1
|
Ghazaiean M, Aliasgharian A, Karami H, Ghasemi MM, Darvishi‐Khezri H. Antioxidative effects of N-acetylcysteine in patients with β-thalassemia: A quick review on clinical trials. Health Sci Rep 2024; 7:e70096. [PMID: 39381531 PMCID: PMC11458667 DOI: 10.1002/hsr2.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Background and Aims Several studies have highlighted the potent antioxidant properties of N-acetyl cysteine (NAC). This review aimed to assess the impact of NAC on oxidative stress biomarkers in patients with β-thalassemia. Methods The review included articles published before 2024 that investigated the effects of NAC on oxidative stress in individuals with β-thalassemia. A comprehensive search was conducted across various databases, including Scopus, PubMed, Web of Science, Trip, and CENTRAL. Only English-language clinical trials were considered for inclusion in this review. Besides, the number needed to treat (NNT) was calculated based on the included studies. Results Ninety-nine articles were retrieved from electronic databases, and after a thorough review, eight articles were selected for comprehensive text analysis. The highest dose of NAC administered was 10 mg/kg/day (equivalent to 600 mg/day) over a period of 3-6 months. All the studies assessing the impact of NAC on oxidative stress indicators in β-thalassemia patients demonstrated positive effects during the 3-month follow-up period. Most estimated NNTs fell into 1-5, suggesting significant clinical therapeutic value in this context. Conclusion The current potency of NAC alone appears to be effective in ameliorating oxidative stress in patients with β-thalassemia major. While a 3-month duration seems adequate to demonstrate the antioxidant properties of NAC in this population, larger and well-designed clinical trials are warranted. Current clinical evidence possesses a high risk of bias.
Collapse
Affiliation(s)
- Mobin Ghazaiean
- Student Research Committee, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- Gut and Liver Research Center, Non‐Communicable Disease InstituteMazandaran University of Medical SciencesSariIran
| | - Aily Aliasgharian
- Thalassemia Research Center (TRC), Hemoglobinopathy InstituteMazandaran University of Medical SciencesSariIran
| | - Hossein Karami
- Thalassemia Research Center (TRC), Hemoglobinopathy InstituteMazandaran University of Medical SciencesSariIran
| | - Mohammad Mohsen Ghasemi
- Student Research Committee, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Hadi Darvishi‐Khezri
- Thalassemia Research Center (TRC), Hemoglobinopathy InstituteMazandaran University of Medical SciencesSariIran
| |
Collapse
|
2
|
Bou-Fakhredin R, De Franceschi L, Motta I, Eid AA, Taher AT, Cappellini MD. Redox Balance in β-Thalassemia and Sickle Cell Disease: A Love and Hate Relationship. Antioxidants (Basel) 2022; 11:antiox11050967. [PMID: 35624830 PMCID: PMC9138068 DOI: 10.3390/antiox11050967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
β-thalassemia and sickle cell disease (SCD) are inherited hemoglobinopathies that result in both quantitative and qualitative variations in the β-globin chain. These in turn lead to instability in the generated hemoglobin (Hb) or to a globin chain imbalance that affects the oxidative environment both intracellularly and extracellularly. While oxidative stress is not among the primary etiologies of β-thalassemia and SCD, it plays a significant role in the pathogenesis of these diseases. Different mechanisms exist behind the development of oxidative stress; the result of which is cytotoxicity, causing the oxidation of cellular components that can eventually lead to cell death and organ damage. In this review, we summarize the mechanisms of oxidative stress development in β-thalassemia and SCD and describe the current and potential antioxidant therapeutic strategies. Finally, we discuss the role of targeted therapy in achieving an optimal redox balance.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
| | - Lucia De Franceschi
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, 37128 Verona, Italy;
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Ali T. Taher
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
3
|
Kumfu S, Chattipakorn SC, Chattipakorn N. Iron overload cardiomyopathy: Using the latest evidence to inform future applications. Exp Biol Med (Maywood) 2022; 247:574-583. [PMID: 35130741 DOI: 10.1177/15353702221076397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Iron overload can be the result of either dysregulated iron metabolism in the case of hereditary hemochromatosis or repeated blood transfusions in the case of secondary hemochromatosis (e.g. in β-thalassemia and sickle cell anemia patients). Under iron overload conditions, transferrin (Tf) saturation leads to an increase in non-Tf bound iron which can result in the generation of reactive oxygen species (ROS). These excess ROS can damage cellular components, resulting in the dysfunction of vital organs including iron overload cardiomyopathy (IOC). Multiple studies have demonstrated that L-type and T-type calcium channels are the main routes for iron uptake in the heart, and that calcium channel blockers, given either individually or in combination with standard iron chelators, confer cardioprotective effects under iron overload conditions. Treatment with antioxidants may also provide therapeutic benefits. Interestingly, recent studies have suggested that mitochondrial dynamics and regulated cell death (RCD) pathways are potential targets for pharmacological interventions against iron-induced cardiomyocyte injury. In this review, the potential therapeutic roles of iron chelators, antioxidants, iron uptake/metabolism modulators, mitochondrial dynamics modulators, and inhibitors of RCD pathways in IOC are summarized and discussed.
Collapse
Affiliation(s)
- Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Allen A, Perera S, Mettananda S, Rodrigo R, Perera L, Darshana T, Moggach F, Jackson Crawford A, Heirene L, Fisher C, Olivieri N, Rees D, Premawardhena A, Allen S. Oxidative status in the β-thalassemia syndromes in Sri Lanka; a cross-sectional survey. Free Radic Biol Med 2021; 166:337-347. [PMID: 33677065 DOI: 10.1016/j.freeradbiomed.2021.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/10/2023]
Abstract
In the β-thalassemias, oxidative stress, resulting from chronic hemolysis, globin chain imbalance, iron overload and depleted antioxidant defences, likely contributes to cell death, organ damage, anemia, hypoxia and inflammation. We assessed variations in these parameters in β-thalassemia syndromes in Sri Lanka. Between November 2017 and June 2018, we assessed children and adults attending two thalassemia centres in Sri Lanka: 59 patients with HbE β-thalassemia, 50 β-thalassemia major, 40 β-thalassemia intermedia and 13 HbS β-thalassemia. Median age was 26.0 years (IQR 15.3-38.8), 101 (62.3%) were female and 152 (93.8%) of Sinhalese ethnicity. Methemoglobin, plasma hemoglobin, heme and ferritin were measured as sources of oxidants; plasma total antioxidant capacity, haptoglobin, hemopexin and vitamins C and E assessed antioxidant status; plasma thiobarbituric acid reactive substances and 8-hydroxy-2'-deoxyguanosine assessed oxidative damage; hemoglobin, plasma erythropoietin and transferrin receptor assessed anemia and hypoxia and plasma interleukin-6 and C-reactive protein assessed inflammation. Fruit and vegetable intake was determined by dietary recall. Physical fitness was investigated using the 6-min walk test and measurement of handgrip strength. Oxidant sources were frequently increased and antioxidants depleted, with consequent oxidative damage, anemia, hypoxia and inflammation. Biomarkers were generally most abnormal in HbE β-thalassemia and least abnormal in β-thalassemia intermedia but also varied markedly between individuals with the same thalassemia syndrome. Oxidative stress and damage were also more severe in splenectomized patients and/or those receiving iron chelation therapy. Less than 15% of patients ate fresh fruits or raw vegetables frequently, and plasma vitamins C and E were deficient in 132/160 (82.5%) and 140/160 (87.5%) patients respectively. Overall, physical fitness was poor in all syndromes and was likely due to anemic hypoxia. Studies of antioxidant supplements to improve outcomes in patients with thalassemia should consider individual patient variation in oxidative status both between and within the thalassemia syndromes.
