1
|
Long Z, Yao J, Wu M, Liu SS, Tang L, Lei B, Wang J, Sun H. Acute toxicity of binary mixtures for quorum sensing inhibitors and sulfonamides against Aliivibrio fischeri: QSAR investigations and joint toxic actions. Curr Res Toxicol 2024; 6:100172. [PMID: 38803613 PMCID: PMC11128832 DOI: 10.1016/j.crtox.2024.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Quorum sensing inhibitors (QSIs), as a kind of ideal antibiotic substitutes, have been recommended to be used in combination with traditional antibiotics in medical and aquaculture fields. Due to the co-existence of QSIs and antibiotics in environmental media, it is necessary to evaluate their joint risk. However, there is little information about the acute toxicity of mixtures for QSIs and antibiotics. In this study, 10 QSIs and 3 sulfonamides (SAs, as the representatives for traditional antibiotics) were selected as the test chemicals, and their acute toxic effects were determined using the bioluminescence of Aliivibrio fischeri (A. fischeri) as the endpoint. The results indicated that SAs and QSIs all induced S-shaped dose-responses in A. fischeri bioluminescence. Furthermore, SAs possessed greater acute toxicity than QSIs, and luciferase (Luc) might be the target protein of test chemicals. Based on the median effective concentration (EC50) for each test chemical, QSI-SA mixtures were designed according to equitoxic (EC50(QSI):EC50(SA) = 1:1) and non-equitoxic ratios (EC50(QSI):EC50(SA) = 1:10, 1:5, 1:0.2, and 1:0.1). It could be observed that with the increase of QSI proportion, the acute toxicity of QSI-SA mixtures enhanced while the corresponding TU values decreased. Furthermore, QSIs contributed more to the acute toxicity of test binary mixtures. The joint toxic actions of QSIs and SAs were synergism for 23 mixtures, antagonism for 12 mixtures, and addition for 1 mixture. Quantitative structure-activity relationship (QSAR) models for the acute toxicity QSIs, SAs, and their binary mixtures were then constructed based on the lowest CDOCKER interaction energy (Ebind-Luc) between Luc and each chemical and the component proportion in the mixture. These models exhibited good robustness and predictive ability in evaluating the toxicity data and joint toxic actions of QSIs and SAs. This study provides reference data and applicable QSAR models for the environmental risk assessment of QSIs, and gives a new perspective for exploring the joint effects of QSI-antibiotic mixtures.
Collapse
Affiliation(s)
- Zhenheng Long
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jingyi Yao
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shu-shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bo Lei
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiajun Wang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Sriram S, Hasan S, Saeed S, Ahmad SA, Panda S. Primary Tuberculosis of Buccal and Labial Mucosa: Literature Review and a Rare Case Report of a Public Health Menace. Case Rep Dent 2023; 2023:6543595. [PMID: 37842328 PMCID: PMC10569891 DOI: 10.1155/2023/6543595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Tuberculosis (TB) is a chronic granulomatous infectious disorder, caused by Mycobacterium tuberculosis. Despite the recent advancements in antitubercular therapy (ATT), it remains a global public health concern. TB is a leading infectious cause of global mortality, second only to coronavirus disease 2019 (COVID-19). TB of the oral cavity is an uncommon occurrence and may be classified as a primary and secondary form. The primary tubercular lesions are extremely rare, as the intact oral squamous epithelium resists the entry of tubercle bacilli. The commonest oral TB lesion is solitary ulceration with undermined edges, usually on the tongue, that does not exhibit healing with conservative therapies. Owing to the atypical presentation, the oral TB lesions often go unnoticed during clinical examination; hence, an oral physician should be familiar with the various oral manifestations of TB. A timely diagnosis coupled with interdisciplinary treatment is the key to combat disease dissemination. This manuscript aims to report a rare case of primary tuberculosis of the buccal and labial mucosa in a 43-year-old immunocompetent male patient. Buccal and labial mucosa are the infrequently affected sites for primary oral TB lesions. A detailed literature search carried out on the Google Scholar and PubMed search engines revealed only fifteen case reports and two case series of primary tuberculosis of the buccal mucosa and labial mucosa.
