1
|
Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. Superoxide Anion Chemistry-Its Role at the Core of the Innate Immunity. Int J Mol Sci 2023; 24:1841. [PMID: 36768162 PMCID: PMC9916283 DOI: 10.3390/ijms24031841] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Classically, superoxide anion O2•- and reactive oxygen species ROS play a dual role. At the physiological balance level, they are a by-product of O2 reduction, necessary for cell signalling, and at the pathological level they are considered harmful, as they can induce disease and apoptosis, necrosis, ferroptosis, pyroptosis and autophagic cell death. This revision focuses on understanding the main characteristics of the superoxide O2•-, its generation pathways, the biomolecules it oxidizes and how it may contribute to their modification and toxicity. The role of superoxide dismutase, the enzyme responsible for the removal of most of the superoxide produced in living organisms, is studied. At the same time, the toxicity induced by superoxide and derived radicals is beneficial in the oxidative death of microbial pathogens, which are subsequently engulfed by specialized immune cells, such as neutrophils or macrophages, during the activation of innate immunity. Ultimately, this review describes in some depth the chemistry related to O2•- and how it is harnessed by the innate immune system to produce lysis of microbial agents.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC—Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC—Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
2
|
Zhuravleva YS, Sherin PS. Influence of pH on radical reactions between kynurenic acid and amino acids tryptophan and tyrosine. Part II. Amino acids within the protein globule of lysozyme. Free Radic Biol Med 2021; 174:211-224. [PMID: 34363946 DOI: 10.1016/j.freeradbiomed.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 12/20/2022]
Abstract
An acidosis, a decrease of pH within a living tissue, may alter yields of radical reactions if participating radicals undergo partial or complete protonation. One of photosensitizers found in the human eye lens, kynurenic acid (KNA-), possesses pKa 5.5 for its radical form that is close to physiological pH 6.89 for a healthy lens. In this work we studied the influence of pH on mechanisms and products of photoinduced radical reactions between KNA- and amino acids tryptophan (Trp) and tyrosine (Tyr) within a globule of model protein, Hen White Egg Lysozyme (HEWL). Our results show that the rate constant of back electron transfer from kynurenyl to HEWL• radicals with the restoration of initial reagents - the major decay pathway for these radicals - does not change in the pH 3-7. The quantum yield of HEWL degradation is also pH independent, however a shift of pH from 7 to 5 completely changes the outcome of photoinduced damage to HEWL from intermolecular cross-linking to oxygenation. HPLC-MS analysis has shown that four of six Trp and all Tyr residues of HEWL are modified in different extents at all pH, but the lowering of pH from 7 to 5 significantly changes the direction of main photodamage from Trp62 to Trp108 located at the entrance and bottom of enzymatic center, respectively. A decrease of intermolecular cross-links via Trp62 is followed by an increase in quantities of intramolecular cross-links Tyr20-Tyr23 and Tyr23-Tyr53. The obtained results point out the competence of cross-linking and oxygenation reactions for Trp and Tyr radicals within a protein globule and significant increase of oxygenation to the total damage of protein in the case of cross-linking deceleration by coulombic repulsion of positively charged protein globules.
Collapse
Affiliation(s)
- Yuliya S Zhuravleva
- International Tomography Center SB RAS, Institutskaya street 3a, Novosibirsk, Russia; Novosibirsk State University, Pirogova street 2, Novosibirsk, Russia
| | - Peter S Sherin
- International Tomography Center SB RAS, Institutskaya street 3a, Novosibirsk, Russia; Novosibirsk State University, Pirogova street 2, Novosibirsk, Russia.
| |
Collapse
|
3
|
Muñoz-Rugeles L, Galano A, Alvarez-Idaboy JR. Chemical repair mechanisms of damaged tyrosyl and tryptophanyl residues in proteins by the superoxide radical anion. NEW J CHEM 2020. [DOI: 10.1039/c9nj04998c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Even though reaction of the superoxide anion radical/hydroperoxide radical could lead to oxidation of biomolecules, it can repair oxidized tyrosyl and tryptophanyl residues in proteins at diffusion-controlled rates.