Collapse
Affiliation(s)
- Angela Allen
- Department of Molecular Haematology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | - Shiromi Perera
- Department of Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Sachith Mettananda
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Rexan Rodrigo
- Thalassemia Care Unit, North Colombo Teaching Hospital, Ragama, Sri Lanka
| | - Lakshman Perera
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Thamal Darshana
- Department of Medical Laboratory Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Fiona Moggach
- Department of Clinical Biochemistry, Macewen Building, Glasgow Royal Infirmary, Castle Street, Glasgow, UK
| | - Anthony Jackson Crawford
- Department of Clinical Chemistry, Aneurin Bevan University Health Board, Grange University Hospital, Llanyravon, Cwmbran, Gwent, UK
| | - Lesley Heirene
- Department of Clinical Chemistry, Aneurin Bevan University Health Board, Grange University Hospital, Llanyravon, Cwmbran, Gwent, UK
| | - Christopher Fisher
- Department of Molecular Haematology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | - Nancy Olivieri
- Professor of Pediatrics, Medicine and Public Health Sciences, University of Toronto, Toronto, Canada
| | - David Rees
- Department of Paediatric Haematology, King's College Hospital, London, UK
| | - Anuja Premawardhena
- Thalassemia Care Unit, North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Medicine, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Stephen Allen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| |
Collapse
|
5
|
Zitouni K, Steyn MRCP, Lyka E, Kelly FJ, Cook P, Ster IC, Earle KA. Derepression of glomerular filtration, renal blood flow and antioxidant defence in patients with type 2 diabetes at high-risk of cardiorenal disease. Free Radic Biol Med 2020; 161:283-289. [PMID: 33039650 DOI: 10.1016/j.freeradbiomed.2020.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The role of antioxidant status on microvascular blood flow and glomerular filtration (eGFR) in patients with type 2 diabetes and hypertension whose risk of progressive renal disease varies by ethnicity is unknown. METHODS Adult, non-Caucasian (n = 101) and Caucasian (n = 69) patients with type 2 diabetes, hypertension and/or microalbuminuria and an eGFR > 45 mL/min/1.73 m2 were randomised to receive 400 IU vitamin E and/or 20 μg selenium daily or matching placebo. eGFR (CKD-EPI) was measured at baseline, 3,6 and 12 months and renal blood flow by contrast-enhanced ultrasonography in a sub-group (n = 9) at baseline and 3 months by assessing the area under the time intensity curve (TIC). Circulating glutathione peroxidase 3 (GPx-3) activity was measured as a biomarker of oxidative defence status. RESULTS The time to change in eGFR was shortest with combined vitamin E and selenium than usual care (5.6 [4.0-7.0] vs 8.9 [6.8-10.9 months]; p = 0.006). Area under the TIC was reduced compared to baseline (38.52 [22.41-90.49] vs 123 [86.98-367.03]dB.s; P ≤ 0.05 and 347 [175.88-654.92] vs 928.03 [448.45-1683]dB.s; P ≤ 0.05, respectively] at 3 months suggesting an increase in rate of perfusion. The proportional change in eGFR at 12 months was greater in the group whose GPx-3 activity was above, compared with those below the cohort median (360 U/L) in the non-Caucasian and the Caucasian groups (19.1(12.5-25.7] % vs 6.5[-3.5 to 16.5] % and 12.8 [0.7 to 24] % vs 0.2 [-6.1 to 6.5] %). CONCLUSION In these patients with type 2 diabetes and early CKD, antioxidant treatment derepresses renal blood flow and a rise in eGFR correlated directly with GPx-3 activity. SIGNIFICANCE Diabetes mellitus is the world's leading cause of end-stage renal disease which has a predilection for black and minor ethnic groups compared with Caucasians. The differences in risk despite the benefits of conventional care may be related to oxidative stress. We found that glomerular filtration and renal blood flow is suppressed when renal function is preserved in high-risk patients with type 2 diabetes. Conventional care supplemented with selenium - the co-factor for glutathione peroxidase-3 (GPx-3) - improves renal perfusion and increase glomerular filtration according to host antioxidant defence determined by GPx-3 activity. Circulating GPx-3 activity warrants further investigation as a novel biomarker of reversible haemodynamic changes in early diabetic kidney disease to better enable targeting of renoprotective strategies.
Collapse
Affiliation(s)
- Karima Zitouni
- St Georges University of London, Institute of Infection and Immunity, London, UK
| | - M R C P Steyn
- St Georges University Hospitals NHS Foundation Trust, Thomas Addison Unit, London, UK
| | - Eliza Lyka
- St Georges University of London, Institute of Biomedical & Medical Education, London, UK
| | - Frank J Kelly
- Kings College London, Analytical, Environmental and Forensic Sciences Department, London, UK
| | - Paul Cook
- University Hospital Southampton NHS Foundation Trust, Trace Element Unit, Southampton, UK
| | - Irina Chis Ster
- St Georges University of London, Institute of Infection and Immunity, London, UK
| | - Kenneth Anthony Earle
- St Georges University Hospitals NHS Foundation Trust, Thomas Addison Unit, London, UK; St Georges University of London, Institute of Biomedical & Medical Education, London, UK.
| |
Collapse
|
6
|
Effects of three months of treatment with vitamin E and N-acetyl cysteine on the oxidative balance in patients with transfusion-dependent β-thalassemia. Ann Hematol 2020; 100:635-644. [PMID: 33216196 DOI: 10.1007/s00277-020-04346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
Oxidative stress is a major mechanism contributing to the progression of β-thalassemia. To assess the effect of vitamin E and N-acetyl cysteine (NAC) as antioxidant agents on total oxidative stress (TOS) status and total antioxidant capacity (TAC) in patients with transfusion-dependent β-thalassemia (TDT). In this open-label randomized controlled trial, from May to August 2019, 78 eligible patients with TDT over the age of 18 were enrolled. All patients were registered at the Thalassemia Clinic of Shiraz University of Medical Sciences in Southern Iran. Patients were randomly allocated to the NAC group (10 mg/kg/day, orally), vitamin E group (10 U/kg/day, orally), and control group. The duration of the study was 3 months. The mean age of the participants was 28.5 ± 5.1 (range: 18-41) years. At the end of the study, TOS significantly decreased only in the vitamin E group (mean difference (MD), 95% confidence interval (CI): 0.27 (0.03-0.50), P = 0.026). TAC significantly decreased in both supplemented groups at the 3rd month of treatment (NAC group: MD (95% CI): 0.11 (0.04-0.18), P = 0.002 and vitamin E group: 0.09 (0.01-0.16), P = 0.022 respectively). Hemoglobin did not significantly change at the end of the study in each group (P > 0.05). Mild transient adverse events occurred in 4 patients of the NAC group and 5 patients of the vitamin E group with no need to discontinue the treatment. Vitamin E can be a safe and effective supplement in improving oxidative stress in patients with TDT. Moreover, it seems that a longer duration of using antioxidant supplements needs to make clinical hematologic improvement in TDT patients.
Collapse
|
7
|
d'Arqom A, G Putri M, Savitri Y, Rahul Alfaidin AM. Vitamin and mineral supplementation for β-thalassemia during COVID-19 pandemic. Future Sci OA 2020; 6:FSO628. [PMID: 33230422 PMCID: PMC7434224 DOI: 10.2144/fsoa-2020-0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/31/2020] [Indexed: 01/22/2023] Open
Abstract
AIM Low levels of immune-related micronutrients have been identified in β-thalassemia samples. Moreover, the excess amount of iron, contributing to oxidative stress in the pathogenesis of the disease, alters the immune system in β-thalassemia, which is important during the COVID-19 pandemic. MATERIALS & METHODS Searches of PUBMED and EMBASE were conducted to identify the level and supplementation of micronutrients in β-thalassemia, published from 2001-May 2020. RESULTS The review found six observational and five interventional studies supporting the importance of supplementing vitamins and minerals among patients with β-thalassemia. CONCLUSION Supplementation of immune-related vitamins and minerals might bring benefits to the immune system, especially in reducing oxidative stress in β-thalassemia.
Collapse
Affiliation(s)
- Annette d'Arqom
- Department of Pharmacology & Therapy, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia
| | - Melvanda G Putri
- Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia
| | - Yovani Savitri
- Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia
| | | |
Collapse
|
8
|
Kumfu S, Chattipakorn S, Chattipakorn N. Antioxidant and chelator cocktails to prevent oxidative stress under iron-overload conditions. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Effects of oral administration of common antioxidant supplements on the energy metabolism of red blood cells. Attenuation of oxidative stress-induced changes in Rett syndrome erythrocytes by CoQ10. Mol Cell Biochem 2019; 463:101-113. [PMID: 31595423 DOI: 10.1007/s11010-019-03633-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/25/2019] [Indexed: 01/15/2023]
Abstract
Nutritional supplements are traditionally employed for overall health and for managing some health conditions, although controversies are found concerning the role of antioxidants-mediated benefits in vivo. Consistently with its critical role in systemic redox buffering, red blood cell (RBC) is recognized as a biologically relevant target to investigate the effects of oxidative stress. In RBC, reduction of the ATP levels and adenylate energy charge brings to disturbance in intracellular redox status. In the present work, several popular antioxidant supplements were orally administrated to healthy adults and examined for their ability to induce changes on the energy metabolism and oxidative status in RBC. Fifteen volunteers (3 per group) were treated for 30 days per os with epigallocatechin gallate (EGCG) (1 g green tea extract containing 50% EGCG), resveratrol (325 mg), coenzyme Q10 (CoQ10) (300 mg), vitamin C (1 g), and vitamin E (400 U.I.). Changes in the cellular levels of high-energy compounds (i.e., ATP and its catabolites, NAD and GTP), GSH, GSSG, and malondialdehyde (MDA) were simultaneously analyzed by ion-pairing HPLC. Response to oxidative stress was further investigated through the oxygen radical absorptive capacity (ORAC) assay. According to our experimental approach, (i) CoQ10 appeared to be the most effective antioxidant inducing a high increase in ATP/ADP, ATP/AMP, GSH/GSSG ratio and ORAC value and, in turn, a reduction of NAD concentration, (ii) EGCG modestly modulated the intracellular energy charge potential, while (iii) Vitamin E, vitamin C, and resveratrol exhibited very weak effects. Given that, the antioxidant potential of CoQ10 was additionally assessed in a pilot study which considered individuals suffering from Rett syndrome (RTT), a severe X-linked neuro-developmental disorder in which RBC oxidative damages provide biological markers for redox imbalance and chronic hypoxemia. RTT patients (n = 11), with the typical clinical form, were supplemented for 12 months with CoQ10 (300 mg, once daily). Level of lipid peroxidation (MDA production) and energy state of RBCs were analyzed at 2 and 12 months. Our data suggest that CoQ10 may significantly attenuate the oxidative stress-induced damage in RTT erythrocytes.