Collapse
Affiliation(s)
- Shyamkumar Sriram
- Department of Social and Public Health, Ohio University, Athens, Ohio 45701, USA
| | - Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Shazina Saeed
- Amity Institute of Public Health & Hospital Administration, Amity University, UP, Noida, India
| | - Syed Ansar Ahmad
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Swagatika Panda
- Department of Oral and Maxillofacial Pathology, Institute of Dental Sciences, Siksha ‘O' Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Ahmed S, Prabahar AE, Saxena AK. Molecular docking-based interaction studies on imidazo[1,2-a] pyridine ethers and squaramides as anti-tubercular agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023:1-23. [PMID: 37365919 DOI: 10.1080/1062936x.2023.2225872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Development of new anti-tubercular agents is required in the wake of resistance to the existing and newly approved drugs through novel-validated targets like ATP synthase, etc. The major limitation of poor correlation between docking scores and biological activity by SBDD was overcome by a novel approach of quantitatively correlating the interactions of different amino acid residues present in the target protein structure with the activity. This approach well predicted the ATP synthase inhibitory activity of imidazo[1,2-a] pyridine ethers and squaramides (r = 0.84) in terms of Glu65b interactions. Hence, the models were developed on combined (r = 0.78), and training (r = 0.82) sets of 52, and 27 molecules, respectively. The training set model well predicted the diverse dataset (r = 0.84), test set (r = 0.755), and, external dataset (rext = 0.76). This model predicted three compounds from a focused library generated by incorporating the essential features of the ATP synthase inhibition with the pIC50 values in the range of 0.0508-0.1494 µM. Molecular dynamics simulation studies ascertain the stability of the protein structure and the docked poses of the ligands. The developed model(s) may be useful in the identification and optimization of novel compounds against TB.
Collapse
Affiliation(s)
- S Ahmed
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
- Department of Pharmaceutical Chemistry, Teerthanker Mahaveer College of Pharmacy, Moradabad, India
| | - A E Prabahar
- Department of Pharmaceutical Chemistry, Teerthanker Mahaveer College of Pharmacy, Moradabad, India
| | - A K Saxena
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| |
Collapse
|
4
|
Ayon NJ. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023; 13:625. [PMID: 37233666 PMCID: PMC10220967 DOI: 10.3390/metabo13050625] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Due to the continued emergence of resistance and a lack of new and promising antibiotics, bacterial infection has become a major public threat. High-throughput screening (HTS) allows rapid screening of a large collection of molecules for bioactivity testing and holds promise in antibacterial drug discovery. More than 50% of the antibiotics that are currently available on the market are derived from natural products. However, with the easily discoverable antibiotics being found, finding new antibiotics from natural sources has seen limited success. Finding new natural sources for antibacterial activity testing has also proven to be challenging. In addition to exploring new sources of natural products and synthetic biology, omics technology helped to study the biosynthetic machinery of existing natural sources enabling the construction of unnatural synthesizers of bioactive molecules and the identification of molecular targets of antibacterial agents. On the other hand, newer and smarter strategies have been continuously pursued to screen synthetic molecule libraries for new antibiotics and new druggable targets. Biomimetic conditions are explored to mimic the real infection model to better study the ligand-target interaction to enable the designing of more effective antibacterial drugs. This narrative review describes various traditional and contemporaneous approaches of high-throughput screening of natural products and synthetic molecule libraries for antibacterial drug discovery. It further discusses critical factors for HTS assay design, makes a general recommendation, and discusses possible alternatives to traditional HTS of natural products and synthetic molecule libraries for antibacterial drug discovery.
