1
|
Xiang S, Yan W, Ren X, Feng J, Zu X. Role of ferroptosis and ferroptosis-related long non'coding RNA in breast cancer. Cell Mol Biol Lett 2024; 29:40. [PMID: 38528461 DOI: 10.1186/s11658-024-00560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Ferroptosis, a therapeutic strategy for tumours, is a regulated cell death characterised by the increased accumulation of iron-dependent lipid peroxides (LPO). Tumour-associated long non-coding RNAs (lncRNAs), when combined with traditional anti-cancer medicines or radiotherapy, can improve efficacy and decrease mortality in cancer. Investigating the role of ferroptosis-related lncRNAs may help strategise new therapeutic options for breast cancer (BC). Herein, we briefly discuss the genes and pathways of ferroptosis involved in iron and reactive oxygen species (ROS) metabolism, including the XC-/GSH/GPX4 system, ACSL4/LPCAT3/15-LOX and FSP1/CoQ10/NAD(P)H pathways, and investigate the correlation between ferroptosis and LncRNA in BC to determine possible biomarkers related to ferroptosis.
Collapse
Affiliation(s)
- Shasha Xiang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wen Yan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xing Ren
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jianbo Feng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
3
|
Glutathione peroxidase 4 expression predicts poor overall survival in patients with resected lung adenocarcinoma. Sci Rep 2022; 12:20462. [PMID: 36443446 PMCID: PMC9705709 DOI: 10.1038/s41598-022-25019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
This study aimed to evaluate the protein expression of glutathione peroxidase 4 (GPX4) in resected non-small cell lung cancer (NSCLC). The clinical relevance and prognostic significance of GPX4 expression were analyzed. We reviewed patients with resected NSCLCs at Taipei Veterans General Hospital between September 2002 and January 2018. Available paraffin-embedded specimens were retrieved for immunohistochemistry (IHC) staining to detect GPX4 expression. The cutoff value for defining GPX4 positivity was determined according to the percentage of tumor stained in the microscopic field. The correlation between immune expression, clinicopathologic data, overall survival (OS), and disease-free survival (DFS) were analyzed. A total of 265 NSCLC specimens were retrieved for IHC staining. GPX4 expression positive was in 192 (72.5%) according to a cutoff value of 5%. GPX4 was a significant prognostic factor for OS and DFS on multivariate analysis at both 5% and 25% cutoff values. GPX4 expression was associated with poor OS and DFS, especially in lung adenocarcinoma (p = 0.008, and 0.027, respectively). In conclusions, IHC analysis revealed that GPX4 expression was associated with poor survival outcomes in patients with resected lung adenocarcinoma. Further research is needed to understand the role of GPX4 in tumorigenesis and the underlying mechanism responsible for survival outcomes in patients with resected lung adenocarcinoma.
Collapse
|
4
|
Asakawa A, Kawade G, Kurata M, Fukuda S, Onishi I, Kinowaki Y, Ishibashi S, Ikeda M, Watabe S, Kobayashi M, Ishibashi H, Okubo K, Kitagawa M, Yamamoto K. Stratification of lung squamous cell carcinoma based on ferroptosis regulators: Potential for new therapeutic strategies involving ferroptosis induction. Lung Cancer 2022; 165:82-90. [PMID: 35101731 DOI: 10.1016/j.lungcan.2022.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 01/19/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Lung squamous cell carcinoma (LSCC) exhibits poor response to treatment compared with other lung cancer subtypes, resulting in worse prognosis. Therefore, new therapeutic strategies are required for advanced LSCC. Ferroptosis is a recently discovered nonapoptotic cell death caused by intracellular lipid peroxidation that can bring about effective cell death in cancer cells resistant to apoptosis. Hence, ferroptosis is a potential therapeutic strategy for refractory cancer. MATERIALS AND METHODS In this study, we performed clinicopathological and molecular analyses on tumor specimens from 270 patients with squamous cell lung cancer, focusing on the expression of glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1), which are known to be key regulators of ferroptosis, and the accumulation of 4-hydroxynoneral (4-HNE), a lipid peroxidation marker. RESULTS Immunohistochemistry revealed that patients with low 4-HNE accumulation and low levels of GPX4 or FSP1 had significantly worse prognoses than other patients (P = 0.001). This stratification was an independent prognostic predictor (P = 0.003). A dramatic cell death synergistic effect was observed on LSCC-derived LK-2 and EBC1 cells treated with GPX4 and FSP1 inhibitors. This effect was completely inhibited by treatment with the ferroptosis inhibitor. Notably, this was not the case in LK-2 cells treated with the apoptosis inhibitor, and in these cells, ferroptosis was induced. CONCLUSION Ferroptosis regulators GPX4 and FSP1 are associated with lung squamous cell cancer cancer's prognosis. We present the clinicopathological and molecular basis of novel therapeutic strategies for refractory LSCC.