Collapse
|
10
|
Abstract
Cell oxidative status, which represents the balance between oxidants and antioxidants, is involved in normal functions. Under pathological conditions, there is a shift toward the oxidants, leading to oxidative stress, which is cytotoxic, causing oxidation of cellular components that result in cell death and organ damage. Thalassemia is a hereditary hemolytic anemia caused by mutations in globin genes that cause reduced or complete absence of specific globin chains (commonly, α or β). Although oxidative stress is not the primary etiology of thalassemia, it mediates several of its pathologies. The main causes of oxidative stress in thalassemia are the degradation of the unstable hemoglobin and iron overload-both stimulate the production of excess free radicals. The symptoms aggravated by oxidative stress include increased hemolysis, ineffective erythropoiesis and functional failure of vital organs such as the heart and liver. The oxidative status of each patient is affected by multiple internal and external factors, including genetic makeup, health conditions, nutrition, physical activity, age, and the environment (e.g., air pollution, radiation). In addition, oxidative stress is influenced by the clinical manifestations of the disease (unpaired globin chains, iron overload, anemia, etc.). Application of personalized (theranostics) medicine principles, including diagnostic tests for selecting targeted therapy, is therefore important for optimal treatment of the oxidative stress of these patients. We summarize the role of oxidative stress and the current and potential antioxidative therapeutics in β-thalassemia and describe some methodologies, mostly cellular, that might be helpful for application of a theranostics approach to therapy.
Collapse
Affiliation(s)
- Eitan Fibach
- Department of Hematology, Hadassah-Hebrew University Medical Center, Ein-Kerem, POB 12,000, 91120, Jerusalem, Israel.
| | - Mutaz Dana
- Department of Hematology, Hadassah-Hebrew University Medical Center, Ein-Kerem, POB 12,000, 91120, Jerusalem, Israel
| |
Collapse
|
11
|
Altamura S, Vegi NM, Hoppe PS, Schroeder T, Aichler M, Walch A, Okreglicka K, Hültner L, Schneider M, Ladinig C, Kuklik-Roos C, Mysliwietz J, Janik D, Neff F, Rathkolb B, de Angelis MTH, Buske C, Silva ARD, Muedder K, Conrad M, Ganz T, Kopf M, Muckenthaler MU, Bornkamm GW. Glutathione peroxidase 4 and vitamin E control reticulocyte maturation, stress erythropoiesis and iron homeostasis. Haematologica 2019; 105:937-950. [PMID: 31248967 PMCID: PMC7109755 DOI: 10.3324/haematol.2018.212977] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Glutathione peroxidase 4 (GPX4) is unique as it is the only enzyme that can prevent detrimental lipid peroxidation in vivo by reducing lipid peroxides to the respective alcohols thereby stabilizing oxidation products of unsaturated fatty acids. During reticulocyte maturation, lipid peroxidation mediated by 15-lipoxygenase in humans and rabbits and by 12/15-lipoxygenase (ALOX15) in mice was considered the initiating event for the elimination of mitochondria but is now known to occur through mitophagy. Yet, genetic ablation of the Alox15 gene in mice failed to provide evidence for this hypothesis. We designed a different genetic approach to tackle this open conundrum. Since either other lipoxygenases or non-enzymatic autooxidative mechanisms may compensate for the loss of Alox15, we asked whether ablation of Gpx4 in the hematopoietic system would result in the perturbation of reticulocyte maturation. Quantitative assessment of erythropoiesis indices in the blood, bone marrow (BM) and spleen of chimeric mice with Gpx4 ablated in hematopoietic cells revealed anemia with an increase in the fraction of erythroid precursor cells and reticulocytes. Additional dietary vitamin E depletion strongly aggravated the anemic phenotype. Despite strong extramedullary erythropoiesis reticulocytes failed to mature and accumulated large autophagosomes with engulfed mitochondria. Gpx4-deficiency in hematopoietic cells led to systemic hepatic iron overload and simultaneous severe iron demand in the erythroid system. Despite extremely high erythropoietin and erythroferrone levels in the plasma, hepcidin expression remained unchanged. Conclusively, perturbed reticulocyte maturation in response to Gpx4 loss in hematopoietic cells thus causes ineffective erythropoiesis, a phenotype partially masked by dietary vitamin E supplementation.
Collapse
Affiliation(s)
- Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Naidu M Vegi
- Institute of Experimental Cancer Research, Universitätsklinikum Ulm, Ulm, Germany
| | - Philipp S Hoppe
- Department of Biosystems Bioscience and Engineering, ETH Zürich, Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Bioscience and Engineering, ETH Zürich, Basel, Switzerland
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | | | - Lothar Hültner
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), München, Germany
| | - Manuela Schneider
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, München, Germany
| | - Camilla Ladinig
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), München, Germany
| | - Cornelia Kuklik-Roos
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), München, Germany
| | - Josef Mysliwietz
- Institute of Molecular Immunology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), München, Germany
| | - Dirk Janik
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Frauke Neff
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Genzentum, München, Germany.,Institute of Experimental Genetics, Geman Mouse Clinic (GMC), Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Mar Tin Hrabé de Angelis
- Institute of Experimental Genetics, Geman Mouse Clinic (GMC), Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, Universitätsklinikum Ulm, Ulm, Germany
| | - Ana Rita da Silva
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Katja Muedder
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Tomas Ganz
- Departments of Medicine and Pathology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Georg W Bornkamm
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), München, Germany
| |
Collapse
|
12
|
Kolyada MN, Osipova VP, Berberova NT, Shpakovsky DB, Milaeva ER. Antioxidant Activity of 2,6-Di-tert-butylphenol Derivatives in Lipid Peroxidation and Hydrogen Peroxide Decomposition by Human Erythrocytes in vitro. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363218120095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Panachan J, Chokchaichamnankit D, Weeraphan C, Srisomsap C, Masaratana P, Hatairaktham S, Panichkul N, Svasti J, Kalpravidh RW. Differentially expressed plasma proteins of β-thalassemia/hemoglobin E patients in response to curcuminoids/vitamin E antioxidant cocktails. ACTA ACUST UNITED AC 2019; 24:300-307. [PMID: 30661467 DOI: 10.1080/16078454.2019.1568354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Iron overload and oxidative stress are the major causes of serious complications and mortality in thalassemic patients. Our previous work supports the synergistic effects of antioxidant cocktails (curcuminoids or vitamin E, N-acetylcysteine, and deferiprone) in treatment of β-thalassemia/Hb E patients. This further 2-DE-based proteomic study aimed to identify the plasma proteins that expressed differentially in response to antioxidant cocktails. METHODS Frozen plasma samples of ten normal subjects and ten β-thalassemia/Hb E patients at three-time points (baseline, month 6, and month 12) were reduced the dynamic range of proteome using ProteoMiner kit and separated proteins by two-dimensional gel electrophoresis. Differentially expressed proteins were identified using tandem mass spectrometry. Several plasma proteins were validated by ELISA and Western blot analysis. RESULTS Thirteen and 11 proteins were identified with altered expression levels in the curcuminoids- and vitamin E cocktail groups, respectively. The associations between vitronectin (VTN) expression and total bilirubin levels, as well as between serum paraoxonase/arylesterase 1 (PON1) expression and blood reactive oxygen species were observed. Validation results were consistent with proteomics results. DISCUSSION AND CONCLUSIONS These plasma proteins may provide better understanding of the mechanisms underlying the therapeutic effects of antioxidant cocktails in thalassemic patients.
Collapse
Affiliation(s)
- Jirawan Panachan
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | | | - Churat Weeraphan
- b Laboratory of Biochemistry , Chulabhorn Research Institute , Bangkok , Thailand.,c Department of Molecular Biotechnology and Bioinformatics, Faculty of Science , Prince of Songkla University , Songkla , Thailand
| | - Chantragan Srisomsap
- b Laboratory of Biochemistry , Chulabhorn Research Institute , Bangkok , Thailand
| | - Patarabutr Masaratana
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Suneerat Hatairaktham
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Narumol Panichkul
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Jisnuson Svasti
- b Laboratory of Biochemistry , Chulabhorn Research Institute , Bangkok , Thailand.,d Applied Biological Sciences Program, Chulabhorn Research Institute , Bangkok , Thailand
| | - Ruchaneekorn W Kalpravidh
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| |
Collapse
|
14
|
Nutritional Deficiencies Are Common in Patients with Transfusion-Dependent Thalassemia and Associated with Iron Overload. ACTA ACUST UNITED AC 2018; 6:674-681. [PMID: 30569002 DOI: 10.12691/jfnr-6-10-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Patients with thalassemia are frequently deficient in key micronutrients. Attempts to correct these inadequacies through nutritional supplementation have been met with some success, although disparities between intake and circulating levels continue to be observed. This study employed a convenience sample of 41 well-nourished transfusion dependent patients with thalassemia to identify possible mechanisms behind nutritional deficiencies. Each subject completed a Block 2005© Food Frequency Questionnaire (FFQ), through which macro and micronutrient intake was quantified. Fasting blood was drawn to assess vitamins A, C, D, E, copper, selenium, zinc and hematologic parameters. Dietary intake was found to be inadequate compared to Institute of Medicine (IOM) recommendations for many of the fat-soluble vitamins, as well as calcium and zinc. Circulating deficiencies of vitamins C, D, copper, zinc and γ tocopherol were also present in over 20% of patients. Many individuals who consumed an adequate dietary intake had deficient levels of circulating nutrients, which suggest alternative etiologies of nutrient excretion or loss, in addition to higher micronutrient requirements. Liver iron concentration displayed a significant negative relationship with vitamins C (r=-0.62, p<0.001), E (r=-0.37, p=0.03), and zinc (r=-0.35, p=0.037), indicating that in iron-overloaded patients, these nutrients are either endogenously consumed at higher rates or sequestered within the liver, resulting in a functional nutrient deficiency. While this study identified hepatic iron overload to be a significant cause of nutritional deficits commonly observed in patients with thalassemia, multiple etiologies are simultaneously responsible. In response to these findings, nutritional status should be monitored regularly in at-risk patients with thalassemia, and prophylactically addressed with supplementation or aggressive chelation to avoid associated co-morbidities.