Collapse
Affiliation(s)
- Navid J Ayon
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Jakhar R, Khichi A, Kumar D, Dangi M, Chhillar AK. Discovery of Novel Inhibitors of Bacterial DNA Gyrase Using a QSAR-Based Approach. ACS OMEGA 2022; 7:32665-32678. [PMID: 36120069 PMCID: PMC9476201 DOI: 10.1021/acsomega.2c04310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 05/03/2023]
Abstract
Type II topoisomerases like DNA gyrase initiate ATP-dependent negative supercoils in bacterial DNA. It is critical in all of the bacteria but is missing from eukaryotes, making it a striking target for antibacterials. Ciprofloxacin is a clinically approved drug, but its clinical effectiveness is affected by the emergence of resistance in both Gram-positive and Gram-negative bacteria. Thus, it is vital to identify novel compounds that can efficiently inhibit DNA gyrase, and quantitative structure-activity relationship (QSAR) modeling is a quick and economical means to do so. A QSAR-based virtual screening approach was applied to identify new gyrase inhibitors using an in-house-generated combinatorial library of 29828 compounds from seven ciprofloxacin scaffold structures. QSAR was built using a data set of 271 compounds, which were identified as positive and negative inhibitors from existing data reported in in vitro studies. The best QSAR model was developed using the 5-fold cross-validation Neural Network in Orange, and it was based on five PaDEL descriptors with an accuracy and sensitivity of 83%. As a result of screening of an in-house-built combinatorial library with the best-developed QSAR model, 675 compounds were identified as potential inhibitors of DNA gyrase. These inhibitors were further docked with DNA gyrase using AutoDock to compare the binding mode and score of the selected/screened compounds, and 615 compounds exhibited a docking score comparable to or lower than that of ciprofloxacin. Out of these, the top five analogues 902b, 9699f, 4419f, 5538f, and 898b reported in our study have binding scores of -13.81, -12.95, -12.52, -12.43, and -12.41 kcal/mol, respectively. The MD simulations of these five analogues for 100 ns supported the interaction stability of analogues with Escherichia coli DNA gyrase. Ninety-one per cent of the analogues screened by the QSAR model displayed better binding energy than ciprofloxacin, demonstrating the efficacy of the generated model. The NN-QSAR model proposed in this manuscript can be downloaded from https://github.com/ritu225/NN-QSAR_model.git.
Collapse
Affiliation(s)
- Ritu Jakhar
- Centre
for Bioinformatics, Maharshi Dayanand University, Rohtak 12400, India
| | - Alka Khichi
- Centre
for Bioinformatics, Maharshi Dayanand University, Rohtak 12400, India
| | - Dev Kumar
- Centre
for Bioinformatics, Maharshi Dayanand University, Rohtak 12400, India
| | - Mehak Dangi
- Centre
for Bioinformatics, Maharshi Dayanand University, Rohtak 12400, India
- ,
| | - Anil Kumar Chhillar
- Centre
for Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
- ,
| |
Collapse
|
6
|
Ahmed S, Prabahar AE, Saxena AK. Molecular docking-based interactions in QSAR studies on Mycobacterium tuberculosis ATP synthase inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:289-305. [PMID: 35532308 DOI: 10.1080/1062936x.2022.2066175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/09/2022] [Indexed: 05/19/2023]
Abstract
Tuberculosis (TB) is a global threat with a large burden across the continents in terms of mortality, morbidity, and financial losses. The disease has evolved into multi-drug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) tuberculosis owing to numerous factors ranging from patients' non-compliance to demographical implications. There have been very few new drugs for resistant TB. Resistance has already been reported even for the newly introduced drug bedaquiline. An attempt has been made to integrate both structure-based and QSAR drug design techniques (QSAR-SBDD) for the identification of novel leads. The docking scores normally do not correlate with the activity. Hence, the docking results have been analysed in terms of the number of interactions rather than docking scores. The parameters derived from interactions have been used in developing the QSAR models. The best model shows a good correlation (r = 0.908) between the activity and interaction parameter 'C' describing the sum of all the interactions with each amino acid residue. This model also predicts external dataset with a good correlation (rext = 0.851) and can be used for the identification of novel chemical entities (NCEs) and repurposed drugs for TB therapeutics.
