1
|
Mandwie M, Piper JA, Gorrie CA, Keay KA, Musumeci G, Al-Badri G, Castorina A. Rapid GFAP and Iba1 expression changes in the female rat brain following spinal cord injury. Neural Regen Res 2022; 17:378-385. [PMID: 34269213 PMCID: PMC8463994 DOI: 10.4103/1673-5374.317982] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Evidence suggests that rapid changes to supporting glia may predispose individuals with spinal cord injury (SCI) to such comorbidities. Here, we interrogated the expression of astrocyte- and microglial-specific markers glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) in the rat brain in the first 24 hours following SCI. Female Sprague-Dawley rats underwent thoracic laminectomy; half of the rats received a mild contusion injury at the level of the T10 vertebral body (SCI group), the other half did not (Sham group). Twenty-four hours post-surgery the amygdala, periaqueductal grey, prefrontal cortex, hypothalamus, lateral thalamus, hippocampus (dorsal and ventral) in rats were collected. GFAP and Iba1 mRNA and protein levels were measured by real-time quantitative polymerase chain reaction and Western blot. In SCI rats, GFAP mRNA and protein expression increased in the amygdala and hypothalamus. In contrast, gene and protein expression decreased in the thalamus and dorsal hippocampus. Interestingly, Iba1 transcripts and proteins were significantly diminished only in the dorsal and ventral hippocampus, where gene expression diminished. These findings demonstrate that as early as 24 hours post-SCI there are region-specific disruptions of GFAP and Iba1 transcript and protein levels in higher brain regions. All procedures were approved by the University of Technology Sydney Institutional Animal Care and Ethics Committee (UTS ACEC13-0069).
Collapse
Affiliation(s)
- Mawj Mandwie
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Jordan A Piper
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Catherine A Gorrie
- Neural Injury Research Unit, School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kevin A Keay
- School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Ghaith Al-Badri
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney; School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Electroconvulsive therapy for self-injurious behaviour in autism spectrum disorders: recognizing catatonia is key. Curr Opin Psychiatry 2018; 31:116-122. [PMID: 29256924 DOI: 10.1097/yco.0000000000000393] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Self-injurious behaviour (SIB) is a devastating condition frequently encountered in autism spectrum disorders (ASDs) that can lead to dangerous tissue injury and profound psychosocial difficulty. An increasing number of reports over the past decade have demonstrated the swift and well tolerated resolution of intractable SIB with electroconvulsive therapy (ECT) when psychopharmacological and behavioural interventions are ineffective. The current article provides a review of the salient literature, including the conceptualization of repetitive self-injury along the catatonia spectrum, and further clarifies the critical distinction between ECT and contingent electric shock. RECENT FINDINGS We searched electronically for literature regarding ECT for self-injurious behaviour from 1982 to present, as the first known report was published in 1982. Eleven reports were identified that presented ECT in the resolution of self-injury in autistic or intellectually disabled patients, and another five reports discussed such in typically developing individuals. These reports and related literature present such self-injury along the spectrum of agitated catatonia, with subsequent implications for ECT. SUMMARY Intractable self-injury remains a significant challenge in ASDs, especially when patients do not respond adequately to behavioural and psychopharmacological interventions. ECT is well tolerated and efficacious treatment for catatonia, and can confer marked reduction in SIB along the agitated catatonia spectrum.