Collapse
Affiliation(s)
- Leonardo Muñoz-Rugeles
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- México DF 04510
- Mexico
| | - Annia Galano
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- San Rafael Atlixco 186
- Col. Vicentina. Iztapalapa. C. P. 09340
- México DF
| | - Juan Raúl Alvarez-Idaboy
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- México DF 04510
- Mexico
| |
Collapse
|
4
|
α- and β-casein aggregation induced by riboflavin-sensitized photo-oxidation occurs via di-tyrosine cross-links and is oxygen concentration dependent. Food Chem 2018; 256:119-128. [DOI: 10.1016/j.foodchem.2018.02.090] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/07/2023]
|
5
|
Carroll L, Pattison DI, Davies JB, Anderson RF, Lopez-Alarcon C, Davies MJ. Superoxide radicals react with peptide-derived tryptophan radicals with very high rate constants to give hydroperoxides as major products. Free Radic Biol Med 2018; 118:126-136. [PMID: 29496618 DOI: 10.1016/j.freeradbiomed.2018.02.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 11/23/2022]
Abstract
Oxidative damage is a common process in many biological systems and proteins are major targets for damage due to their high abundance and very high rate constants for reaction with many oxidants (both radicals and two-electron species). Tryptophan (Trp) residues on peptides and proteins are a major sink for a large range of biological oxidants as these side-chains have low radical reduction potentials. The resulting Trp-derived indolyl radicals (Trp•) have long lifetimes in some circumstances due to their delocalized structures, and undergo only slow reaction with molecular oxygen, unlike most other biological radicals. In contrast, we have shown previously that Trp• undergo rapid dimerization. In the current study, we show that Trp• also undergo very fast reaction with superoxide radicals, O2•-, with k 1-2 × 109 M-1 s-1. These values do not alter dramatically with peptide structure, but the values of k correlate with overall peptide positive charge, consistent with positive electrostatic interactions. These reactions compete favourably with Trp• dimerization and O2 addition, indicating that this may be a major fate in some circumstances. The Trp• + O2•- reactions occur primarily by addition, rather than electron transfer, with this resulting in high yields of Trp-derived hydroperoxides. Subsequent degradation of these species, both stimulated and native decay, gives rise to N-formylkynurenine, kynurenine, alcohols and diols. These data indicate that reaction of O2•- with Trp• should be considered as a major pathway to Trp degradation on peptides and proteins subjected to oxidative damage.
Collapse
Affiliation(s)
- Luke Carroll
- The Heart Research Institute, Sydney, Australia; Sydney Medical School, University of Sydney, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - David I Pattison
- The Heart Research Institute, Sydney, Australia; Sydney Medical School, University of Sydney, Australia
| | - Justin B Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Robert F Anderson
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Camilo Lopez-Alarcon
- Departmento de Quimica Fisica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Chile
| | - Michael J Davies
- The Heart Research Institute, Sydney, Australia; Sydney Medical School, University of Sydney, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
6
|
Abstract
Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established.