Collapse
Affiliation(s)
- S Ahmed
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
- Department of Pharmaceutical Chemistry, Teerthanker Mahaveer College of Pharmacy, Moradabad, India
| | - A E Prabahar
- Department of Pharmaceutical Chemistry, Teerthanker Mahaveer College of Pharmacy, Moradabad, India
| | - A K Saxena
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| |
Collapse
|
7
|
Kalli S, Araya-Cloutier C, Hageman J, Vincken JP. Insights into the molecular properties underlying antibacterial activity of prenylated (iso)flavonoids against MRSA. Sci Rep 2021; 11:14180. [PMID: 34244528 PMCID: PMC8270993 DOI: 10.1038/s41598-021-92964-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
High resistance towards traditional antibiotics has urged the development of new, natural therapeutics against methicillin-resistant Staphylococcus aureus (MRSA). Prenylated (iso)flavonoids, present mainly in the Fabaceae, can serve as promising candidates. Herein, the anti-MRSA properties of 23 prenylated (iso)flavonoids were assessed in-vitro. The di-prenylated (iso)flavonoids, glabrol (flavanone) and 6,8-diprenyl genistein (isoflavone), together with the mono-prenylated, 4'-O-methyl glabridin (isoflavan), were the most active anti-MRSA compounds (Minimum Inhibitory Concentrations (MIC) ≤ 10 µg/mL, 30 µM). The in-house activity data was complemented with literature data to yield an extended, curated dataset of 67 molecules for the development of robust in-silico prediction models. A QSAR model having a good fit (R2adj 0.61), low average prediction errors and a good predictive power (Q2) for the training (4% and Q2LOO 0.57, respectively) and the test set (5% and Q2test 0.75, respectively) was obtained. Furthermore, the model predicted well the activity of an external validation set (on average 5% prediction errors), as well as the level of activity (low, moderate, high) of prenylated (iso)flavonoids against other Gram-positive bacteria. For the first time, the importance of formal charge, besides hydrophobic volume and hydrogen-bonding, in the anti-MRSA activity was highlighted, thereby suggesting potentially different modes of action of the different prenylated (iso)flavonoids.
Collapse
Affiliation(s)
- Sylvia Kalli
- grid.4818.50000 0001 0791 5666Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Carla Araya-Cloutier
- grid.4818.50000 0001 0791 5666Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jos Hageman
- grid.4818.50000 0001 0791 5666Biometris, Applied Statistics, Wageningen University & Research, Wageningen, The Netherlands
| | - Jean-Paul Vincken
- grid.4818.50000 0001 0791 5666Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
8
|
Panwar U, Chandra I, Selvaraj C, Singh SK. Current Computational Approaches for the Development of Anti-HIV Inhibitors: An Overview. Curr Pharm Des 2020; 25:3390-3405. [PMID: 31538884 DOI: 10.2174/1381612825666190911160244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Today, HIV-1 infection has become an extensive problem to public health and a greater challenge to all working researchers throughout the world. Since the beginning of HIV-1 virus, several antiviral therapeutic agents have been developed at various stages to combat HIV-1 infection. But, many of antiviral drugs are on the platform of drug resistance and toxicology issues, needs an urgent constructive investigation for the development of productive and protective therapeutics to make an improvement of individual life suffering with viral infection. As developing a novel agent is very costly, challenging and time taking route in the recent times. METHODS The review summarized about the modern approaches of computational aided drug discovery to developing a novel inhibitor within a short period of time and less cost. RESULTS The outcome suggests on the premise of reported information that the computational drug discovery is a powerful technology to design a defensive and fruitful therapeutic agents to combat HIV-1 infection and recover the lifespan of suffering one. CONCLUSION Based on survey of the reported information, we concluded that the current computational approaches is highly supportive in the progress of drug discovery and controlling the viral infection.