Collapse
|
3
|
Chu CW, Chien WC, Chung CH, Chao PC, Chang HA, Kao YC, Chou YC, Tzeng NS. Electroconvulsive Therapy and Risk of Dementia-A Nationwide Cohort Study in Taiwan. Front Psychiatry 2018; 9:397. [PMID: 30245639 PMCID: PMC6138057 DOI: 10.3389/fpsyt.2018.00397] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Electroconvulsive therapy (ECT) is an effective treatment for schizophrenia, bipolar disorder, and major depressive disorder, and a temporary memory loss may occur after ECT. However, the association between ECT in patients with schizophrenia, bipolar disorder, and major depressive disorder, and the risk of dementia is yet to be examined. Objective: This study aimed to clarify as to whether ECT is associated with the risk of dementia after ECT in patients with schizophrenia, bipolar disorder, and major depressive disorder, using Taiwan's National Health Insurance Research Database (NHIRD). Methods: A total of 3,796 enrolled participants (schizophrenia, 46.68%; bipolar disorder, 11.77%; and major depressive disorder, 41.55%) with 994 patients who had received ECT and 2,982 controls matched for sex and age, between January 1, and December 31, 2000, were selected from the NHIRD. After adjusting for confounding factors, Fine and Gray's survival analysis was used to compare the risk of developing dementia during the 10 years of follow-up. Results: Of the study patients, 45 (4.53%) of them developed dementia when compared to 149 (5.0%) in the control group. Fine and Gray's survival analysis revealed that the study patients were not associated with an increased risk of dementia [hazard ratio (HR) = 0.612, 95% confidence interval (CI) = 0.438-1.854, P = 0.325]. After adjusting for sex, age, monthly income, urbanization level, geographic region, and comorbidities, the adjusted HR was 0.633 (95% CI = 0.448 - 1.895, P = 0.304). Conclusion: This study supports that ECT was not associated with the increased risk of dementia in patients with schizophrenia, bipolar disorder, and major depressive disorder, using the NHIRD.
Collapse
Affiliation(s)
- Ching-Wen Chu
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Pei-Chun Chao
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Guloksuz S, Arts B, Walter S, Drukker M, Rodriguez L, Myint AM, Schwarz MJ, Ponds R, van Os J, Kenis G, Rutten BPF. The impact of electroconvulsive therapy on the tryptophan-kynurenine metabolic pathway. Brain Behav Immun 2015; 48:48-52. [PMID: 25765557 DOI: 10.1016/j.bbi.2015.02.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/12/2015] [Accepted: 02/28/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND There is still limited knowledge about the mechanism of action of electroconvulsive therapy (ECT) in the treatment of depression. Substantial evidence suggests a role for the immune-moderated tryptophan (TRP)-kynurenine (KYN) pathway in depression; i.e. a depression-associated disturbance in the balance between the TRP-KYN metabolites towards a neurotoxic process. We, therefore, aimed to investigate the impact of ECT treatment on the TRP-KYN pathway, in association with ECT-related alterations in depressive symptoms. METHOD Twenty-three patients with unipolar or bipolar depression, treated with bilateral ECT twice a week were recruited. Blood serum samples, and depression scores using the Hamilton Depression Rating Scale-17 items (HDRS) as well as the Beck Depression Inventory (BDI) were collected repeatedly during the period of ECT and until 6 weeks after the last ECT session. TRP and KYN metabolites were analyzed in serum using the High Performance Liquid Chromatography. Four patients could not complete the study; thereby yielding data of 19 patients. Analyses were performed using multilevel linear regression analysis. RESULTS There was an increase in kynurenic acid (KYNA) (B=0.04, p=0.001), KYN/TRP ratio (B=0.14, p=0.001), KYNA/KYN ratio (B=0.07, p<0.0001), and KYNA/3-hydroxykynurenine ratio (B=0.01, p=0.008) over time during the study period. KYN (B=-0.02, p=0.003) and KYN/TRP (B=-0.19, p=0.003) were negatively associated with total HDRS over time. Baseline TRP metabolite concentrations did not predict time to ECT response. CONCLUSION Our findings show that ECT influences the TRP-KYN pathway, with a shift in TRP-KYN metabolites balance towards molecules with neuroprotective properties correlating with antidepressant effects of ECT; thereby providing a first line of evidence that the mechanism of action of ECT is (co)mediated by the TRP-KYN pathway.