Collapse
|
15
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13:94-162. [PMID: 28577489 PMCID: PMC5458069 DOI: 10.1016/j.redox.2017.05.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Collapse
Affiliation(s)
- Javier Egea
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | - Yves M Frapart
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Manuela G Lopez
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | | | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, Giessen, Germany
| | - Jose Vina
- Department of Physiology, University of Valencia, Spain
| | - Paul Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Kahina Abbas
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Opeyemi S Ademowo
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Catarina B Afonso
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica, Faculdade de Ciências, Portugal
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Markus M Bachschmid
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Vsevolod Belousov
- Molecular technologies laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, USA
| | - Esther Bertrán
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | | | - Serge P Bottari
- GETI, Institute for Advanced Biosciences, INSERM U1029, CNRS UMR 5309, Grenoble-Alpes University and Radio-analysis Laboratory, CHU de Grenoble, Grenoble, France
| | - Paula M Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ana I Casas
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marcus Conrad
- Helmholtz Center Munich, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marcus S Cooke
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - João G Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pham My-Chan Dang
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Barbara De Smet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy; Pharmahungary Group, Szeged, Hungary
| | - Bilge Debelec-Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Irundika H K Dias
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Joe Dan Dunn
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Amanda J Edson
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Jamel El-Benna
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Helen Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Vaclav Hampl
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alina Hanf
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Jan Herget
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Huang
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Serap Ilikay
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Vincent Jaquet
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | | | | | - Mahsa Karbaschi
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Karl-Heinz Krause
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, UK
| | - João Laranjinha
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Reiko Matsui
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Gethin J McBean
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Stuart P Meredith
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Verónica Miguel
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Yuliya Mikhed
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology and Faculty of Health Sciences, Ljubljana, Slovenia
| | - Lidija Milković
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miloš Mojović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Pierre-Alexis Mouthuy
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - John Mulvey
- Department of Medicine, University of Cambridge, UK
| | - Thomas Münzel
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Vladimir Muzykantov
- Department of Pharmacology, Center for Targeted Therapeutics & Translational Nanomedicine, ITMAT/CTSA Translational Research Center University of Pennsylvania The Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel T N Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | - Matthias Oelze
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Aleksandra Pavićević
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Brandán Pedre
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France; ESPE of Paris, Paris Sorbonne University, Paris, France
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University Hospital Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, University Hospital Copenhagen, Denmark; Department Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Anabela P Rolo
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Francis Rousset
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Khrystyna Semen
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Tamara Seredenina
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Corinne M Spickett
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Marie José Stasia
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, F38000 Grenoble, France; CDiReC, Pôle Biologie, CHU de Grenoble, Grenoble, F-38043, France
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Sebastian Steven
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Olga Vajnerova
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lokman Varisli
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, and Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - A Suha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | | | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | | | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tilman Grune
- German Institute of Human Nutrition, Department of Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Harald H H W Schmidt
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy.
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany.
| |
Collapse
|
16
|
Earle KA, Zitouni K, Pepe J, Karaflou M, Godbold J. Modulation of endogenous antioxidant defense and the progression of kidney disease in multi-heritage groups of patients with type 2 diabetes: PRospective EValuation of Early Nephropathy and its Treatment (PREVENT). J Transl Med 2016; 14:234. [PMID: 27492324 PMCID: PMC4973532 DOI: 10.1186/s12967-016-0975-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/11/2016] [Indexed: 03/20/2023] Open
Abstract
Background Diabetes is the western world’s leading cause of end-stage renal disease. Glucose-dependent, oxidative stress is linked to the development of renal inflammation and sclerosis, which, in animal models of diabetes, can be prevented by anti-oxidative treatment. Patients of non-Caucasian heritage have low activity of the selenoprotein, antioxidant enzyme, glutathione peroxidase (GPx) and its co-factor vitamin E, which may be linked to their increased propensity to developing end-stage renal disease. Research design and methods We have designed a double-blind, randomized, placebo controlled study with selenium and/or vitamin E versus placebo as the interventions for patients with type 2 diabetes and chronic kidney disease (CKD) stages 1–3. A 2 × 2 factorial design will allow a balanced representation of the heritage groups exposed to each intervention. The primary biochemical outcome is change in GPx activity, and clinical outcome measure is the actual, rate of—and/or percentage change in estimated glomerular filtration rate (eGFR) from baseline. Analysis will be with a marginal model for longitudinal data using Generalized Estimating Equations corrected for measures of baseline serum antioxidant enzyme activities (GPx, superoxide dismutase and catalase), micronutrient levels (vitamins E and C), measures of inflammation (interleukin 6, c-reactive protein and monocyte chemoattractant protein-1) and markers of oxidative damage (plasma 8-isoprostaglandin F2α and urinary 8-hydroxydeoxyguanosine). Expected results The study will assess the relationship between GPx activity, oxidative stress, inflammation and eGFR. It will test the null hypothesis that antioxidant therapy does not influence the activity of GPx or other antioxidant enzymes and/or alter the rate of change in eGFR in these patient groups. Conclusions Outcome data on the effect of antioxidants in human diabetic renal disease is limited. Previous post hoc analyses have not shown a beneficial effect of vitamin E on renal function. A recent trial of a pharmaceutical antioxidant agent, improved eGFR, but in patients with advanced diabetes-related chronic kidney disease its use was associated with an increased incidence of cardiovascular events. We will explore whether the nutritional antioxidants, vitamin E and selenium alone, or in combination in patients at high risk of renal disease progression, forestalls a reduction in eGFR. The study will describe whether endogenous antioxidant enzyme defenses can be safely modified by this intervention and how this is associated with changes in markers of oxidative stress. Trial registration ISRCTN 97358113. Registered 21st September 2009
Collapse
Affiliation(s)
- Kenneth A Earle
- St Georges University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW 17 0RE, UK. .,Clinical Sciences Division, St. Georges University of London, London, UK.
| | - Karima Zitouni
- Clinical Sciences Division, St. Georges University of London, London, UK
| | - John Pepe
- Richmond University, Staten Island, New York, USA
| | - Maria Karaflou
- St Georges University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW 17 0RE, UK.,Clinical Sciences Division, St. Georges University of London, London, UK
| | - James Godbold
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
17
|
The investigation of resveratrol and analogs as potential inducers of fetal hemoglobin. Blood Cells Mol Dis 2016; 58:6-12. [DOI: 10.1016/j.bcmd.2015.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 11/23/2022]
|
18
|
Rochette L, Zeller M, Cottin Y, Vergely C. Growth and differentiation factor 11 (GDF11): Functions in the regulation of erythropoiesis and cardiac regeneration. Pharmacol Ther 2015; 156:26-33. [DOI: 10.1016/j.pharmthera.2015.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Treatment of β-Thalassemia/Hemoglobin E with Antioxidant Cocktails Results in Decreased Oxidative Stress, Increased Hemoglobin Concentration, and Improvement of the Hypercoagulable State. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:537954. [PMID: 26078808 PMCID: PMC4452506 DOI: 10.1155/2015/537954] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/22/2015] [Accepted: 04/30/2015] [Indexed: 01/29/2023]
Abstract
Studies on the antioxidant treatment for thalassemia have reported variable outcomes. However, treatment of thalassemia with a combination of hydrophobic and hydrophilic antioxidants and an iron chelator has not been studied. This study investigated the effects of antioxidant cocktails for the treatment of β-thalassemia/hemoglobin E (HbE), which is the most common form of β-thalassemia in Southeast Asia. Sixty patients were divided into two groups receiving N-acetylcysteine, deferiprone, and either curcuminoids (CUR) or vitamin E (Vit-E), and their hematological parameters, iron load, oxidative stress, and blood coagulation potential were evaluated. Patients were classified as responders if they showed the improvements of the markers of iron load and oxidative stress, otherwise as nonresponders. During treatment, the responders in both groups had significantly decreased iron load, oxidative stress, and coagulation potential and significantly increased antioxidant capacity and hemoglobin concentration. The significantly maximum increase (P < 0.01) in hemoglobin concentration was 11% at month 4 in CUR group responders and 10% at month 10 in Vit-E group responders. In conclusion, the two antioxidant cocktails can improve anemia, iron overload, oxidative stress, and hypercoagulable state in β-thalassemia/HbE.
Collapse
|
20
|
Endocrine and bone complications in β-thalassemia intermedia: current understanding and treatment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:813098. [PMID: 25834825 PMCID: PMC4365366 DOI: 10.1155/2015/813098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/15/2014] [Accepted: 10/07/2014] [Indexed: 01/19/2023]
Abstract
Thalassemia intermedia (TI), also known as nontransfusion dependent thalassemia (NTDT), is a type of thalassemia where affected patients do not require lifelong regular transfusions for survival but may require occasional or even frequent transfusions in certain clinical settings and for defined periods of time. NTDT encompasses three distinct clinical forms: β-thalassemia intermedia (β-TI), Hb E/β-thalassemia, and α-thalassemia intermedia (Hb H disease). Over the past decade, our understanding of the molecular features, pathophysiology, and complications of NTDT particularly β-TI has increased tremendously but data on optimal treatment of disease and its various complications are still lacking. In this paper, we shall review a group of commonly encountered complications in β-TI, mainly endocrine and bone complications.