Collapse
Affiliation(s)
- Umesh Panwar
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| | - Ishwar Chandra
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic
| | - Sanjeev K Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| |
Collapse
|
9
|
Bera I, Payghan PV. Use of Molecular Dynamics Simulations in Structure-Based Drug Discovery. Curr Pharm Des 2020; 25:3339-3349. [PMID: 31480998 DOI: 10.2174/1381612825666190903153043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/01/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Traditional drug discovery is a lengthy process which involves a huge amount of resources. Modern-day drug discovers various multidisciplinary approaches amongst which, computational ligand and structure-based drug designing methods contribute significantly. Structure-based drug designing techniques require the knowledge of structural information of drug target and drug-target complexes. Proper understanding of drug-target binding requires the flexibility of both ligand and receptor to be incorporated. Molecular docking refers to the static picture of the drug-target complex(es). Molecular dynamics, on the other hand, introduces flexibility to understand the drug binding process. OBJECTIVE The aim of the present study is to provide a systematic review on the usage of molecular dynamics simulations to aid the process of structure-based drug design. METHOD This review discussed findings from various research articles and review papers on the use of molecular dynamics in drug discovery. All efforts highlight the practical grounds for which molecular dynamics simulations are used in drug designing program. In summary, various aspects of the use of molecular dynamics simulations that underline the basis of studying drug-target complexes were thoroughly explained. RESULTS This review is the result of reviewing more than a hundred papers. It summarizes various problems that use molecular dynamics simulations. CONCLUSION The findings of this review highlight how molecular dynamics simulations have been successfully implemented to study the structure-function details of specific drug-target complexes. It also identifies the key areas such as stability of drug-target complexes, ligand binding kinetics and identification of allosteric sites which have been elucidated using molecular dynamics simulations.
Collapse
Affiliation(s)
- Indrani Bera
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, United States
| | - Pavan V Payghan
- Structural Biology and Bioinformatics Department, CSIR-IICB, Kolkata, India.,Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States
| |
Collapse
|
10
|
Tomar V, Kumar N, Tomar R, Sood D, Dhiman N, Dass SK, Prakash S, Madan J, Chandra R. Biological Evaluation of Noscapine analogues as Potent and Microtubule-Targeted Anticancer Agents. Sci Rep 2019; 9:19542. [PMID: 31862933 PMCID: PMC6925231 DOI: 10.1038/s41598-019-55839-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
In present investigation, an attempt was undertaken to modify the C-9 position of noscapine (Nos), an opium alkaloid to yield 9 -hydroxy methyl and 9 -carbaldehyde oxime analogues for augmenting anticancer potential. The synthesis of 9-hydroxy methyl analogue of Nos was carried out by Blanc reaction and 9-carbaldehyde oxime was engineered by oxime formation method and characterized using FT-IR, 1H NMR, 13C NMR, mass spectroscopy, and so on techniques. In silico docking techniques informed that 9-hydroxy methyl and 9-carbaldehyde oxime analogues of Nos had higher binding energy score as compared to Nos. The IC50 of Nos was estimated to be 46.8 µM signficantly (P < 0.05) higher than 8.2 µM of 9-carbaldehyde oxime and 4.6 µM of 9-hydroxy methyl analogue of Nos in U87, human glioblastoma cells. Moreover, there was significant (P < 0.05) difference between the IC50 of 9-carbaldehyde oxime and 9-hydroxy methyl analogue of Nos. Consistent to in vitro cytotoxicity data, 9-hydroxy methyl analogue of Nos induced significantly (P < 0.05) higher degree of apoptosis of 84.6% in U87 cells as compared to 78.5% and 64.3% demonstrated by 9-carbaldehyde oxime and Nos, respectively. Thus the higher therapeutic efficacy of 9-hydroxy methyl analogue of Nos may be credited to higher solubility and inhibitory constant (K).
Collapse
Affiliation(s)
- Vartika Tomar
- Department of Chemistry, University of Delhi, Delhi, 110007, India.,BioMedical Engineering Department, Faculty of Medicine, McGill University, Montreal, Canada
| | - Neeraj Kumar
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Ravi Tomar
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Damini Sood
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | | | | | - Satya Prakash
- BioMedical Engineering Department, Faculty of Medicine, McGill University, Montreal, Canada
| | | | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, 110007, India. .,Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
11
|
Kamsri P, Punkvang A, Hannongbua S, Suttisintong K, Kittakoop P, Spencer J, Mulholland AJ, Pungpo P. In silico study directed towards identification of the key structural features of GyrB inhibitors targeting MTB DNA gyrase: HQSAR, CoMSIA and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:775-800. [PMID: 31607177 DOI: 10.1080/1062936x.2019.1658218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Mycobacterium tuberculosis DNA gyrase subunit B (GyrB) has been identified as a promising target for rational drug design against fluoroquinolone drug-resistant tuberculosis. In this study, we attempted to identify the key structural feature for highly potent GyrB inhibitors through 2D-QSAR using HQSAR, 3D-QSAR using CoMSIA and molecular dynamics (MD) simulations approaches on a series of thiazole urea core derivatives. The best HQSAR and CoMSIA models based on IC50 and MIC displayed the structural basis required for good activity against both GyrB enzyme and mycobacterial cell. MD simulations and binding free energy analysis using MM-GBSA and waterswap calculations revealed that the urea core of inhibitors has the strongest interaction with Asp79 via hydrogen bond interactions. In addition, cation-pi interaction and hydrophobic interactions of the R2 substituent with Arg82 and Arg141 help to enhance the binding affinity in the GyrB ATPase binding site. Thus, the present study provides crucial structural features and a structural concept for rational design of novel DNA gyrase inhibitors with improved biological activities against both enzyme and mycobacterial cell, and with good pharmacokinetic properties and drug safety profiles.