Collapse
Affiliation(s)
- Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, EURON, School for Mental Health and Neuroscience, Maastricht, The Netherlands; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Baer Arts
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, EURON, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Sharon Walter
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, EURON, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Marjan Drukker
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, EURON, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Laura Rodriguez
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, EURON, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Aye-Mu Myint
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, EURON, School for Mental Health and Neuroscience, Maastricht, The Netherlands; University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Markus J Schwarz
- University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Rudolf Ponds
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, EURON, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, EURON, School for Mental Health and Neuroscience, Maastricht, The Netherlands; King's College London, King's Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, United Kingdom
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, EURON, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, EURON, School for Mental Health and Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Effects of brief pulse and ultrabrief pulse electroconvulsive stimulation on rodent brain and behaviour in the corticosterone model of depression. Int J Neuropsychopharmacol 2014; 17:1477-86. [PMID: 24607259 DOI: 10.1017/s1461145714000200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Brief pulse electroconvulsive therapy (BP ECT; pulse width 0.5-1.5 ms) is the most effective treatment available for severe depression. However, its use is associated with side-effects. The stimulus in ultrabrief pulse ECT (UBP ECT; pulse width 0.25-0.3 ms) is more physiological and has been reported to be associated with less cognitive side-effects, but its antidepressant effectiveness is not yet well established. Using electroconvulsive stimulation (ECS), the animal model of ECT, we previously reported UBP ECS to be significantly less effective than well-established BP ECS in eliciting behavioural, molecular and cellular antidepressant-related effects in naïve rats. We have now compared the effects of BP and UBP ECS in an animal model of depression related to exogenous supplementation with the stress-induced glucocorticoid hormone, corticosterone. Corticosterone administration resulted in an increase in immobility time in the forced swim test (FST) (p < 0.01) and decreases in the expression of brain-derived neurotrophic factor (BDNF) (p < 0.05) and glial fibrillary acidic protein (GFAP) (p < 0.001) in the hippocampus and frontal cortex. There was no significant difference in the duration or type of seizure induced by BP (0.5 ms) or UBP (0.3 ms) ECS. UBP ECS proved to be as effective as BP ECS at inducing a behavioural antidepressant response in the FST with a significant decrease (p < 0.001) in immobility seen following administration of ECS. Both forms of ECS also induced significant increases in BDNF protein (p < 0.01) expression in the hippocampus. BP ECS (p < 0.05) but not UBP ECS induced a significant increase in GFAP levels in the hippocampus and frontal cortex. Overall, UBP ECS effectively induced antidepressant-related behavioural and molecular responses in the corticosterone supplementation model, providing the first preclinical data on the potential role of this form of ECS to treat a depression phenotype related to elevated corticosterone.
Collapse
|
6
|
Choi KS, Holtzheimer PE, Franco AR, Kelley ME, Dunlop BW, Hu XP, Mayberg HS. Reconciling variable findings of white matter integrity in major depressive disorder. Neuropsychopharmacology 2014; 39:1332-9. [PMID: 24352368 PMCID: PMC3988550 DOI: 10.1038/npp.2013.345] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/14/2013] [Accepted: 11/26/2013] [Indexed: 01/19/2023]
Abstract
Diffusion tensor imaging (DTI) has been used to evaluate white matter (WM) integrity in major depressive disorder (MDD), with several studies reporting differences between depressed patients and controls. However, these findings are variable and taken from relatively small studies often using suboptimal analytic approaches. The presented DTI study examined WM integrity in large samples of medication-free MDD patients (n=134) and healthy controls (n=54) using voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) approaches, and rigorous statistical thresholds. Compared with health control subjects, MDD patients show no significant differences in fractional anisotropy, radial diffusivity, mean diffusivity, and axonal diffusivity with either the VBM or the TBSS approach. Our findings suggest that disrupted WM integrity does not have a major role in the neurobiology of MDD in this relatively large study using optimal imaging acquisition and analysis; however, this does not eliminate the possibility that certain patient subgroups show WM disruption associated with depression.
