH–Permeability Profile: Predicting Permeability Classes for the Biopharmaceutical Classification System. J Chem Inf Model 2019; 59:2442-2455. [DOI: 10.1021/acs.jcim.8b00833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mare Oja
- Institute of Chemistry, University of Tartu, Ravila 14A, Tartu 50411, Estonia
| | - Sulev Sild
- Institute of Chemistry, University of Tartu, Ravila 14A, Tartu 50411, Estonia
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Ravila 14A, Tartu 50411, Estonia
| |
Collapse
|
5
|
Jia Q, Zhao Y, Yan F, Wang Q. QSAR model for predicting the toxicity of organic compounds to fathead minnow. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35420-35428. [PMID: 30350137 DOI: 10.1007/s11356-018-3434-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
In this work, a new norm descriptor is proposed based on atomic properties. A quantitative structure-activity relationship (QSAR) model for predicting the toxicity of organic compounds to fathead minnow is further developed by norm descriptors. Results indicate that this new model based on the norm descriptors has satisfactory predictive results with the squared correlation coefficient (R2) and squared relation coefficient of the cross validation (Q2) of 0.8174 and 0.7923, respectively. Combining with Y-randomization test, applicability domain test, and comparison with other references, calculation results indicate that the QSAR model performs well both in the stability and the accuracy with wide application domain, which might be further used effectively for the safe and risk assessment of various organics.
Collapse
Affiliation(s)
- Qingzhu Jia
- School of Marine and Environmental Science, Tianjin University of Science and Technology, 13 St. 29, TEDA, 300457, Tianjin, People's Republic of China
| | - Yunpeng Zhao
- School of Marine and Environmental Science, Tianjin University of Science and Technology, 13 St. 29, TEDA, 300457, Tianjin, People's Republic of China
| | - Fangyou Yan
- School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, 13 St. 29, TEDA, 300457, Tianjin, People's Republic of China
| | - Qiang Wang
- School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, 13 St. 29, TEDA, 300457, Tianjin, People's Republic of China.
| |
Collapse
|
6
|
Abstract
Descriptors are one of the most essential components of predictive Quantitative Structure-Activity/Property/Toxicity Relationship (QSAR/QSPR/QSTR) modeling analysis, as they encode chemical information of molecules in the form of quantitative numbers, which are used to develop mathematical correlation models. The quality of a predictive model not only depends on good modeling statistics, but also on the extraction of chemical features. A significant amount of research since the beginning of QSAR analysis paradigm has led to the introduction of a large number of predictor variables or descriptors. The Extended Topochemical Atom (ETA) indices, developed by the authors' group, successfully address the aspects of molecular topology, electronic information, and different types of bonded interactions, and have been extensively employed for the modeling of different types of activity/property and toxicity endpoints. This chapter provides explicit information regarding the basis, algorithm, and applicability of the ETA indices for a predictive modeling paradigm.
Collapse
|
7
|
Roy K, Das RN. The “ETA” Indices in QSAR/QSPR/QSTR Research. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS IN DRUG DESIGN, PREDICTIVE TOXICOLOGY, AND RISK ASSESSMENT 2015. [DOI: 10.4018/978-1-4666-8136-1.ch002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Descriptors are one of the most essential components of predictive Quantitative Structure-Activity/Property/Toxicity Relationship (QSAR/QSPR/QSTR) modeling analysis, as they encode chemical information of molecules in the form of quantitative numbers, which are used to develop mathematical correlation models. The quality of a predictive model not only depends on good modeling statistics, but also on the extraction of chemical features. A significant amount of research since the beginning of QSAR analysis paradigm has led to the introduction of a large number of predictor variables or descriptors. The Extended Topochemical Atom (ETA) indices, developed by the authors' group, successfully address the aspects of molecular topology, electronic information, and different types of bonded interactions, and have been extensively employed for the modeling of different types of activity/property and toxicity endpoints. This chapter provides explicit information regarding the basis, algorithm, and applicability of the ETA indices for a predictive modeling paradigm.
Collapse
|
8
|
Cassotti M, Ballabio D, Todeschini R, Consonni V. A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas). SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:217-243. [PMID: 25780951 DOI: 10.1080/1062936x.2015.1018938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
REACH regulation demands information about acute toxicity of chemicals towards fish and supports the use of QSAR models, provided compliance with OECD principles. Existing models present some drawbacks that may limit their regulatory application. In this study, a dataset of 908 chemicals was used to develop a QSAR model to predict the LC50 96 hours for the fathead minnow. Genetic algorithms combined with k nearest neighbour method were applied on the training set (726 chemicals) and resulted in a model based on six molecular descriptors. An automated assessment of the applicability domain (AD) was carried out by comparing the average distance of each molecule from the nearest neighbours with a fixed threshold. The model had good and balanced performance in internal and external validation (182 test molecules), at the expense of a percentage of molecules outside the AD. Principal Component Analysis showed apparent correlations between model descriptors and toxicity.