Collapse
|
21
|
Ozdemir ZC, Koc A, Aycicek A, Kocyigit A. N-Acetylcysteine Supplementation Reduces Oxidative Stress and DNA Damage in Children with β-Thalassemia. Hemoglobin 2014; 38:359-64. [DOI: 10.3109/03630269.2014.951890] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Novel approach to reactive oxygen species in nontransfusion-dependent thalassemia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:350432. [PMID: 25121095 PMCID: PMC4119900 DOI: 10.1155/2014/350432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/07/2014] [Indexed: 12/13/2022]
Abstract
The term Nontransfusion dependent thalassaemia (NTDT) was suggested to describe patients who had clinical manifestations that are too severe to be termed minor yet too mild to be termed major. Those patients are not entirely dependent on transfusions for survival.
If left untreated, three main factors are responsible for the clinical sequelae of NTDT: ineffective erythropoiesis, chronic hemolytic anemia, and iron overload. Reactive oxygen species (ROS) generation in NTDT patients is caused by 2 major mechanisms. The first one is chronic hypoxia resulting from chronic anemia and ineffective erythropoiesis leading to mitochondrial damage and the second is iron overload also due to chronic anemia and tissue hypoxia leading to increase intestinal iron absorption in thalassemic patients. Oxidative damage by reactive oxygen species (generated by free globin chains and labile plasma iron) is believed to be one of the main contributors to cell injury, tissue damage, and hypercoagulability in patients with thalassemia. Independently increased ROS has been linked to a myriad of pathological outcomes such as leg ulcers, decreased wound healing, pulmonary hypertension, silent brain infarcts, and increased thrombosis to count a few. Interestingly many of those complications overlap with those found in NTDT patients.
Collapse
|
23
|
Sherief LM, Abd El-Salam SM, Kamal NM, El safy O, Almalky MAA, Azab SF, Morsy HM, Gharieb AF. Nutritional biomarkers in children and adolescents with Beta-thalassemia-major: An Egyptian center experience. BIOMED RESEARCH INTERNATIONAL 2014; 2014:261761. [PMID: 24812610 PMCID: PMC4000941 DOI: 10.1155/2014/261761] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/14/2014] [Accepted: 03/24/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIM Trace elements and vitamins play a vital role in human body to perform its function properly. Thalassemic patients are at risk of micronutrient deficiency. This study estimated levels of vitamins A, C, E, B12, folic acid, total homocysteine (tHcy), and methylmalonic acid (MMA) along with trace elements, zinc, copper, and selenium in Beta-thalassemia-major patients. METHODS This study included 108 patients with Beta-thalassemia-major and 60 age and sex matched healthy children. Serum levels of vitamin A, E, C, tHcy, and MMA were estimated by high pressure liquid chromatography while serum levels of folic acid and B12 were estimated by thin layer chromatography. Serum zinc, copper, and selenium were determined by atomic absorption spectrometry. RESULTS There was a significant decrease of vitamins A, C, E, and B12 and trace elements zinc, copper, and selenium in thalassemic patients as compared to controls. tHcy and MMA were significantly elevated in patients. No significant correlations were found between the serum levels of the studied vitamins and trace elements as regards age, frequency of transfusion, duration of transfusion, and serum ferritin. CONCLUSION The level of various nutritional biomarkers (vitamins A, C, E, and B12 and trace elements zinc, copper, selenium) was reduced in chronically transfused Egyptian thalassemic patient. These patients should have periodic nutritional evaluation and supplementation. Multicenter studies are highly recommended.
Collapse
Affiliation(s)
| | | | - Naglaa M. Kamal
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
24
|
van Zwieten R, Verhoeven AJ, Roos D. Inborn defects in the antioxidant systems of human red blood cells. Free Radic Biol Med 2014; 67:377-86. [PMID: 24316370 DOI: 10.1016/j.freeradbiomed.2013.11.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 12/25/2022]
Abstract
Red blood cells (RBCs) contain large amounts of iron and operate in highly oxygenated tissues. As a result, these cells encounter a continuous oxidative stress. Protective mechanisms against oxidation include prevention of formation of reactive oxygen species (ROS), scavenging of various forms of ROS, and repair of oxidized cellular contents. In general, a partial defect in any of these systems can harm RBCs and promote senescence, but is without chronic hemolytic complaints. In this review we summarize the often rare inborn defects that interfere with the various protective mechanisms present in RBCs. NADPH is the main source of reduction equivalents in RBCs, used by most of the protective systems. When NADPH becomes limiting, red cells are prone to being damaged. In many of the severe RBC enzyme deficiencies, a lack of protective enzyme activity is frustrating erythropoiesis or is not restricted to RBCs. Common hereditary RBC disorders, such as thalassemia, sickle-cell trait, and unstable hemoglobins, give rise to increased oxidative stress caused by free heme and iron generated from hemoglobin. The beneficial effect of thalassemia minor, sickle-cell trait, and glucose-6-phosphate dehydrogenase deficiency on survival of malaria infection may well be due to the shared feature of enhanced oxidative stress. This may inhibit parasite growth, enhance uptake of infected RBCs by spleen macrophages, and/or cause less cytoadherence of the infected cells to capillary endothelium.
Collapse
Affiliation(s)
- Rob van Zwieten
- Laboratory of Red Blood Cell Diagnostics, Department of Blood Cell Research, Sanquin Blood Supply Organization, 1066 CX Amsterdam, The Netherlands.
| | - Arthur J Verhoeven
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Laboratory of Red Blood Cell Diagnostics, Department of Blood Cell Research, Sanquin Blood Supply Organization, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
25
|
Oxidative stress and β-thalassemic erythroid cells behind the molecular defect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:985210. [PMID: 24205432 PMCID: PMC3800594 DOI: 10.1155/2013/985210] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022]
Abstract
β-thalassemia is a worldwide distributed monogenic red cell disorder, characterized by the absence or reduced β-globin chain synthesis. Despite the extensive knowledge of the molecular defects causing β-thalassemia, less is known about the mechanisms responsible for the associated ineffective erythropoiesis and reduced red cell survival, which sustain anemia of β-thalassemia. The unbalance of alpha-gamma chain and the presence of pathological free iron promote a severe red cell membrane oxidative stress, which results in abnormal β-thalassemic red cell features. These cells are precociously removed by the macrophage system through two mechanisms: the removal of phosphatidylserine positive cells and through the natural occurring antibody produced against the abnormally clustered membrane protein band 3. In the present review we will discuss the changes in β-thalassemic red cell homeostasis related to the oxidative stress and its connection with production of microparticles and with malaria infection. The reactive oxygen species (ROS) are also involved in ineffective erythropoiesis of β-thalassemia through still partially known pathways. Novel cytoprotective systems such as ASHP, eIF2α, and peroxiredoxin-2 have been suggested to be important against ROS in β-thalassemic erythropoiesis. Finally, we will discuss the results of the major in vitro and in vivo studies with antioxidants in β-thalassemia.
Collapse
|
26
|
Anti-oxidant activity of holo- and apo-c-phycocyanin and their protective effects on human erythrocytes. Int J Biol Macromol 2013; 60:393-8. [DOI: 10.1016/j.ijbiomac.2013.06.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/14/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022]
|
27
|
Lal A, Atamna W, Killilea DW, Suh JH, Ames BN. Lipoic acid and acetyl-carnitine reverse iron-induced oxidative stress in human fibroblasts. Redox Rep 2013; 13:2-10. [DOI: 10.1179/135100008x259150] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
28
|
Muanprasat C, Wongborisuth C, Pathomthongtaweechai N, Satitsri S, Hongeng S. Protection against oxidative stress in beta thalassemia/hemoglobin E erythrocytes by inhibitors of glutathione efflux transporters. PLoS One 2013; 8:e55685. [PMID: 23383265 PMCID: PMC3561311 DOI: 10.1371/journal.pone.0055685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/28/2012] [Indexed: 02/07/2023] Open
Abstract
In beta thalassemia/hemoglobin E (Hb E), abnormally high levels of oxidative stress account for accelerated senescence and increased destruction of erythrocytes. The present study aimed to investigate the role of glutathione efflux transporters, namely cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein 1 (MRP1), in the control of glutathione levels and protection against oxidative challenges in beta thalassemia/Hb E erythrocytes. We found that CFTR protein was expressed in the erythrocytes of beta thalassemia/Hb E patients. Treatments with GlyH-101 (50 µM), a small molecule CFTR inhibitor, and MK571 (50 µM), an MRP1 inhibitor, reduced H2O2-induced free radical generation in the erythrocytes by ∼80% and 50%, respectively. Furthermore, combined treatment with GlyH-101 and MK571 completely abolished the induction of reactive oxygen radicals. Increased oxidative stress in the erythrocytes following H2O2 challenges was accompanied by a decrease in intracellular level of reduced glutathione (GSH), which was prevented by treatments with GlyH-101 and MK571. CMFDA-based assays revealed that GlyH-101 and MK571 reduced H2O2-induced glutathione efflux from the erythrocytes by 87% and 66%, respectively. Interestingly, H2O2-induced osmotic tolerance of erythrocytes, a sign of erythrocyte aging, was ameliorated by treatment with GlyH-101. Our study indicates that oxidative stress induces glutathione efflux via CFTR and MRP1 in beta thalassemia/Hb E erythrocytes. Pharmacological inhibition of glutathione efflux represents a potential therapy to delay aging and premature destruction of erythrocytes in beta thalassemia/Hb E.