Collapse
Affiliation(s)
- Ki Sueng Choi
- Department of Psychiatry, Emory University, Atlanta, GA, USA,The Wallace H Coulter, Department of Biomedical Engineering, Biomedical, Imaging Technology Center, Georgia Institute of Technology, Emory University, Atlanta, GA, USA,Department of Psychiatry, Emory University or The Wallace H Coulter, Department of Biomedical Engineering, Biomedical, Imaging Technology Center, Georgia Institute of Technology, Emory University, 101 Woodruff Circle WMB 4306, Atlanta, GA 30345, USA, Tel: +404 727 5528, E-mail:
| | - Paul E Holtzheimer
- Department of Psychiatry, Emory University, Atlanta, GA, USA,Departments of Psychiatry and Surgery, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alexandre R Franco
- Department of Electrical Engineering, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mary E Kelley
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Boadie W Dunlop
- Department of Psychiatry, Emory University, Atlanta, GA, USA
| | - Xiaoping P Hu
- The Wallace H Coulter, Department of Biomedical Engineering, Biomedical, Imaging Technology Center, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Helen S Mayberg
- Department of Psychiatry, Emory University, Atlanta, GA, USA,Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Niciu MJ, Henter ID, Sanacora G, Zarate CA. Glial abnormalities in substance use disorders and depression: does shared glutamatergic dysfunction contribute to comorbidity? World J Biol Psychiatry 2014; 15:2-16. [PMID: 24024876 PMCID: PMC4180366 DOI: 10.3109/15622975.2013.829585] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Preclinical and clinical research in neuropsychiatric disorders, particularly mood and substance use disorders, have historically focused on neurons; however, glial cells-astrocytes, microglia, and oligodendrocytes - also play key roles in these disorders. METHODS Peer-reviewed PubMed/Medline articles published through December 2012 were identified using the following keyword combinations: glia, astrocytes, oligodendrocytes/glia, microglia, substance use, substance abuse, substance dependence, alcohol, opiate, opioid, cocaine, psychostimulants, stimulants, and glutamate. RESULTS Depressive and substance use disorders are highly comorbid, suggesting a common or overlapping aetiology and pathophysiology. Reduced astrocyte cell number occurs in both disorders. Altered glutamate neurotransmission and metabolism - specifically changes in the levels/activity of transporters, receptors, and synaptic proteins potentially related to synaptic physiology - appear to be salient features of both disorders. Glial cell pathology may also underlie the pathophysiology of both disorders via impaired astrocytic production of neurotrophic factors. Microglial/neuroinflammatory pathology is also evident in both depressive and substance use disorders. Finally, oligodendrocyte impairment decreases myelination and impairs expression of myelin-related genes in both substance use and depressive disorders. CONCLUSIONS Glial-mediated glutamatergic dysfunction is a common neuropathological pathway in both substance use and depression. Therefore, glutamatergic neuromodulation is a rational drug target in this comorbidity.
Collapse
Affiliation(s)
- Mark J. Niciu
- Yale University Department of Psychiatry/Connecticut Mental Health Center (CMHC), Clinical Neuroscience Research Unit (CNRU), New Haven, CT, USA,Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Ioline D. Henter
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Gerard Sanacora
- Yale University Department of Psychiatry/Connecticut Mental Health Center (CMHC), Clinical Neuroscience Research Unit (CNRU), New Haven, CT, USA
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
8
|
|
9
|
Antidepressant imipramine induces human astrocytes to differentiate into cells with neuronal phenotype. Int J Neuropsychopharmacol 2010; 13:603-15. [PMID: 20356437 DOI: 10.1017/s1461145710000210] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Several recent studies have expanded our conception of the role of astrocytes in neurogenesis, proposing that these cells may contribute to this phenomenon not only as a source of trophic substances, but also as stem cells themselves. We recently observed in vitro that human mature astrocytes can be induced to differentiate into cells with a neuronal phenotype. Antidepressant drugs have been shown to increase neurogenesis in the adult rodent hippocampus. In order to better understand the role of astroglia in antidepressant-induced neurogenesis, primary astrocyte cultures were treated with the antidepressant imipramine. Cell morphology was rapidly modified by treatment. In fact, whereas untreated astrocytes showed large, flat morphology, after a few hours of treatment cells exhibited a round-shaped cell body with long, thin processes. The expression of neuronal markers was analysed by immunocytochemistry, Western Blot and RT-PCR at different treatment times. Results showed an increase in neuronal markers such as neurofilament and neuron-specific enolase (NSE), whereas glial fibrillary acidic protein (GFAP) and nestin expression were not significantly modified by treatment. Similar results were obtained with fluoxetine and venlafaxine. Hes1 mRNA significantly increased after 2 h of treatment, suggesting involvement of this transcription factor in this process. These results confirm the role of astrocytes in neurogenesis and suggest that these cells may represent one of the targets of antidepressants.
