1
|
Justiniano R, de Faria Lopes L, Perer J, Hua A, Park SL, Jandova J, Baptista MS, Wondrak GT. The Endogenous Tryptophan-derived Photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) is a Nanomolar Photosensitizer that Can be Harnessed for the Photodynamic Elimination of Skin Cancer Cells in Vitro and in Vivo. Photochem Photobiol 2020; 97:180-191. [PMID: 32767762 DOI: 10.1111/php.13321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/03/2020] [Indexed: 01/10/2023]
Abstract
UV-chromophores contained in human skin may act as endogenous sensitizers of photooxidative stress and can be employed therapeutically for the photodynamic elimination of malignant cells. Here, we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan-derived photoproduct and endogenous aryl hydrocarbon receptor agonist, displays activity as a nanomolar sensitizer of photooxidative stress, causing the photodynamic elimination of human melanoma and nonmelanoma skin cancer cells in vitro and in vivo. FICZ is an efficient UVA/Visible photosensitizer having absorbance maximum at 390 nm (ε = 9180 L mol-1 cm-1 ), and fluorescence and singlet oxygen quantum yields of 0.15 and 0.5, respectively, in methanol. In a panel of cultured human squamous cell carcinoma and melanoma skin cancer cells (SCC-25, HaCaT-ras II-4, A375, G361, LOX), photodynamic induction of cell death was elicited by the combined action of solar simulated UVA (6.6 J cm-2 ) and FICZ (≥10 nm), preceded by the induction of oxidative stress as substantiated by MitoSOX Red fluorescence microscopy, comet detection of Fpg-sensitive oxidative genomic lesions and upregulated stress response gene expression (HMOX1, HSPA1A, HSPA6). In SKH1 "high-risk" mouse skin, an experimental FICZ/UVA photodynamic treatment regimen blocked the progression of UV-induced tumorigenesis suggesting feasibility of harnessing FICZ for the photooxidative elimination of malignant cells in vivo.
Collapse
Affiliation(s)
- Rebecca Justiniano
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Lohanna de Faria Lopes
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jessica Perer
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Anh Hua
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Sophia L Park
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Jana Jandova
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Maurício S Baptista
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
2
|
Ding N, Chang X, Shi N, Yin X, Qi F, Sun Y. Enhanced inactivation of antibiotic-resistant bacteria isolated from secondary effluents by g-C 3N 4 photocatalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18730-18738. [PMID: 31055749 DOI: 10.1007/s11356-019-05080-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The extensive use of antibiotics has resulted in the development of antibiotic-resistant bacteria (ARB), which may not be completely removed by traditional wastewater treatment processes. More effective approaches to disinfection are needed to prevent the release of ARB into the surface water. The metal-free photocatalyst graphitic carbon nitride (g-C3N4) has aroused great interest as a possible agent for water and wastewater treatment, due to its low cytotoxicity and photoactivity with visible light. In this study, the efficacy of g-C3N4 was assessed as a possible means to enhance ARB inactivation by irradiation. ARB were isolated and purified from secondary effluents in 4 municipal wastewater treatment plants. Of these, 4 typical multi-drug ARB isolates, belonging to Enterobacteriaceae, were selected for irradiation experiments. Inactivation was seen to increase with irradiation time. At 60 min, the inactivation of the 4 ARB isolates by light at > 300 nm and > 400 nm was in the range of 0.25-0.39 log and 0.16-0.19 log, respectively. The use of g-C3N4-mediated photocatalysis at the same wavelengths significantly enhanced that to 0.64-1.26 log and 0.31-0.41 log, respectively. The antibiotic susceptibility of the ARB isolates remained unchanged either prior to or after irradiation and was independent of photon fluence, reaction time, and the presence of g-C3N4. This study establishes a baseline for understanding the effectiveness of g-C3N4 photocatalysis on inactivation of ARB in wastewaters and lays the foundation for further improvement in the use of photocatalysis for wastewater treatment.
Collapse
Affiliation(s)
- Ning Ding
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Comprehensive Utilization of Resources, China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Xueming Chang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China
| | - Na Shi
- Beijing Boda Water Co., Ltd, Beijing, China
| | - Xiufeng Yin
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China
| | - Fei Qi
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China
| | - Yingxue Sun
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China.
- Key Laboratory of Cleaner Production and Comprehensive Utilization of Resources, China National Light Industry, Beijing Technology and Business University, Beijing, China.
| |
Collapse
|
3
|
Metal-mediated oxidative DNA damage induced by methylene blue. Biochim Biophys Acta Gen Subj 2014; 1840:2776-82. [DOI: 10.1016/j.bbagen.2014.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/29/2023]
|
4
|
Hiraku Y, Ito K, Hirakawa K, Kawanishi S. Photosensitized DNA Damage and its Protection via a Novel Mechanism†. Photochem Photobiol 2007; 83:205-12. [PMID: 16965181 DOI: 10.1562/2006-03-09-ir-840] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
UVA, which accounts for approximately 95% of solar UV radiation, can cause mutations and skin cancer. Based mainly on the results of our study, this paper summarizes the mechanisms of UVA-induced DNA damage in the presence of various photosensitizers, and also proposes a new mechanism for its chemoprevention. UVA radiation induces DNA damage at the 5'-G of 5'-GG-3' sequence in double-stranded DNA through Type I mechanism, which involves electron transfer from guanine to activated photosensitizers. Endogenous sensitizers such as riboflavin and pterin derivatives and an exogenous sensitizer nalidixic acid mediate DNA photodamage via this mechanism. The major Type II mechanism involves the generation of singlet oxygen from photoactivated sensitizers, including hematoporphyrin and a fluoroquinolone antibacterial lomefloxacin, resulting in damage to guanines without preference for consecutive guanines. UVA also produces superoxide anion radical by an electron transfer from photoexcited sensitizers to oxygen (minor Type II mechanism), and DNA damage is induced by reactive species generated through the interaction of hydrogen peroxide with metal ions. The involvement of these mechanisms in UVA carcinogenesis is discussed. In addition, we found that xanthone derivatives inhibited DNA damage caused by photoexcited riboflavin via the quenching of its excited triplet state. It is thus considered that naturally occurring quenchers including xanthone derivatives may act as novel chemopreventive agents against photocarcinogenesis.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | | | | |
Collapse
|