Collapse
Affiliation(s)
- Chatchai Muanprasat
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail: (CM); (SH)
| | - Chokdee Wongborisuth
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saravut Satitsri
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- * E-mail: (CM); (SH)
| |
Collapse
|
29
|
Abstract
It is common knowledge that thalassemic patients are under significant oxidative stress. Chronic hemolysis, frequent blood transfusion, and increased intestinal absorption of iron are the main factors that result in iron overload with its subsequent pathophysiologic complications. Iron overload frequently associates with the generation of redox-reactive labile iron, which in turn promotes the production of other reactive oxygen species (ROS). If not neutralized, uncontrolled production of ROS often leads to damage of various intra- and extracellular components such as DNA, proteins, lipids, and small antioxidant molecules among others. A number of endogenous and exogenous defense mechanisms can neutralize and counteract the damaging effects of labile iron and the reactive substances associated with it. Endogenous antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and ferroxidase, may directly or sequentially terminate the activities of ROS. Nonenzymatic endogenous defense mechanisms include metal binding proteins (ceruloplasmin, haptoglobin, albumin, and others) and endogenously produced free radical scavengers (glutathione (GSH), ubiquinols, and uric acid). Exogenous agents that are known to function as antioxidants (vitamins C and E, selenium, and zinc) are mostly diet-derived. In this review, we explore recent findings related to various antioxidative mechanisms operative in thalassemic patients with special emphasis on protein antioxidants.
Collapse
Affiliation(s)
- Samir Awadallah
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
30
|
Arruda MM, Mecabo G, Rodrigues CA, Matsuda SS, Rabelo IB, Figueiredo MS. Antioxidant vitamins C and E supplementation increases markers of haemolysis in sickle cell anaemia patients: a randomized, double-blind, placebo-controlled trial. Br J Haematol 2012; 160:688-700. [PMID: 23278176 DOI: 10.1111/bjh.12185] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/09/2012] [Indexed: 12/17/2022]
Abstract
Erythrocytes from sickle cell anaemia (SCA) patients continuously produce larger amounts of pro-oxidants than normal cells. Oxidative stress seems to primarily affect the membrane and results in haemolysis. The use of antioxidants in vitro reduces the generation of pro-oxidants. To evaluate the impact of vitamins C (VitC) and E (VitE) supplementation in SCA patients, patients over 18 years were randomly assigned to receive VitC 1400 mg + VitE 800 mg per day or placebo orally for 180 d. Eighty-three patients were enrolled (44 vitamins, 39 placebo), median age 27 (18-68) years, 64% female. There were no significant differences between the two groups regarding clinical complications or baseline laboratorial tests. Sixty percent of the patients were VitC deficient, 70% were VitE deficient. Supplementation significantly increased serum VitC and E. However, no significant changes in haemoglobin levels were observed, and, unexpectedly, there was a significant increase in haemolytic markers with vitamin supplementation. In conclusion, VitC + VitE supplementation did not improve anaemia and, surprisingly, increased markers of haemolysis in patients with SCA and S-β(0) -thalassaemia. The exact mechanisms to explain this findings and their clinical significance remain to be determined.
Collapse
Affiliation(s)
- Martha M Arruda
- Hematology and Blood Transfusion Department, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Howard AC, McNeil AK, McNeil PL. Promotion of plasma membrane repair by vitamin E. Nat Commun 2011; 2:597. [PMID: 22186893 PMCID: PMC3247818 DOI: 10.1038/ncomms1594] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/14/2011] [Indexed: 02/05/2023] Open
Abstract
Severe vitamin E deficiency results in lethal myopathy in animal models. Membrane repair is an important myocyte response to plasma membrane disruption injury as when repair fails, myocytes die and muscular dystrophy ensues. Here we show that supplementation of cultured cells with α-tocopherol, the most common form of vitamin E, promotes plasma membrane repair. Conversely, in the absence of α-tocopherol supplementation, exposure of cultured cells to an oxidant challenge strikingly inhibits repair. Comparative measurements reveal that, to promote repair, an anti-oxidant must associate with membranes, as α-tocopherol does, or be capable of α-tocopherol regeneration. Finally, we show that myocytes in intact muscle cannot repair membranes when exposed to an oxidant challenge, but show enhanced repair when supplemented with vitamin E. Our work suggests a novel biological function for vitamin E in promoting myocyte plasma membrane repair. We propose that this function is essential for maintenance of skeletal muscle homeostasis. Membrane repair of myocytes is important to prevent such disease as muscular dystrophy but the properties of this repair are not well characterised. In this study, vitamin E is shown to be important in the repair of myocyte cell membranes in cultured cells and in intact muscle.
Collapse
Affiliation(s)
- Amber C Howard
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
32
|
Taher AT, Musallam KM, Cappellini MD, Weatherall DJ. Optimal management of β thalassaemia intermedia. Br J Haematol 2011; 152:512-23. [DOI: 10.1111/j.1365-2141.2010.08486.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Senggunprai L, Kukongviriyapan V, Prawan A, Kukongviriyapan U. Consumption of Syzygium gratum promotes the antioxidant defense system in mice. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2010; 65:403-409. [PMID: 21104319 DOI: 10.1007/s11130-010-0200-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Several vegetables have been shown to possess cytoprotective and antioxidant effects with various mechanisms of action. The aim of this study was to determine the antioxidant effects and mechanism underlying of Syzygium gratum, a dietary and herbal plant commonly found in the Southeast Asia. Additionally, its effects on the induction of endogenous antioxidant defensive system were also investigated. Results showed that the leaf extract possessed an exceptionally strong antioxidant and intracellular oxygen radical scavenging activity in both aqueous and ethanolic extracts. The plant aqueous extract was further studied in C57BL/6J mice to evaluate its effects in vivo. The extract was well tolerated by the animals throughout the 30 days of study. The cytoprotective enzyme, heme oxygenase (HO-1) activity was significantly increased in the high dose-treated animals (1 g/kg/day). Consistent with the enzymatic activity, the expression of HO-1 mRNA tended to increase in those mice. There was no significant increase in hepatic γ-glutamylcysteine ligase (γ-GCL) activity, glutathione levels and GCL mRNA expression. Taken together, this study provides evidence that S. gratum exhibits potent direct antioxidant properties and can induce cytoprotective enzyme in vivo. Consumption of S. gratum may provide a health benefit against oxidative stress and other related disorders.
Collapse
Affiliation(s)
- Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | |
Collapse
|
34
|
Fibach E, Rachmilewitz EA. The role of antioxidants and iron chelators in the treatment of oxidative stress in thalassemia. Ann N Y Acad Sci 2010; 1202:10-6. [PMID: 20712766 DOI: 10.1111/j.1749-6632.2010.05577.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
On the basis of all the presented data, one can conclude that oxidative stress plays a major role in the pathophysiology of thalassemia and other congenital and acquired hemolytic anemias. Free extracellular (labile plasma iron, LPI) and intracellular (labile iron pool, LIP) iron species that have been identified in thalassemic blood cells are responsible for generation of oxidative stress by catalyzing formation of oxygen radicals over the antioxidant capacity of the cell. Consequently, there is a rationale for iron chelation to eliminate the free-iron species, which in this respect, act like antioxidants. In addition, antioxidants such as vitamin E and polyphenols are also capable of ameliorating increased oxidative stress parameters and, given together with iron chelators, may provide a substantial improvement in the pathophysiology of hemolytic anemias and particularly in thalassemia.
Collapse
Affiliation(s)
- Eitan Fibach
- Department of Hematology, Hadassah-Hebrew University Medical Center, Ein-Kerem, Jerusalem, Israel.
| | | |
Collapse
|
35
|
Abstract
Complexity of free radical Metabolism in human ErythrocytesThe auto-oxidation of oxyhaemoglobin to methaemoglobin generating superoxide anion radical (O2.-) represents the main source of free radicals in the erythro-cytes. Hydrogen peroxide is produced by O2.-dismutation or originates from the circulation. Human erythrocytes are also exposed to the prooxidative actions of nitric oxide (NO) from circulation. Free radicals that may induce reactions with direct dangerous consequences to erythrocytes are also preceded by the reaction of O2.-and NO producing peroxynitrite. In physiological settings, erythrocytes show a self-sustaining activity of antioxidative defence (AD) enzymes, such as: superoxide dismutase (SOD, EC 1.11.16), catalase (CAT, EC 1.11.1.6), glutathione peroxidase (GSHPx, EC 1.11.1.9) and glutathione reductase (GR, EC 1.6.4.2), as well as low molecular weight antioxidants: glutathione and vitamins E and C. Their coordinate actions protect the erythrocyte's bio-macromolecules from free radical-mediated damage. Since there is node novosynthesis of AD enzymes in mature erythrocytes, their defence capacity is limited. Free radicals influence antioxidative enzymes capacities and relative share of particular components in the whole antioxidative system. Therefore, by measuring changes in the activity of individual AD components, as well as their interrelations by statistical canonical discriminant methods, valuable data about the complexity, overall relations and coordinated actions in the AD system in erythrocytes and its relevance for systemic effects can be acquired.