Collapse
|
10
|
Improvement of cognition in a patient with Cotard's delusions and frontotemporal atrophy receiving electroconvulsive therapy (ECT) for depression. Int Psychogeriatr 2009; 21:600-3. [PMID: 19368757 DOI: 10.1017/s1041610209008990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 69-year-old man presented with Cotard's delusions, insomnia, profound depression, amnesia, difficulty concentrating, and cognitive deficit after two different surgical interventions. Brain imaging showed frontotemporal-subcortical atrophy and lateral ventricular enlargement. He responded poorly to a combination of sertraline, amisulpride and mirtazapine, with modest benefit on insomnia, and developed hypotension. After 18 days he was switched to olanzapine and venlafaxine, but his cognition worsened. He underwent bilateral electroconvulsive therapy (ECT). His mood improved, cognitive performance increased and anxiety symptoms remitted. This improvement persisted through the one-month post-discharge follow-up and depression eventually remitted.
Collapse
|
11
|
Abstract
Despite the prevalence of the mood disorders, the underlying neuropathology is still poorly understood. This article describes abnormalities in brain activation that have been reported in neuroimaging studies of patients with depression and bipolar illness. Functional changes have been identified in regions important for neural networks underlying emotional processing, including frontal, subcortical, and limbic regions. The interpretation of neuroimaging studies in mood disorders is limited by potential confounding factors including medication effects, duration of illness, comorbidity, and gender.
Collapse
|
12
|
Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2007; 6:219-33. [PMID: 17511618 PMCID: PMC2918806 DOI: 10.2174/187152707780619326] [Citation(s) in RCA: 431] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent research has changed the perception of glia from being no more than silent supportive cells of neurons to being dynamic partners participating in brain metabolism and communication between neurons. This discovery of new glial functions coincides with growing evidence of the involvement of glia in the neuropathology of mood disorders. Unanticipated reductions in the density and number of glial cells are reported in fronto-limbic brain regions in major depression and bipolar illness. Moreover, age-dependent decreases in the density of glial fibrillary acidic protein (GFAP) - immunoreactive astrocytes and levels of GFAP protein are observed in the prefrontal cortex of younger depressed subjects. Since astrocytes participate in the uptake, metabolism and recycling of glutamate, we hypothesize that an astrocytic deficit may account for the alterations in glutamate/GABA neurotransmission in depression. Reductions in the density and ultrastructure of oligodendrocytes are also detected in the prefrontal cortex and amygdala in depression. Pathological changes in oligodendrocytes may be relevant to the disruption of white matter tracts in mood disorders reported by diffusion tensor imaging. Factors such as stress, excess of glucocorticoids, altered gene expression of neurotrophic factors and glial transporters, and changes in extracellular levels of neurotransmitters released by neurons may modify glial cell number and affect the neurophysiology of depression. Therefore, we will explore the role of these events in the possible alteration of glial number and activity, and the capacity of glia as a promising new target for therapeutic medications. Finally, we will consider the temporal relationship between glial and neuronal cell pathology in depression.
Collapse
Affiliation(s)
- G Rajkowska
- Department of Psychiatry, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
13
|
Czéh B, Simon M, Schmelting B, Hiemke C, Fuchs E. Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 2006; 31:1616-26. [PMID: 16395301 DOI: 10.1038/sj.npp.1300982] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Analysis of post-mortem tissue from patients with affective disorders has revealed a decreased number of glial cells in several brain areas. Here, we examined whether long-term psychosocial stress influences the number and morphology of hippocampal astrocytes in an animal model with high validity for research on the pathophysiology of major depression. Adult male tree shrews were submitted to 5 weeks of psychosocial stress, after which immunocytochemical and quantitative stereological techniques were used to estimate the total number and somal volume of glial fibrillary acidic protein-positive astrocytes in the hippocampal formation. Stress significantly decreased both the number (-25%) and somal volume (-25%) of astroglia, effects that correlated notably with the stress-induced hippocampal volume reduction. Additionally, we examined whether antidepressant treatment with fluoxetine, a selective serotonin reuptake inhibitor, offered protection from these stress-induced effects. Animals were subjected to 7 days of psychosocial stress before the onset of daily oral administration of fluoxetine (15 mg/kg per day), with stress continued throughout the 28-day treatment period. Fluoxetine treatment prevented the stress-induced numerical decrease of astrocytes, but had no counteracting effect on somal volume shrinkage. In nonstressed animals, fluoxetine treatment had no effect on the number of astrocytes, but stress exposure significantly reduced their somal volumes (-20%). These notable changes of astroglial structural plasticity in response to stress and antidepressant treatment support the notion that glial changes may contribute to the pathophysiology of affective disorders as well as to the cellular actions of antidepressants.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany.