Collapse
Affiliation(s)
- M Cassotti
- a Department of Earth and Environmental Sciences , University of Milano-Bicocca , Milano , Italy
| | | | | | | |
Collapse
|
9
|
Roy K, Das RN, Popelier PLA. Quantitative structure-activity relationship for toxicity of ionic liquids to Daphnia magna: aromaticity vs. lipophilicity. CHEMOSPHERE 2014; 112:120-127. [PMID: 25048897 DOI: 10.1016/j.chemosphere.2014.04.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/12/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
Water solubility of ionic liquids (ILs) allows their dispersion into aquatic systems and raises concerns on their pollutant potential. Again, lipophilicity can contribute to the toxicity of ILs due to increased ability of the compounds to cross lipoidal bio-membranes. In the present work, we have performed statistical model development for toxicity of a set of ionic liquids to Daphnia magna, a widely accepted model organism for toxicity testing, using computed lipophilicity, atom-type fragment, quantum topological molecular similarity (QTMS) and extended topochemical atom (ETA) descriptors. The models have been developed and validated in accordance with the Organization for Economic Co-operation and Development (OECD) guidelines for quantitative structure-activity relationships (QSARs). The best partial least squares (PLS) model outperforms the previously reported multiple linear regression (MLR) model in statistical quality and predictive ability (R(2)=0.955, Q(2)=0.917, Rpred(2)=0.848). In this work, the ETA descriptors show importance of branching and aromaticity while the QTMS descriptor ellipticity efficiently shows which compounds are influential in the data set, with reference to the model. While obvious importance of lipophilicity is evident from the models, the best model clearly shows the importance of aromaticity suggesting that more lipophilic ILs with less toxicity may be designed by avoiding aromaticity, nitrogen atoms and increasing branching in the cationic structure. The developed quantitative models are in consonance with the recent hypothesis of importance of aromaticity for toxicity of ILs.
Collapse
Affiliation(s)
- Kunal Roy
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, Great Britain, United Kingdom; Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, India.
| | - Rudra Narayan Das
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, India
| | - Paul L A Popelier
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, Great Britain, United Kingdom.
| |
Collapse
|
10
|
Kar S, Roy K. Quantification of contributions of molecular fragments for eye irritation of organic chemicals using QSAR study. Comput Biol Med 2014; 48:102-8. [DOI: 10.1016/j.compbiomed.2014.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 11/28/2022]
|
11
|
Kar S, Gajewicz A, Puzyn T, Roy K. Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells. Toxicol In Vitro 2014; 28:600-6. [PMID: 24412539 DOI: 10.1016/j.tiv.2013.12.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 01/28/2023]
Abstract
As experimental evaluation of the safety of nanoparticles (NPs) is expensive and time-consuming, computational approaches have been found to be an efficient alternative for predicting the potential toxicity of new NPs before mass production. In this background, we have developed here a regression-based nano quantitative structure-activity relationship (nano-QSAR) model to establish statistically significant relationships between the measured cellular uptakes of 109 magnetofluorescent NPs in pancreatic cancer cells with their physical, chemical, and structural properties encoded within easily computable, interpretable and reproducible descriptors. The developed model was rigorously validated internally as well as externally with the application of the principles of Organization for Economic Cooperation and Development (OECD). The test for domain of applicability was also carried out for checking reliability of the predictions. Important fragments contributing to higher/lower cellular uptake of NPs were identified through critical analysis and interpretation of the developed model. Considering all these identified structural attributes, one can choose or design safe, economical and suitable surface modifiers for NPs. The presented approach provides rich information in the context of virtual screening of relevant NP libraries.