Collapse
Affiliation(s)
- P Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University , Nakhon Phanon , Thailand
| | - A Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University , Nakhon Phanon , Thailand
| | - S Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University , Bangkok , Thailand
| | - K Suttisintong
- National Nanotechnology Center, NSTDA , Pathum Thani , Thailand
| | - P Kittakoop
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy , Bangkok , Thailand
- Chulabhorn Research Institute , Bangkok , Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education , Bangkok , Thailand
| | - J Spencer
- School of Cellular and Molecular Medicine, University of Bristol , Bristol , UK
| | - A J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Bristol , UK
| | - P Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University , Ubon Ratchathani , Thailand
| |
Collapse
|
12
|
Saxena M, Nandi S, Saxena AK. QSAR and molecular docking studies of lethal factor protease inhibitors against Bacillus anthracis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:715-731. [PMID: 31556709 DOI: 10.1080/1062936x.2019.1658219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Bacillus anthracis is considered as a biological warfare agent because it is the causative agent of the serious infectious anthrax disease. Delay in treatment leads to lethal factor-mediated toxaemia which is very critical due to lack of therapeutic options. Consequently, attempts have been made to discover potent lethal factor (LF) protease inhibitors such as small-molecule synthetic 2-thio-1,3-thiazolidine-4-one (rhodanine) compounds. But computed descriptor-based quantitative structure-activity relationship (QSAR) and drug design studies on such aspect are poorly represented. Therefore, an attempt was made for developing QSAR models using structural descriptors for 1,3-thiazolidine-4-one compounds. The models were developed on a series of 49 LF protease inhibitors using the combination of constitutional, functional group, atom-centred fragment and molecular property descriptors. The best QSAR model included four variables, namely, C-040, nR05, GVWAI-80 and ALOGP that correlated well with the anti-LF protease activity with a good correlation coefficient (r = 0.870) of good statistical significance (F4, 29 = 14.09 (α = 0.001) F4, 29 = 6.19). This model was also validated and explained 58.1% of variances of the Bacillus anthracis inhibitory activities of the studied compounds with r2pred = 0.710 which denotes external predictability. Finally, molecular docking was carried out to predict the mode of binding of some highly active congeneric compounds. It was shown that VAL 1403 is an important residue for phenyl ring. TYR 1456 and HIS 1418 are responsible for interaction with the rhodanine nucleus. Therefore, these residues are considered responsible for the inhibition of LF protease anthrax and can predict significant dimension of essential structural features of these inhibitors to evaluate, screen and help priorities of the synthesis of the candidates against anthrax bioterrorism.