| | | | | | | | | |
Collapse
|
14
|
Busnello JV, Leke R, Oses JP, Feier G, Bruch R, Quevedo J, Kapczinski F, Souza DO, Cruz Portela LV. Acute and chronic electroconvulsive shock in rats: Effects on peripheral markers of neuronal injury and glial activity. Life Sci 2006; 78:3013-7. [PMID: 16413036 DOI: 10.1016/j.lfs.2005.11.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/01/2005] [Accepted: 11/29/2005] [Indexed: 11/27/2022]
Abstract
Electroconvulsive therapy is considered one of the most effective treatments of major depression, but controversy still exists on whether it may be brain damaging. The aim of this work was to evaluate the cerebrospinal fluid (CSF) levels of neuron specific enolase (NSE), protein S100B and lactate of rats submitted to acute and chronic models of ECS. Rats were submitted to either one shock (acute) or a series of eight shocks, applied one at every 48 h (chronic). CSF samples were collected at 0, 3, 6, 12, 24, 48 and 72 h after the shock in the acute model and at these same time intervals after the last shock in the chronic model. Both models did not produce significant alterations in the levels of NSE. S100B levels were significantly increased at 6 h in the chronic model (p<0.0001). There was a significant increase in the levels of lactate at 0 h in both models (p<0.001). These results support the proposition that ECS does not produce neural damage, and suggest that the alterations in the levels of S100B and lactate may reflect an astrocytic activity of a protective nature.
Collapse
Affiliation(s)
- João Vicente Busnello
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Ramiro Barcelos, 2600-Anexo 90035-003 Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Green W, Patil P, Marsden CA, Bennett GW, Wigmore PM. Treatment with olanzapine increases cell proliferation in the subventricular zone and prefrontal cortex. Brain Res 2006; 1070:242-5. [PMID: 16405875 DOI: 10.1016/j.brainres.2005.11.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 11/02/2005] [Accepted: 11/02/2005] [Indexed: 11/25/2022]
Abstract
The present study examines the effect of chronic treatment with two atypical neuroleptics, commonly used to treat schizophrenia. Adult rats were given either risperidone or olanzapine in their drinking water for 21 days. Memory was assessed on the first and last day of treatment using an object discrimination test, and the rate of cell proliferation in the subventricular zone (SVZ), dentate gyrus (DG) and prefrontal cortex (PFC) was quantified by immuno staining for Ki-67. The results show that both risperidone and olanzapine significantly improved performance in object discrimination after 21 days, and additionally, olanzapine significantly increased cell proliferation in the SVZ and PFC but not the DG.
Collapse
Affiliation(s)
- William Green
- Institute of Neuroscience, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | | | |
Collapse
|
16
|
van Calker D, Biber K. The Role of Glial Adenosine Receptors in Neural Resilience and the Neurobiology of Mood Disorders. Neurochem Res 2005; 30:1205-17. [PMID: 16341582 DOI: 10.1007/s11064-005-8792-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2005] [Indexed: 10/25/2022]
Abstract
Adenosine receptors were classified into A1- and A2-receptors in the laboratory of Bernd Hamprecht more than 25 years ago. Adenosine receptors are instrumental to the neurotrophic effects of glia cells. Both microglia and astrocytes release after stimulation via adenosine receptors factors that are important for neuronal survival and growth. Neuronal resilience is now considered as of pivotal importance in the neurobiology of mood disorders and their treatment. Both sleep deprivation and electroconvulsive therapy, two effective therapeutic measures in mood disorders, are associated with an increase of adenosine and upregulation of adenosine A1-receptors in the brain. Parameters closely related to adenosine receptor activation such as cerebral metabolic rate and delta power in the sleep EEG provide indirect evidence that adenosinergic signaling may be associated with the therapeutic response to these measures. Thus, neurotrophic effects evoked by adenosine receptors might be important in the mechanism of action of ECT and perhaps also sleep deprivation.
Collapse
Affiliation(s)
- Dietrich van Calker
- Department of Psychiatry and Psychotherapy, University of Freiburg, D-79104 Freiburg, Germany.
| | | |
Collapse
|