Collapse
Affiliation(s)
- Supratik Kar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Agnieszka Gajewicz
- Laboratory of Environmental Chemometrics, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemometrics, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
12
|
Kar S, Roy K. Predictive Chemometric Modeling and Three-Dimensional Toxicophore Mapping of Diverse Organic Chemicals Causing Bioluminescent Repression of the Bacterium Genus Pseudomonas. Ind Eng Chem Res 2013. [DOI: 10.1021/ie402803h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Supratik Kar
- Drug Theoretics and Cheminformatics
Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics
Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
13
|
Roy K, Das RN. QSTR with extended topochemical atom (ETA) indices. 16. Development of predictive classification and regression models for toxicity of ionic liquids towards Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2013; 254-255:166-178. [PMID: 23608063 DOI: 10.1016/j.jhazmat.2013.03.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
Ionic liquids have been judged much with respect to their wide applicability than their considerable harmful effects towards the living ecosystem which has been observed in many instances. Hence, toxicological introspection of these chemicals by the development of predictive mathematical models can be of good help. This study presents an attempt to develop predictive classification and regression models correlating the structurally derived chemical information of a group of 62 diverse ionic liquids with their toxicity towards Daphnia magna and their interpretation. We have principally used the extended topochemical atom (ETA) indices along with various topological non-ETA and thermodynamic parameters as independent variables. The developed quantitative models have been subjected to extensive statistical tests employing multiple validation strategies from which acceptable results have been reported. The best models obtained from classification and regression studies captured necessary structural information on lipophilicity, branching pattern, electronegativity and chain length of the cationic substituents for explaining ecotoxicity of ionic liquids towards D. magna. The derived information can be successfully used to design better ionic liquid analogues acquiring the qualities of a true eco-friendly green chemical.
Collapse
Affiliation(s)
- Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, India.
| | - Rudra Narayan Das
- Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
14
|
Doucet JP, Doucet-Panaye A, Devillers J. Structure-activity relationship study of trifluoromethylketones: inhibitors of insect juvenile hormone esterase. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:481-499. [PMID: 23721304 DOI: 10.1080/1062936x.2013.792499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The juvenile hormone esterase (JHE) regulates juvenile hormone titre in insect hemolymph during its larval development. It has been suggested that JHE could be targeted for use in insect control. This enzyme can also be considered as involved in the phenomenon of endocrine disruption by xenobiotics in beneficial insects. Consequently, there is a need to know the characteristics of the molecules able to act on the JHE. Trifluoromethylketones (TFKs) are the most potent JHE inhibitors found to date and different quantitative structure-activity relationships (QSARs) have been derived for this group of chemicals. In this context, a set of 181 TFKs (118 active and 63 inactive compounds), tested on Trichoplusia ni for their JHE inhibition activity and described by physico-chemical descriptors, was split into different training and test sets to derive structure-activity relationship (SAR) models from support vector classification (SVC). A SVC model including 88 descriptors and derived from a Gaussian kernel was selected for its predictive performances. Another model computed only with 13 descriptors was also selected due to its mechanistic interpretability. This study clearly illustrates the difficulty in capturing the essential structural characteristics of the TFKs explaining their JHE inhibitory activity.
Collapse
Affiliation(s)
- J P Doucet
- ITODYS, UMR 7086, Université Paris 7, Paris, France.
| | | | | |
Collapse
|
15
|
Devillers J, Pandard P, Richard B. External validation of structure-biodegradation relationship (SBR) models for predicting the biodegradability of xenobiotics. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:979-993. [PMID: 24313438 DOI: 10.1080/1062936x.2013.848632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biodegradation is an important mechanism for eliminating xenobiotics by biotransforming them into simple organic and inorganic products. Faced with the ever growing number of chemicals available on the market, structure-biodegradation relationship (SBR) and quantitative structure-biodegradation relationship (QSBR) models are increasingly used as surrogates of the biodegradation tests. Such models have great potential for a quick and cheap estimation of the biodegradation potential of chemicals. The Estimation Programs Interface (EPI) Suite™ includes different models for predicting the potential aerobic biodegradability of organic substances. They are based on different endpoints, methodologies and/or statistical approaches. Among them, Biowin 5 and 6 appeared the most robust, being derived from the largest biodegradation database with results obtained only from the Ministry of International Trade and Industry (MITI) test. The aim of this study was to assess the predictive performances of these two models from a set of 356 chemicals extracted from notification dossiers including compatible biodegradation data. Another set of molecules with no more than four carbon atoms and substituted by various heteroatoms and/or functional groups was also embodied in the validation exercise. Comparisons were made with the predictions obtained with START (Structural Alerts for Reactivity in Toxtree). Biowin 5 and Biowin 6 gave satisfactorily prediction results except for the prediction of readily degradable chemicals. A consensus model built with Biowin 1 allowed the diminution of this tendency.
Collapse
|
16
|
QSPR with extended topochemical atom (ETA) indices. 4. Modeling aqueous solubility of drug like molecules and agrochemicals following OECD guidelines. Struct Chem 2012. [DOI: 10.1007/s11224-012-0080-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Roy K, Kabir H. QSPR with extended topochemical atom (ETA) indices: Modeling of critical micelle concentration of non-ionic surfactants. Chem Eng Sci 2012. [DOI: 10.1016/j.ces.2012.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|