Collapse
Affiliation(s)
- Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| |
Collapse
|
7
|
|
8
|
Morlière P, Mazière JC, Patterson LK, Conte MA, Dupas JL, Ducroix JP, Filipe P, Santus R. On the repair of oxidative damage to apoferritin: a model study with the flavonoids quercetin and rutin in aerated and deaerated solutions. Free Radic Res 2013; 47:463-73. [DOI: 10.3109/10715762.2013.791024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Houée-Levin C, Bobrowski K. The use of the methods of radiolysis to explore the mechanisms of free radical modifications in proteins. J Proteomics 2013; 92:51-62. [PMID: 23454334 DOI: 10.1016/j.jprot.2013.02.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 10/27/2022]
Abstract
The method of radiolysis is based upon the interaction of ionising radiation with the solvent (water). One can form the same free radicals as in conditions of oxidative stress ((•)OH, O2(•)(-), NO2(•)…). Moreover, the quantity of reactive oxygen (ROS) or nitrogen (RNS) species formed in the irradiated medium can be calculated knowing the dose and the radiation chemical yield, G, thus this method is quantitative. The use of the method of radiolysis has provided a wealth of data, especially about the kinetics of the oxidation by various free radicals and their mechanisms, the identification of transients formed, their lifetimes and the possibility to repair them by the so-called antioxidants. In this review we have collected the most recent data about protein oxidation that might be useful to a proteomic approach. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Chantal Houée-Levin
- Laboratoire de Chimie Physique, UMR 8000, Université Paris Sud, (France), also at CNRS, France
| | | |
Collapse
|
10
|
Domazou AS, Zelenay V, Koppenol WH, Gebicki JM. Efficient depletion of ascorbate by amino acid and protein radicals under oxidative stress. Free Radic Biol Med 2012; 53:1565-73. [PMID: 22910232 DOI: 10.1016/j.freeradbiomed.2012.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/27/2012] [Accepted: 08/03/2012] [Indexed: 11/23/2022]
Abstract
Ascorbate levels decrease in organisms subjected to oxidative stress, but the responsible reactions have not been identified. Our earlier studies have shown that protein C-centered radicals react rapidly with ascorbate. In aerobes, these radicals can react with oxygen to form peroxyl radicals. To estimate the relative probabilities of the reactions of ascorbate with protein C- and O-centered radicals, we measured by pulse radiolysis the rate constants of the reactions of C-centered radicals in Gly, Ala, and Pro with O₂ and of the resultant peroxyl radicals with ascorbate. Calculations based on the concentrations of ascorbate and oxygen in human tissues show that the relative probabilities of reactions of the C-centered amino acid radicals with O₂ and ascorbate vary between 1:2.6 for the pituitary gland and 1:0.02 for plasma, with intermediate ratios for other tissues. The high frequency of occurrence of Gly, Ala, and Pro in proteins and the similar reaction rate constants of their C-centered radicals with O₂ and their peroxo-radicals with ascorbate suggest that our results are also valid for proteins. Thus, the formation of protein C- or O-centered radicals in vivo can account for the loss of ascorbate in organisms under oxidative stress.
Collapse
Affiliation(s)
- Anastasia S Domazou
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich CH-8093, Switzerland
| | | | | | | |
Collapse
|
11
|
Patterson LK, Mazière JC, Bartels DM, Hug GL, Santus R, Morlière P. Evidence for a slow and oxygen-insensitive intra-molecular long range electron transfer from tyrosine residues to the semi-oxidized tryptophan 214 in human serum albumin: its inhibition by bound copper (II). Amino Acids 2010; 42:1269-75. [DOI: 10.1007/s00726-010-0819-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 11/22/2010] [Indexed: 11/29/2022]
|
12
|
Reduction of protein radicals by GSH and ascorbate: potential biological significance. Amino Acids 2010; 39:1131-7. [DOI: 10.1007/s00726-010-0610-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 04/23/2010] [Indexed: 01/02/2023]
|
13
|
Domazou AS, Koppenol WH, Gebicki JM. Efficient repair of protein radicals by ascorbate. Free Radic Biol Med 2009; 46:1049-57. [PMID: 19185609 DOI: 10.1016/j.freeradbiomed.2009.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 12/22/2008] [Accepted: 01/06/2009] [Indexed: 11/15/2022]
Abstract
Protein radicals were selectively generated by reaction with azide radicals on Trp and Tyr residues in insulin, beta-lactoglobulin, pepsin, chymotrypsin, and bovine serum albumin at rate constants in the range (2.9-19)x10(8) M(-1) s(-1). Monohydrogen ascorbate reduced tryptophanyl radicals in chymotrypsin and pepsin with rate constants in the narrow range of (1.6-1.8)x10(8) M(-1) s(-1), whereas beta-lactoglobulin tryptophanyl radicals reacted almost 10 times slower. The corresponding values for the protein tyrosyl radicals were about an order of magnitude smaller. Comparison of the rate constants of reactions of free and protein-bound tryptophanyl and tyrosyl radicals showed that, in most cases, the location of the radicals in the protein chain did not constitute a major barrier to the reaction with monohydrogen ascorbate. The results suggest that, under physiological concentrations of dioxygen, monohydrogen ascorbate is likely to be a significant target of protein radicals. It seems likely, therefore, that reaction with protein radicals may be responsible for much of the well-documented loss of ascorbate in living organisms subjected to oxidative stress.
