1
|
Fesatidou M, Petrou A, Geronikaki A. Design, Synthesis, Biological Evaluation and Molecular Docking Studies of New Thiazolidinone Derivatives as NNRTIs and SARS-CoV-2 Main Protease Inhibitors. Chem Biodivers 2024; 21:e202401697. [PMID: 39442074 PMCID: PMC11644116 DOI: 10.1002/cbdv.202401697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 10/25/2024]
Abstract
HIV-1 remains a major health problem worldwide since the virus has developed drug-resistant strains, so, the need for novel agents is urgent. The protein reverse transcriptase plays fundamental role in the viruses' replication cycle. FDA approved Delavirdine bearing a sulfonamide moiety, while thiazolidinone has demonstrated significant anti-HIV activity as a core heterocycle or derivative of substituted heterocycles. In this study, thirty new thiazolidinone derivatives (series A, B and C) bearing sulfonamide group were designed, synthesized and evaluated for their HIV-1 RT inhibition activity predicted by computer program PASS taking into account the best features of available NNRTIs as well as against SARS-COV-2 main protease. Seven compounds showed good anti-HIV inhibitory activity, with two of them, C1 and C2 being better (IC50 0.18 μΜ & 0.12 μΜ respectively) than the reference drug nevirapine (IC50 0.31 μΜ). The evaluation of molecules to inhibit the main protease revealed that 6 of the synthesized compounds exhibited excellent to moderate activity with two of them (B4 and B10) having better IC50 values (0.15 & 0.19 μΜ respectively) than the reference inhibitor GC376 (IC50 0.439 μΜ). The docking studies is coincides with experimental results, showing good binding mode to both enzymes.
Collapse
Affiliation(s)
- Maria Fesatidou
- Department of Pharmaceutical ChemistrySchool of PharmacyAristotle University of ThessalonikiThessaloniki54124Greece
| | - Anthi Petrou
- Department of Pharmaceutical ChemistrySchool of PharmacyAristotle University of ThessalonikiThessaloniki54124Greece
| | - Athina Geronikaki
- Department of Pharmaceutical ChemistrySchool of PharmacyAristotle University of ThessalonikiThessaloniki54124Greece
| |
Collapse
|
2
|
Nong Y, Zhou X, Li S, Liu Q, Zhang Y, Liang J, Zhang Y, Liu C. Efficient and fast screening and separation based on computer-aided screening and complex chromatography methods for lipoxygenase inhibitors from Ganoderma lucidum. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:599-616. [PMID: 38287705 DOI: 10.1002/pca.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024]
Abstract
INTRODUCTION Accurate screening and targeted preparative isolation of active substances from natural medicines have long been technical challenges in natural medicine research. OBJECTIVES This study outlines a new approach for improving the efficiency of natural product preparation, focusing on the rapid and accurate screening of potential active ingredients in Ganoderma lucidum and efficient preparation of lipoxidase inhibitors, with the aim of providing new ideas for the treatment of Alzheimer's disease with G. lucidum. METHODS The medicinal plant G. lucidum was selected through ultrafiltration coupled with liquid chromatography and mass spectrometry (UF-LC-MS) and computer-assisted screening for lipoxygenase (LOX) inhibitors. In addition, the inhibitory effect of the active compounds on LOX was studied using enzymatic reaction kinetics, and the underlying mechanism is discussed. Finally, based on the earlier activity screening guidelines, the identified ligands were isolated and purified through complex chromatography (high-speed countercurrent chromatography and semi-preparative high-performance liquid chromatography). RESULTS Five active ingredients, ganoderic acids A, B, C2, D2, and F, were identified and isolated from G. lucidum. We improved the efficiency and purity of active compound preparation using virtual computer screening and enzyme inhibition assays combined with complex chromatography. CONCLUSION The innovative methods of UF-LC-MS, computer-aided screening, and complex chromatography provide powerful tools for screening and separating LOX inhibitors from complex matrices and provide a favourable platform for the large-scale production of bioactive substances and nutrients.