Collapse
|
36
|
|
37
|
Cakmak A, Soker M, Koc A, Aksoy N. Prolidase activity and oxidative status in patients with thalassemia major. J Clin Lab Anal 2010; 24:6-11. [PMID: 20087956 DOI: 10.1002/jcla.20361] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM Prolidase is a specific imidodipeptidase involved in collagen degradation. The increase in the enzyme activity is believed to be correlated with the increased intensity of collagen degradation. The study aimed to evaluate the relationship between prolidase activity and oxidative status in patients with thalassemia major. METHODS Comparison was made between 87 patients diagnosed with thalassemia major and 33 healthy children of similar age and gender. Mean age of the subjects was 7.5+/-4.3 years in the group of patients with thalassemia major and 8.9+/-3.1 years in the control group. Serum prolidase activity was measured spectrophotometrically. Oxidative status was determined using total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) measurement. RESULTS Prolidase activity was significantly increased in patients with thalassemia major (53.7+/-8.7 U/l) compared to the control group (49.2+/-7.2 U/l, P<0.001). TOS was significantly increased in the patient group (5.31+/-3.14 mmol H2O2 equiv./l) compared to the control group (3.49+/-2.98 mumol H2O2 equiv./l) and the OSI was also significantly increased in the patient group (3.86+/-3.28 arbitrary unit) compared to the control group (2.53+/-2.70 arbitrary unit) (P<0.0001 and P<0.001, respectively), while there were no significant differences between the patient (1.61+/-0.30 mumol Trolox equiv./l) and control (1.64+/-0.33 mumol Trolox equiv./l) groups with respect to TAC. CONCLUSION Significant increases in prolidase activity in patients with thalassemia major may constitute a key parameter in demonstrating a disorder of the collagen metabolism.
Collapse
Affiliation(s)
- Alpay Cakmak
- Department of Pediatrics, Harran University School of Medicine, Sanliurfa, Turkey.
| | | | | | | |
Collapse
|
38
|
Kalpravidh RW, Siritanaratkul N, Insain P, Charoensakdi R, Panichkul N, Hatairaktham S, Srichairatanakool S, Phisalaphong C, Rachmilewitz E, Fucharoen S. Improvement in oxidative stress and antioxidant parameters in β-thalassemia/Hb E patients treated with curcuminoids. Clin Biochem 2010; 43:424-9. [DOI: 10.1016/j.clinbiochem.2009.10.057] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 11/25/2022]
|
39
|
Karimi M, Mohammadi F, Behmanesh F, Samani SM, Borzouee M, Amoozgar H, Haghpanah S. Effect of combination therapy of hydroxyurea with l-carnitine and magnesium chloride on hematologic parameters and cardiac function of patients with β-thalassemia intermedia. Eur J Haematol 2010; 84:52-8. [DOI: 10.1111/j.1600-0609.2009.01356.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Abstract
PURPOSE The aim of this study was to study paraoxonase and arylesterase activities along with oxidative status parameters, and to find out whether there is any increased susceptibility to atherogenesis, which might be reflected with increased oxidative stress and decreased serum paraoxonase/arylesterase activity in beta-thalassemia major (BTM) patients. PATIENTS AND METHODS Eighty-seven patients with BTM and 33 healthy individuals were enrolled in the study. RESULTS Paraoxonase and arylesterase activities were significantly lower in BTM patients than controls (for all P<0.0001), whereas total oxidant status, total peroxide concentration levels, and oxidative stress index were significantly higher (P<0.0001, <0.0001, and <0.001, respectively). Correlations were found between serum iron and ferritin and levels of total oxidant status in BTM patients. Significant correlation was found with serum total peroxide concentration levels and paraoxonase and arylesterase activities in patients with BTM. CONCLUSIONS It was seen that oxidative stress increases, while serum paraoxonase activity is decreased in BTM patients. Decrease in paraoxonase activity seems to be associated with both the degree of oxidative stress and anemia. BTM patients may be more prone to development of atherogenesis because of low serum paraoxonase/arylesterase activity.
Collapse
|
41
|
Tesoriere L, Allegra M, Butera D, Gentile C, Livrea MA. Cytoprotective effects of the antioxidant phytochemical indicaxanthin in β-thalassemia red blood cells. Free Radic Res 2009; 40:753-61. [PMID: 16984002 DOI: 10.1080/10715760600554228] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Antioxidant phytochemicals are investigated as novel treatments for supportive therapy in beta-thalassemia. The dietary indicaxanthin was assessed for its protective effects on human beta-thalassemic RBCs submitted in vitro to oxidative haemolysis by cumene hydroperoxide. Indicaxanthin at 1.0-10 microM enhanced the resistance to haemolysis dose-dependently. In addition, it prevented lipid and haemoglobin (Hb) oxidation, and retarded vitamin E and GSH depletion. After ex vivo spiking of blood from thalassemia patients with indicaxanthin, the phytochemical was recovered in the soluble cell compartment of the RBCs. A spectrophotometric study showed that indicaxanthin can reduce perferryl-Hb generated in solution from met-Hb and hydrogen peroxide (H2O2), more effectively than either Trolox or vitamin C. Collectively our results demonstrate that indicaxanthin can be incorporated into the redox machinery of beta-thalassemic RBC and defend the cell from oxidation, possibly interfering with perferryl-Hb, a reactive intermediate in the hydroperoxide-dependent Hb degradation. Opportunities of therapeutic interest for beta-thalassemia may be considered.
Collapse
Affiliation(s)
- L Tesoriere
- Dipartimento Farmacochimico Tossicologico e Biologico, Università di Palermo, Via Archirafi 32, Palermo 90128, Italy.
| | | | | | | | | |
Collapse
|
42
|
Garcia-Fernandez MI, Gheduzzi D, Boraldi F, Paolinelli CD, Sanchez P, Valdivielso P, Morilla MJ, Quaglino D, Guerra D, Casolari S, Bercovitch L, Pasquali-Ronchetti I. Parameters of oxidative stress are present in the circulation of PXE patients. Biochim Biophys Acta Mol Basis Dis 2008; 1782:474-81. [PMID: 18513494 DOI: 10.1016/j.bbadis.2008.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 11/26/2022]
Abstract
Pseudoxanthoma elasticum (PXE) is an inherited disorder characterized by calcification of elastic fibres leading to dermatological and vascular alterations associated to premature aged features and to life threatening clinical manifestations. The severity of the disease is independent from the type of mutation in the ABCC6 gene, and it has been suggested that local and/or systemic factors may contribute to the occurrence of clinical phenotype. The redox balance in the circulation of 27 PXE patients and of 50 healthy subjects of comparable age was evaluated by measuring the advanced oxidation protein products (AOPP), the lipid peroxidation derivatives (LOOH), the circulating total antioxidant status (TAS), the thiol content and the extracellular superoxide dismutase activity (EC-SOD). Patients were diagnosed by clinical, ultrastructural and molecular findings. Compared to control subjects, PXE patients exhibited significantly lower antioxidant potential, namely circulating TAS and free thiol groups, and higher levels of parameters of oxidative damage, as LOOH and of AOPP, and of circulating EC-SOD activity. Interestingly, the ratio between oxidant and antioxidant parameters was significantly altered in PXE patients and related to various score indices. This study demonstrates, for the first time, that several parameters of oxidative stress are modified in the blood of PXE patients and that the redox balance is significantly altered compared to control subjects of comparable age. Therefore, in PXE patients the circulating impaired redox balance may contribute to the occurrence of several clinical manifestations in PXE patients, and/or to the severity of disease, thus opening new perspectives for their management.
Collapse
|
43
|
Roudkenar MH, Halabian R, Oodi A, Roushandeh AM, Yaghmai P, Najar MR, Amirizadeh N, Shokrgozar MA. Upregulation of neutrophil gelatinase-associated lipocalin, NGAL/Lcn2, in beta-thalassemia patients. Arch Med Res 2008; 39:402-7. [PMID: 18375251 DOI: 10.1016/j.arcmed.2007.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 12/10/2007] [Indexed: 12/28/2022]
Abstract
BACKGROUND One of the major consequences in beta- thalassemia is iron overload. Oxidative statuses have been reported in beta-thalassemia patients by several studies. It has been proven that iron plays a critical role in the formation of reactive oxygen species (ROS). More recently, we have found the induction of Lcn2/NGAL expression under oxidative stress condition. In this study, it was assumed that NGAL should be upregulated in beta-thalassemia patients because of oxidative stress condition. METHODS Assessment of NGAL expressions in 25 adult beta-thalassemia and 9 pediatric patients was performed by semiquantitative RT-PCR, real-time RT-PCR and ELISA. RESULTS Adult beta-thalassemia patients upregulated NGAL expression compared with the normal samples but no upregulation was observed in pediatric patients. CONCLUSIONS Upregulation may play an important role in decreasing ROS or iron in beta-thalassemia patients.