Collapse
Affiliation(s)
- Anastasia S Domazou
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | | |
Collapse
|
14
|
Zhu H, Chen S, Yao S, Wang W. Protective effect of melatonin on photo-damage to lysozyme. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 94:125-30. [DOI: 10.1016/j.jphotobiol.2008.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/18/2008] [Accepted: 11/18/2008] [Indexed: 11/29/2022]
|
15
|
Lam MA, Pattison DI, Bottle SE, Keddie DJ, Davies MJ. Nitric Oxide and Nitroxides Can Act as Efficient Scavengers of Protein-Derived Free Radicals. Chem Res Toxicol 2008; 21:2111-9. [DOI: 10.1021/tx800183t] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Magdalena A. Lam
- The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, NSW, Australia, Queensland University of Technology, Brisbane, QLD, Australia, and Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | - David I. Pattison
- The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, NSW, Australia, Queensland University of Technology, Brisbane, QLD, Australia, and Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | - Steven E. Bottle
- The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, NSW, Australia, Queensland University of Technology, Brisbane, QLD, Australia, and Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel J. Keddie
- The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, NSW, Australia, Queensland University of Technology, Brisbane, QLD, Australia, and Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael J. Davies
- The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, NSW, Australia, Queensland University of Technology, Brisbane, QLD, Australia, and Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Viteri G, Edwards AM, De la Fuente J, Silva E. Study of the Interaction Between Triplet Riboflavin and the α-, βH- and βL-Crystallins of the Eye Lens ¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0770535sotibt2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Abstract
Current studies provide evidence that proteins are initial targets of ROS (reactive oxygen species) in biological systems and that the damaged proteins can in turn damage other cell constituents. This study was designed to test the possibility that protein radicals generated by ROS can oxidize GSH and assess the probability of this reaction in vivo by measurement of the rate constant of this reaction. Lysozyme radicals were generated by hydroxyl and azide radicals in steady-state gamma ray radiolysis. In the absence of dioxygen, a range of protein carbon-centred amino acid radicals were produced by the hydroxyl radicals, and defined tryptophan radicals by the azide radicals. In the presence of dioxygen, each carbon-centred radical was converted to a protein peroxyl radical. Each of the peroxyl radicals was able to oxidize a molecule of GSH, regardless of its location in the protein. The peroxyl radicals were 10 and 20 times more effective GSH oxidants than the carbon-centred radicals produced randomly in the lysozyme, or the defined tryptophan lysozyme radicals respectively. We obtained for the first time the rate constant of reaction between a protein free-radical and GSH. Lysozyme tryptophan carbon radicals generated by nanosecond pulse radiolysis and flash photolysis oxidized GSH with a rate constant of (1.05+/-0.05)x10(5) M(-1) x s(-1). Overall, the results are consistent with the hypothesis that protein radicals may be important intermediates in the pathway linking oxidative stress and damage in living organisms and emphasize the strongly enhancing role of dioxygen in this process.