Collapse
Affiliation(s)
- Yuyu Nong
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Xu Zhou
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Qiang Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yutong Zhang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Jiaqi Liang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| |
Collapse
|
3
|
Mishra AK, Thajudeen KY, Singh M, Rasool G, Kumar A, Singh H, Sharma K, Mishra A. In-silico based Designing of benzo [d]thiazol-2-amine Derivatives as Analgesic and Anti-inflammatory Agents. Antiinflamm Antiallergy Agents Med Chem 2024; 23:230-260. [PMID: 39162282 DOI: 10.2174/0118715230296273240725065839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Benzo[d]thiazoles represent a significant class of heterocyclic compounds renowned for their diverse pharmacological activities, including analgesic and antiinflammatory properties. This molecular scaffold holds substantial interest among medicinal chemists owing to its structural versatility and therapeutic potential. Incorporating the benzo[d]thiazole moiety into drug molecules has been extensively investigated as a strategy to craft novel therapeutics with heightened efficacy and minimized adverse effects. AIMS The aim of the present research work was to design, synthesize and characterize the new benzo[d]thiazol-2-amine derivatives as potent analgesic and anti-inflammatory agents. MATERIALS AND METHODS The synthesis of the presented benzo[d]thiazol-2-amine derivatives was performed by condensing-(4-chlorobenzylidene) benzo[d]thiazol-2-amine with a number of substituted phenols in the presence of potassium iodide and anhydrous potassium carbonate in dry acetone. IR spectroscopy, 1HNMR spectroscopy, 13CNMR spectroscopy and Mass spectroscopy methods were used to characterize the structural properties of all 13 newly synthesized derivatives. The molecular properties of these newly synthesized derivatives were estimated to study the attributes of drug-like candidates. Benzo[d]thiazol-2-amine derivatives were molecularly docked with selective enzymes COX-1 and COX-2. Analgesic and anti-inflammatory activities of synthesized compounds were evaluated by using albino rats. RESULTS Findings of the research suggested that compounds G3, G4, G6, G8 and G11 possess higher binding affinity than diclofenac sodium, when docking was performed with enzyme COX-1. Compounds G1, G3, G6, G8 and G10 showed lower binding affinity than Indomethacin when docking was performed with enzyme COX-2. In vitro evaluation of the COX-1 and COX-2 enzyme inhibitory activities was performed for synthesized compounds. DISCUSSION Compounds G10 and G11 exhibited significant COX-1 and COX-2 enzyme inhibitory action with an IC50 value of 5.0 and 10 μM, respectively. Using the hot plate method and the carrageenan-induced rat paw edema model, the synthesized compounds were screened for their biological activities, including analgesic and anti-inflammatory activities. Highest analgesic action was exhibited by derivative G11 and the compound G10 showed the highest anti-inflammatory response. Inhibition of COX may be considered as a mechanism of action of these compounds. CONCLUSION It was concluded that synthesized derivatives G10 and G11 exhibited significant analgesic and anti-inflammatory effect; therefore, the said compounds may be subjected to further clinical investigation for establishing these as future compounds for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Arun K Mishra
- Central Facility of Instrumentation, SOS School of Pharmacy, IFTM University, 244001, Moradabad, India
| | - Kamal Y Thajudeen
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mhaveer Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, 244102, India
| | - Gulam Rasool
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad, 244001, India
| | - Arvind Kumar
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad, 244001, India
| | - Harpreet Singh
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad, 244001, India
| | - Kalicharan Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, 110017, New Delhi, India
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, 110017, New Delhi, India
| |
Collapse
|
4
|
Haroun M, Fesatidou M, Petrou A, Tratrat C, Zagaliotis P, Gavalas A, Venugopala KN, Kochkar H, Emeka PM, Younis NS, Elmaghraby DA, Almostafa MM, Chohan MS, Vizirianakis IS, Papadimitriou-Tsantarliotou A, Geronikaki A. Identification of Novel Cyclooxygenase-1 Selective Inhibitors of Thiadiazole-Based Scaffold as Potent Anti-Inflammatory Agents with Safety Gastric and Cytotoxic Profile. Molecules 2023; 28:molecules28083416. [PMID: 37110650 PMCID: PMC10142904 DOI: 10.3390/molecules28083416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Major obstacles faced by the use of nonsteroidal anti-inflammatory drugs (NSAID) are their gastrointestinal toxicity induced by non-selective inhibition of both cyclooxygenases (COX) 1 and 2 and their cardiotoxicity associated with a certain class of COX-2 selective inhibitors. Recent studies have demonstrated that selective COX-1 and COX-2 inhibition generates compounds with no gastric damage. The aim of the current study is to develop novel anti-inflammatory agents with a better gastric profile. In our previous paper, we investigated the anti-inflammatory activity of 4-methylthiazole-based thiazolidinones. Thus, based on these observations, herein we report the evaluation of anti-inflammatory activity, drug action, ulcerogenicity and cytotoxicity of a series of 5-adamantylthiadiazole-based thiazolidinone derivatives. The in vivo anti-inflammatory activity revealed that the compounds possessed moderate to excellent anti-inflammatory activity. Four compounds 3, 4, 10 and 11 showed highest potency (62.0, 66.7, 55.8 and 60.0%, respectively), which was higher than the control drug indomethacin (47.0%). To determine their possible mode of action, the enzymatic assay was conducted against COX-1, COX-2 and LOX. The biological results demonstrated that these compounds are effective COX-1 inhibitors. Thus, the IC50 values of the three most active compounds 3, 4 and 14 as COX-1 inhibitors were 1.08, 1.12 and 9.62 μΜ, respectively, compared to ibuprofen (12.7 μΜ) and naproxen (40.10 μΜ) used as control drugs. Moreover, the ulcerogenic effect of the best compounds 3, 4 and 14 were evaluated and revealed that no gastric damage was observed. Furthermore, compounds were found to be nontoxic. A molecular modeling study provided molecular insight to rationalize the COX selectivity. In summary, we discovered a novel class of selective COX-1 inhibitors that could be effectively used as potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Maria Fesatidou