Collapse
|
44
|
Oxidant-antioxidant imbalance in the erythrocytes of sporadic amyotrophic lateral sclerosis patients correlates with the progression of disease. Neurochem Int 2008; 52:1284-9. [PMID: 18308427 DOI: 10.1016/j.neuint.2008.01.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 01/03/2008] [Accepted: 01/17/2008] [Indexed: 11/26/2022]
Abstract
Free radicals are implicated in numerous disease processes including motor neuron degeneration (MND). Antioxidant defense enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G-6-PDH) in the erythrocytes are capable of detoxifying reactive oxygen species produced endogenously or exogenously. In the present study, the extent of lipid peroxidation (LPO) and antioxidant defenses were evaluated in the erythrocytes of 20 sporadic amyotrophic lateral sclerosis (ALS) patients and 20 controls. We observed that lipid peroxidation in the erythrocytes of amyotrophic lateral sclerosis patients significantly increased with respect to controls (P<0.001). On the other hand, catalase activity was found to be significantly lower (P<0.001). The activities of glucose-6-phosphate dehydrogenase, glutathione reductase and glutathione levels were also found to be significantly reduced in ALS patients compared to healthy subjects (P<0.001, P<0.01 and P<0.01, respectively). It was further observed that lipid peroxidation started to increase and catalase, glutathione reductase, glucose-6-phosphate dehydrogenase enzyme activities and glutathione levels started to decrease as amyotrophic lateral sclerosis progressed from 6 to 24 months, suggesting a correlation between these parameters and duration of amyotrophic lateral sclerosis. This study confirms the involvement of oxidative stress during the progression of amyotrophic lateral sclerosis and the need to develop specific peripheral biomarkers.
Collapse
|
45
|
Abstract
The term thalassaemia intermedia includes a large spectrum of conditions of varying severity. Blood transfusion and chelation are necessary in some patients, especially during childhood, in order to promote growth and prevent bone deformities. Alloimunisation, however, is frequent and can be difficult to control. Splenectomy is usually needed at some time because of hypersplenism and mechanical encumbrance. Reactivation of HbF is possible only in a small proportion of patients: hydroxycarbamide (also known as hydroxyurea) appears to be the most effective drug for this purpose. Antioxidant agents, although theoretically useful, do not improve haemoglobin levels. Stem cell transplantation is an option limited to the severe forms. Gene therapy and other molecular approaches are subjects of intense study. Numerous complications, including pulmonary hypertension, thrombotic events, pseudoxanthoma elasticum and osteoporosis, have been described and all contribute to complicate the treatment of a disease that represents a significant burden for the patients and their families.
Collapse
|
46
|
Etkin NL. The co-evolution of people, plants, and parasites: biological and cultural adaptations to malaria. Proc Nutr Soc 2007; 62:311-7. [PMID: 14506878 DOI: 10.1079/pns2003244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The urgency generated by drug-resistant strains of malaria has accelerated anti-malarial drug research over the last two decades. While synthetic pharmaceutical agents continue to dominate research, attention increasingly has been directed to natural products. The present paper explores the larger context in which plant use occurs and considers how the selection of medicinal plants has evolved over millennia as part of the larger human effort to mediate illness. First attention is directed to indigenous medicinal plants whose anti-malarial activity is based on an oxidant mode of action, by which intracellular constituents lose electrons (become more electropositive). Next, parallels are drawn between these plant substances and a suite of malaria-protective genetic traits: glucose-6-phosphate dehydrogenase deficiency; haemoglobins S, C and E; α- and β-thalassemias. These erythrocyte anomalies are classic examples of Darwinian evolution, occurring in high frequency in populations who have experienced considerable selective pressure from malaria. Characterized by discrete loci and pathophysiologies, they are united through the phenomenon of increased erythrocyte oxidation. In this model, then, oxidant anti-malarial plants are culturally constructed analogues, and molecular mimics, of these genetic adaptations. To further reinforce the scheme, it is noted that the anti-malarial action of pharmaceutical agents such as chloroquine and mefloquine duplicates both the genetic anomalies and the folk therapeutic models based in oxidant plants. This discussion coheres around a theoretical foundation that relates plant secondary metabolites (oxidants) to plasmodial biochemistry and human biological and cultural adaptations to malaria. Co-evolution provides a theoretical link that illuminates how medical cultures manage the relationships among humans, plants, herbivores and their respective pathogens.
Collapse
Affiliation(s)
- Nina L Etkin
- Department of Anthropology, Division of Health Ecology, School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
| |
Collapse
|
47
|
Abstract
Administration of vitamin E in children with immunoglobulin A (IgA) nephropathy, focal segmental glomerulosclerosis (FSGS) and type I diabetes demonstrated potential towards ameliorating progression. Oral vitamin E therapy reduced endothelial dysfunction, lipid peroxidation and oxidative stress in patients with chronic kidney failure (CKF). Moreover, the use of vitamin E-bonded hemodialyzers reduced atherosclerotic changes, erythropoietin dosage and muscular cramps in patients on hemodialysis (HD). However, several controlled clinical trials failed to document beneficial effects on the study subjects' cardiovascular and renal outcomes. A recent report of increased all-cause mortality in adult patients receiving high dose vitamin E therapy has caused considerable concern and debate. These issues regarding the efficacy and safety of vitamin E in renal therapeutic regimens will be reviewed in this article.
Collapse
|
48
|
Rachmilewitz EA, Weizer-Stern O, Adamsky K, Amariglio N, Rechavi G, Breda L, Rivella S, Cabantchik ZI. Role of iron in inducing oxidative stress in thalassemia: Can it be prevented by inhibition of absorption and by antioxidants? Ann N Y Acad Sci 2006; 1054:118-23. [PMID: 16339657 DOI: 10.1196/annals.1345.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The pathophysiology of thalassemia is, to a certain extent, associated with the generation of labile iron in the pathological red blood cell (RBC). The appearance of such forms of iron at the inner and outer cell surfaces exposes the cell to conditions whereby the labile metal promotes the formation of reactive oxygen species (ROS) leading to cumulative cell damage. Another source of iron accumulation results from increased absorption due to decreased expression of hepcidin. The presence of labile plasma iron (LPI) was carried out using fluorescent probes in the FACS. RNA expression of hepcidin was measured in two models of thalassemic mice. Hepcidin expression was also measured in human hepatoma HepG2 cells following incubation with thalassemic sera. LPI was identified and could be quantitatively measured and correlated with other parameters of iron overload. Hepcidin expression was downregulated in the livers of thalassemic mice, in major more than in intermedia. Thalassemic sera down regulated hepcidin expression in HepG2 liver cells. A possible way to decrease iron absorption could be by modulating hepcidin expression pharmacologically, by gene therapy or by its administration. Treatment with combination of antioxidants such as N-acetylcysteine for proteins and vitamin E for lipids in addition to iron chelators could neutralize the deleterious effects of ROS and monitored by quantitation of LPI.
Collapse
Affiliation(s)
- Eliezer A Rachmilewitz
- Department of Hematology, The Edith Wolfson Medical Center, P.O. Box 5, 58100 Holon, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Thalassemia (thal) and Fanconi's Anemia (FA) are genetic disorders associated with iron-catalyzed free radical damage. Therefore, the contemporary and most successful treatment of thalassemic patients depends on the application of iron (Fe) chelators. However, there is another pathway of free radical-mediated damaging processes in these pathologies, depending on the interplay between physiological free radicals superoxide and nitric oxide (NO). In the present study, we have considered the major routes of superoxide damaging effects in mitochondria: the initiation of apoptosis through the reduction of cytochrome c, the activation of uncoupled proteins by superoxide, and the mitochondrial damage due to the competition between superoxide and nitric oxide at the Complex IV site (cytochrome oxidase). The application of the effective scavengers superoxide dismutases and flavonoids for the treatment of thalassemic and FA patients, is discussed.
Collapse
|
50
|
Filosa A, Valgimigli L, Pedulli GF, Sapone A, Maggio A, Renda D, Scazzone C, Malizia R, Pitrolo L, Lo Pinto C, Borsellino Z, Cuccia L, Capra M, Canistro D, Broccoli M, Soleti A, Paolini M. Quantitative evaluation of oxidative stress status on peripheral blood in beta-thalassaemic patients by means of electron paramagnetic resonance spectroscopy. Br J Haematol 2005; 131:135-40. [PMID: 16173974 DOI: 10.1111/j.1365-2141.2005.05734.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High oxidative stress status (OSS) is known to be one of the most important factors determining cell injury and consequent organ damage in thalassaemic patients with secondary iron overload. Using an innovative hydroxylamine 'radical probe' capable of efficiently trapping majority of oxygen-radicals including superoxide we measured, by electron paramagnetic resonance (EPR) spectroscopy, OSS in peripheral blood of 38 thalassaemic patients compared with sex-/age-matched healthy controls. Thalassaemic patients showed sixfold higher EPR values of OSS than controls. Significantly higher EPR values of OSS were observed in those with a severe phenotype (thalassaemia major, transfusion-dependent) with respect to mild phenotype (sickle-cell/beta-thalassaemia, not transfusion-dependent) or thalassaemia intermedia. In patients with thalassaemia major, EPR values of OSS were positively correlated with serum ferritin and with alanine aminotransferase levels. In patients with sickle cell/beta-thalassaemia, there was no correlation between EPR value of OSS and all parameters considered. The type of chelating therapy (desferrioxamine or deferiprone) did not have an effect on EPR value of OSS. In conclusion, EPR 'radical probe' seems to be a valid innovative method to determine total OSS in patients affected by thalassaemia and might be used for evaluating new strategies of chelation, new chelators, or the efficacy of antioxidant formula.
Collapse
Affiliation(s)
- A Filosa
- Department of Paediatrics, 'A. Cardarelli' Hospital, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|