Collapse
Affiliation(s)
- Thomas Nauser
- *Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Willem H. Koppenol
- *Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Janusz M. Gebicki
- †Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Li Q, Nishioka M, Kashiwagi H, Torimoto Y, Sadakata M. Desorption of the C 2- Anion from the Au−C-Deposited Y 2O 3-Stabilized ZrO 2 Surface. J Phys Chem B 2003. [DOI: 10.1021/jp020114s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Quanxin Li
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, and Production Technology Institute of Kao Corporation, 1334 Minato, Wakayama 640, Japan
| | - Masateru Nishioka
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, and Production Technology Institute of Kao Corporation, 1334 Minato, Wakayama 640, Japan
| | - Hodeo Kashiwagi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, and Production Technology Institute of Kao Corporation, 1334 Minato, Wakayama 640, Japan
| | - Yoshifumi Torimoto
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, and Production Technology Institute of Kao Corporation, 1334 Minato, Wakayama 640, Japan
| | - Masayoshi Sadakata
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, and Production Technology Institute of Kao Corporation, 1334 Minato, Wakayama 640, Japan
| |
Collapse
|
19
|
Viteri G, Edwards AM, De la Fuente J, Silva E. Study of the interaction between triplet riboflavin and the alpha-, betaH- and betaL-crystallins of the eye lens. Photochem Photobiol 2003; 77:535-40. [PMID: 12812297 DOI: 10.1562/0031-8655(2003)077<0535:sotibt>2.0.co;2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Time-resolved photolysis studies of riboflavin (RF) were carried out in the presence and absence of alpha-, betaH- and betaL-crystallins of bovine eye lens. The transient absorption spectra, recorded 5 micros after the laser pulse, reveal the presence of the absorption band (625-675 nm) of the RF neutral triplet state (tau = 42 micros) accompanied by the appearance of a long-lived absorption (tau = 320 micros) in the 500-600 nm region due to the formation of the semireduced RF radical. The RF excited state is quenched by the crystallin proteins through a mechanism that involves electron transfer from the proteins to the flavin, as shown by the decrease of the triplet RF band with the concomitant increase of the band of its semireduced form. Tryptophan loss on RF-sensitized photooxidation of the crystallins when irradiated with monochromatic visible light (450 nm) in a 5% oxygen atmosphere was studied. A direct correlation was found between the triplet RF quenching rate constants by the different crystallin fractions and the decomposition rate constants for the exposed and partially buried tryptophans in the proteins. The RF-sensitized photooxidation of the crystallins is accompanied by the decrease of the low molecular weight constituents giving rise to its multimeric forms. A direct correlation was observed between the initial rate of decrease of the low molecular weight bands corresponding to the irradiated alpha-, betaH- and betaL-crystallins and the quenching constant values of triplet RF by the different crystallins. The correlations found in this study confirm the importance of the Type-I photosensitizing mechanism of the crystallins, when RF acts as a sensitizer at low oxygen concentration, as can occur in the eye lens.
Collapse
Affiliation(s)
- Gabriela Viteri
- Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
20
|
Filipe P, Morlière P, Patterson LK, Hug GL, Mazière JC, Mazière C, Freitas JP, Fernandes A, Santus R. Mechanisms of flavonoid repair reactions with amino acid radicals in models of biological systems: a pulse radiolysis study in micelles and human serum albumin. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1572:150-62. [PMID: 12204344 DOI: 10.1016/s0304-4165(02)00302-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neutral tryptophan (*Trp) and tyrosine (TyrO(*)) radicals are repaired by certain flavonoids in buffer, in micelles and in human serum albumin (HSA) with corresponding formation of semioxidized flavonoid radicals. In deaerated buffer, *Trp but not TyrO(*) radicals react with catechin. In micelles, quercetin and rutin repair both *Trp and TyrO(*) radicals. In addition to amino acid reactivity, microenvironmental factors and nature of the flavonoids govern this repair. Electron transfer efficiencies from quercetin to negatively charged *Trp radicals are 100% in the micellar pseudophases of positively charged cetyltrimethylammonium bromide, (CTAB), and neutral Triton X100 (TX100), but 55% in negatively charged sodium dodecyl sulfate (SDS). In oxygen-saturated CTAB micelles, quercetin also reacts with the superoxide radical anion. When bound to domain IIA of HSA, quercetin repairs, by intra- or intermolecular encounter, less than 20% of oxidative damage to HSA. Quercetin can also repair freely circulating oxidized molecules with repair efficiencies falling to 7% for oxidized Trp, Tyr and alpha-MSH and to less than 2% for urate radical. This limited effectiveness is attributed both to the inaccessibility of bound quercetin and rutin toward radicals of circulating molecules and to the diffusion-controlled recombination of these radicals.