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anthi Petrou
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Panagiotis Zagaliotis
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | - Antonis Gavalas
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Hafedh Kochkar
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Promise M Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Dalia Ahmed Elmaghraby
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mervt M Almostafa
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad Shahzad Chohan
- Biomedical Sciences Department, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Haroun M. Review on the Developments of Benzothiazole-containing Antimicrobial Agents. Curr Top Med Chem 2022; 22:2630-2659. [PMID: 36503470 DOI: 10.2174/1568026623666221207161752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
The infectious diseases caused by bacterial resistance to antibiotics constitute an increasing threat to human health on a global scale. An increasing number of infections, including tuberculosis, pneumonia, salmonellosis and gonorrhea, are becoming progressively challenging to cure owing to the ineffectiveness of current clinically used antibiotics and presents a serious health threat worldwide in medical community. The major concern of this global health threat is the ability of microorganisms to develop one or several mechanisms of resistance to antibiotics, making them inefficient to therapeutic treatment. The quest for discovering novel scaffold with antimicrobial property is particularly in great need to face future challenges in hospital and healthcare settings. Hence, the development of benzothiazoles is of considerable interest to medicinal chemists. Benzothiazole, being part of an important class of heterocyclic scaffold retains a wide spectrum of various attractive pharmacological activities. Antibiotic resistance represents an increasing burden comprising medical cost, hospital stay and mortality. Several derivatives containing a benzothiazole scaffold, reported in the literature, were found to display remarkable potencies towards diverse Grampositive and Gram-negative bacterial pathogens. The principal focus concerns the antibacterial potential of benzothiazole-based derivatives as antimicrobial agents interacting with targets in bacterial pathogens. In this review, we also disclose the significance of the benzothiazole moiety in the discovery of new antibacterial compounds, the potential of benzothiazole-based derivatives in the case of resistant bacterial strains, optimization of their antibacterial activity, and their future perspectives. The structure-activity relationship study and the mode of action of the title derivatives are highlighted too.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
6
|
Haroun M, Petrou A, Tratrat C, Kolokotroni A, Fesatidou M, Zagaliotis P, Gavalas A, Venugopala KN, Sreeharsha N, Nair AB, Elsewedy HS, Geronikaki A. Discovery of 5-Methylthiazole-Thiazolidinone Conjugates as Potential Anti-Inflammatory Agents: Molecular Target Identification and In Silico Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238137. [PMID: 36500230 PMCID: PMC9737349 DOI: 10.3390/molecules27238137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
A series of previously synthesized 5-benzyliden-2-(5-methylthiazole-2-ylimino)thiazoli- din-4-one were evaluated for their anti-inflammatory activity on the basis of PASS predictive outcomes. The predictive compounds were found to demonstrate moderate to good anti-inflammatory activity, and some of them displayed better activity than indomethacin used as the reference drug. Structure-activity relationships revealed that the activity of compounds depends not only on the nature of the substituent but also on its position in the benzene ring. The most active compounds were selected to investigate their possible mechanism of action. COX and LOX activity were determined and found that the title compounds were active only to COX-1 enzymes with an inhibitory effect superior to the reference drug naproxen. As for LOX inhibitory activity, the derivatives failed to show remarkable LOX inhibition. Therefore, COX-1 has been identified as the main molecular target for the anti-inflammatory activity of our compounds. The docking study against COX-1 active site revealed that the residue Arg 120 was found to be responsible for activity. In summary, the 5-thiazol-based thiazolidinone derivatives have been identified as a novel class of selective COX-1 inhibitors.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (M.H.); (A.G.); Tel.: +966-550909890 (M.H.); +30-2310-997-616 (A.G.)
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Aggeliki Kolokotroni
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Fesatidou
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis Zagaliotis
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | - Antonis Gavalas
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Heba Sadek Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (M.H.); (A.G.); Tel.: +966-550909890 (M.H.); +30-2310-997-616 (A.G.)
| |
Collapse
|
7
|
Experimental and In Silico Evaluation of New Heteroaryl Benzothiazole Derivatives as Antimicrobial Agents. Antibiotics (Basel) 2022; 11:antibiotics11111654. [DOI: 10.3390/antibiotics11111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
In this manuscript, we describe the design, preparation, and studies of antimicrobial activity of a series of novel heteroarylated benzothiazoles. A molecular hybridization approach was used for the designing compounds. The in vitro evaluation exposed that these compounds showed moderate antibacterial activity. Compound 2j was found to be the most potent (MIC/MBC at 0.23–0.94 mg/mL and 0.47–1.88 mg/mL) On the other hand, compounds showed good antifungal activity (MIC/MFC at 0.06–0.47 and 0.11–0.94 mg/mL respectively) with 2d being the most active one. The docking studies revealed that inhibition of E. coli MurB and 14-lanosterol demethylase probably represent the mechanism of antibacterial and antifungal activities.
Collapse
|