Collapse
Affiliation(s)
- M Saxena
- Department of Chemistry, Amity University , Lucknow , India
| | - S Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University , Kashipur , India
| | - A K Saxena
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute , Lucknow , India
| |
Collapse
|
13
|
Sun H, Chen R, Jiang W, Chen X, Lin Z. QSAR-based investigation on antibiotics facilitating emergence and dissemination of antibiotic resistance genes: A case study of sulfonamides against mutation and conjugative transfer in Escherichia coli. ENVIRONMENTAL RESEARCH 2019; 173:87-96. [PMID: 30903818 DOI: 10.1016/j.envres.2019.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Antibiotic resistance genes (ARGs), which are emerging environmental contaminants, have posed great threats to global public health. Although extensive efforts have been undertaken to investigate ARG pollution, little attention has been paid to the structural information of antibiotics when exploring their impact on the emergence and dissemination of ARGs. In this study, setting Escherichia coli (E. coli) as the test organism, the effects of sulfonamides (SAs) on growth, mutation frequency and conjugative transfer frequency were tested, and quantitative structure-activity relationship (QSAR) was used to quantitatively analyze the promotion of SAs on these biological effects and explore their possible mechanism. The constructed QSAR models reveal that SAs may increase expression of the FtsZ protein and pili in E. coli via binding to the SdiA protein, ultimately leading to SAs facilitation of growth, mutation frequency and conjugative transfer frequency. The results indicate that SAs can produce selective pressure on E. coli to promote the emergence and dissemination of ARGs. This study provides reference data for further investigation of the emergence and dissemination of ARGs under antibiotic exposure and a new perspective for the mechanistic exploration of ARG pollution.
Collapse
Affiliation(s)
- Haoyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Post-doctoral Research Station, College of Civil Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China
| | - Renhui Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wei Jiang
- Shanghai Customs Inspection Center of Industrial Products & Raw Material, Shanghai 200135, China
| | - Xiang Chen
- Shanghai Customs Inspection Center of Industrial Products & Raw Material, Shanghai 200135, China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|
14
|
Kovalishyn V, Hodyna D, Sinenko VO, Blagodatny V, Semenyuta I, Slivchuk SR, Brovarets V, Poda G, Metelytsia L. Hybrid Design of Isonicotinic Acid Hydrazide Derivatives: Machine Learning Studies, Synthesis and Biological Evaluation of their Antituberculosis Activity. Curr Drug Discov Technol 2019; 17:365-375. [PMID: 30973110 DOI: 10.2174/1570163816666190411110331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Tuberculosis (TB) is an infection disease caused by Mycobacterium tuberculosis (Mtb) bacteria. One of the main causes of mortality from TB is the problem of Mtb resistance to known drugs. OBJECTIVE The goal of this work is to identify potent small molecule anti-TB agents by machine learning, synthesis and biological evaluation. METHODS The On-line Chemical Database and Modeling Environment (OCHEM) was used to build predictive machine learning models. Seven compounds were synthesized and tested in vitro for their antitubercular activity against H37Rv and resistant Mtb strains. RESULTS A set of predictive models was built with OCHEM based on a set of previously synthesized isoniazid (INH) derivatives containing a thiazole core and tested against Mtb. The predictive ability of the models was tested by a 5-fold cross-validation, and resulted in balanced accuracies (BA) of 61-78% for the binary classifiers. Test set validation showed that the models could be instrumental in predicting anti- TB activity with a reasonable accuracy (with BA = 67-79 %) within the applicability domain. Seven designed compounds were synthesized and demonstrated activity against both the H37Rv and multidrugresistant (MDR) Mtb strains resistant to rifampicin and isoniazid. According to the acute toxicity evaluation in Daphnia magna neonates, six compounds were classified as moderately toxic (LD50 in the range of 10-100 mg/L) and one as practically harmless (LD50 in the range of 100-1000 mg/L). CONCLUSION The newly identified compounds may represent a starting point for further development of therapies against Mtb. The developed models are available online at OCHEM http://ochem.eu/article/11 1066 and can be used to virtually screen for potential compounds with anti-TB activity.
Collapse
Affiliation(s)
- Vasyl Kovalishyn
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street 02660, Kyiv, Ukraine
| | - Diana Hodyna
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street 02660, Kyiv, Ukraine
| | - Vitaliy O Sinenko
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street 02660, Kyiv, Ukraine
| | - Volodymyr Blagodatny
- P.L. Shupyk National Medical Academy of Postgraduate Education, 9 Dorohozhytska Street 04112, Kyiv, Ukraine
| | - Ivan Semenyuta
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street 02660, Kyiv, Ukraine
| | - Sergiy R Slivchuk
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street 02660, Kyiv, Ukraine
| | - Volodymyr Brovarets
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street 02660, Kyiv, Ukraine
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Suite 510, Toronto, Ontario, M5G 0A3, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Larysa Metelytsia
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street 02660, Kyiv, Ukraine
| |
Collapse
|