Collapse
Affiliation(s)
- Paulo Filipe
- Centro de Metabolismo e Endocrinologia da Faculdade de Medicina de Lisboa, 1699 Lisbon, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Filipe P, Morlière P, Patterson LK, Hug GL, Mazière JC, Mazière C, Freitas JP, Fernandes A, Santus R. Mechanisms of flavonoid repair reactions with amino acid radicals in models of biological systems: a pulse radiolysis study in micelles and human serum albumin. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1571:102-14. [PMID: 12049790 DOI: 10.1016/s0304-4165(02)00188-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neutral tryptophan (*Trp) and tyrosine (TyrO(*)) radicals are repaired by certain flavonoids in buffer, in micelles and in human serum albumin (HSA) with corresponding formation of semioxidized flavonoid radicals. In deaerated buffer, *Trp but not TyrO(*) radicals react with catechin. In micelles, quercetin and rutin repair both *Trp and TyrO(*) radicals. In addition to amino acid reactivity, microenvironmental factors and nature of the flavonoids govern this repair. Electron transfer efficiencies from quercetin to negatively charged *Trp radicals are 100% in the micellar pseudophases of positively charged cetyltrimethylammonium bromide, (CTAB), and neutral Triton X100 (TX100), but 55% in negatively charged sodium dodecyl sulfate (SDS). In oxygen-saturated CTAB micelles, quercetin also reacts with the superoxide radical anion. When bound to domain IIA of HSA, quercetin repairs, by intra- or intermolecular encounter, less than 20% of oxidative damage to HSA. Quercetin can also repair freely circulating oxidized molecules with repair efficiencies falling to 7% for oxidized *Trp, Tyr and alpha-MSH and to less than 2% for urate radical. This limited effectiveness is attributed both to the inaccessibility of bound quercetin and rutin toward radicals of circulating molecules and to the diffusion-controlled recombination of these radicals.
Collapse
Affiliation(s)
- Paulo Filipe
- Centro de Metabolismo e Endocrinologia da Faculdade de Medicina de Lisboa, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tsuji M, Inanami O, Kuwabara M. Induction of neurite outgrowth in PC12 cells by alpha -phenyl-N-tert-butylnitron through activation of protein kinase C and the Ras-extracellular signal-regulated kinase pathway. J Biol Chem 2001; 276:32779-85. [PMID: 11438521 DOI: 10.1074/jbc.m101403200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The spin trap alpha-phenyl-N-tert-butylnitron (PBN) is widely used for studies of the biological effects of free radicals. We previously reported the protective effects of PBN against ischemia-reperfusion injury in gerbil hippocampus by its activation of extracellular signal-regulated kinase (ERK) and suppression of both stress-activated protein kinase and p38 mitogen-activated protein kinase. In the present study, we found that PBN induced neurite outgrowth accompanied by ERK activation in PC12 cells in a dose-dependent manner. The induction of neurite outgrowth was inhibited significantly not only by transient transfection of PC12 cells with dominant negative Ras, but also by treatment with mitogen-activated protein kinase/ERK kinase inhibitor PD98059. The activation of receptor tyrosine kinase TrkA was not involved in PBN-induced neurite outgrowth. A protein kinase C (PKC) inhibitor, GF109203X, was found to inhibit neurite outgrowth. The activation of PKCepsilon was observed after PBN stimulation. PBN-induced neurite outgrowth and ERK activation were counteracted by the thiol-based antioxidant N-acetylcysteine. From these results, it was concluded that PBN induced neurite outgrowth in PC12 cells through activation of the Ras-ERK pathway and PKC.
Collapse
Affiliation(s)
- M Tsuji
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | |
Collapse
|