Collapse
Affiliation(s)
- Ayaka Asakawa
- Department of Thoracic Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Genji Kawade
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Sho Fukuda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shiori Watabe
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masashi Kobayashi
- Department of Thoracic Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hironori Ishibashi
- Department of Thoracic Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kenichi Okubo
- Department of Thoracic Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| |
Collapse
|
5
|
Sha R, Xu Y, Yuan C, Sheng X, Wu Z, Peng J, Wang Y, Lin Y, Zhou L, Xu S, Zhang J, Yin W, Lu J. Predictive and prognostic impact of ferroptosis-related genes ACSL4 and GPX4 on breast cancer treated with neoadjuvant chemotherapy. EBioMedicine 2021; 71:103560. [PMID: 34482070 PMCID: PMC8417304 DOI: 10.1016/j.ebiom.2021.103560] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Recent evidence shows that inducing ferroptosis may improve efficacy of tumor therapy. However, ferroptosis-related genes have been little studied in patients with breast cancer especially in the neoadjuvant setting. ACSL4 and GPX4 have been well established as the positive and negative regulator of ferroptosis, respectively. This study aimed to explore the predictive value of ACSL4 and GPX4 for patients with breast cancer administered neoadjuvant chemotherapy. METHODS This study included patients treated with paclitaxel-cisplatin-based neoadjuvant chemotherapy. Immunohistochemistry staining of ACSL4 and GPX4 was carried out on the core needle biopsy specimens. Logistic regression was performed to explore the predictive biomarkers of pathological complete response (pCR). Survival analyses were examined by log-rank test and Cox proportional hazard regression. FINDINGS A total of 199 patients were included for the analyses. Both ACSL4 expression and ACSL4/GPX4 combination status could serve as independent predictive factors for pCR. The interaction for pCR was observed between ACSL4 and clinical tumor stage. Besides, ACSL4 expression, GPX4 expression, and their combination status were independent prognostic factors for disease-free survival. Analyses of the Kaplan-Meier Plotter database suggested that higher ACSL4 expression is related to better overall survival, and higher GPX4 expression is related to better distant metastasis-free survival. Pathway analyses revealed that ACSL4 and GPX4 might function in crucial pathways including apoptosis, autophagy, cell adhesion, lipid metabolism, etc. INTERPRETATION: This study revealed the critical value of ACSL4 and GPX4 serving as novel predictive and prognostic biomarkers for patients with breast cancer receiving neoadjuvant chemotherapy. It might be a novel strategy to induce ferroptosis to promote chemosensitivity. Future studies are required to elucidate the potential mechanisms. FUNDING This work was supported by Shanghai Natural Science Foundation [grant number 19ZR1431100], Clinical Research Plan of Shanghai Hospital Development Center [grant numbers SHDC2020CR3003A, 16CR3065B, and 12016231], Shanghai "Rising Stars of Medical Talent" Youth Development Program for Youth Medical Talents - Specialist Program [grant number 2018-15], Shanghai "Rising Stars of Medical Talent" Youth Development Program for Outstanding Youth Medical Talents [grant number 2018-16], Shanghai Collaborative Innovation Center for Translational Medicine [grant number TM201908], Multidisciplinary Cross Research Foundation of Shanghai Jiao Tong University [grant numbers YG2017QN49, ZH2018QNA42, and YG2019QNA28], Nurturing Fund of Renji Hospital [grant numbers PYMDT-002, PY2018-IIC-01, PY2018-III-15, and PYIII20-09], Science and Technology Commission of Shanghai Municipality [grant numbers 20DZ2201600 and 15JC1402700], and Shanghai Municipal Key Clinical Specialty.
Collapse
Affiliation(s)
- Rui Sha
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Yaqian Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Chenwei Yuan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Ziping Wu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Shuguang Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jie Zhang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| |
Collapse
|
6
|
Zhang ML, Wu HT, Chen WJ, Xu Y, Ye QQ, Shen JX, Liu J. Involvement of glutathione peroxidases in the occurrence and development of breast cancers. J Transl Med 2020; 18:247. [PMID: 32571353 PMCID: PMC7309991 DOI: 10.1186/s12967-020-02420-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Abstract
Glutathione peroxidases (GPxs) belong to a family of enzymes that is important in organisms; these enzymes promote hydrogen peroxide metabolism and protect cell membrane structure and function from oxidative damage. Based on the establishment and development of the theory of the pathological roles of free radicals, the role of GPxs has gradually attracted researchers' attention, and the involvement of GPxs in the occurrence and development of malignant tumors has been shown. On the other hand, the incidence of breast cancer in increasing, and breast cancer has become the leading cause of cancer-related death in females worldwide; breast cancer is thought to be related to the increased production of reactive oxygen species, indicating the involvement of GPxs in these processes. Therefore, this article focused on the molecular mechanism and function of GPxs in the occurrence and development of breast cancer to understand their role in breast cancer and to provide a new theoretical basis for the treatment of breast cancer.
Collapse
Affiliation(s)
- Man-Li Zhang
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wen-Jia Chen
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Ya Xu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Qian-Qian Ye
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Jia-Xin Shen
- Department of Hematology, the First Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Jing Liu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China.
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
7
|
Yang L, Chen X, Yang Q, Chen J, Huang Q, Yao L, Yan D, Wu J, Zhang P, Tang D, Zhong N, Liu J. Broad Spectrum Deubiquitinase Inhibition Induces Both Apoptosis and Ferroptosis in Cancer Cells. Front Oncol 2020; 10:949. [PMID: 32596160 PMCID: PMC7304060 DOI: 10.3389/fonc.2020.00949] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/14/2020] [Indexed: 01/15/2023] Open
Abstract
Proteasomal deubiquitinase (DUB) inhibition has been found to be effective in experimental cancer therapy by inducing proteasome inhibition and apoptosis. Ferroptosis is a form of regulated cell death characterized by an iron-dependent lipid peroxidation. Antioxidant enzyme glutathione peroxidase 4 (GPX4) plays a key role in blocking ferroptosis through directly reducing phospholipid hydroperoxides production. Since cytoplasmic DUB inhibition can promote protein degradation in the cell, we hypothesize that DUB inhibition induces GPX4 degradation. Here we used palladium pyrithione complex (PdPT), a broad spectrum deubiquitinase inhibitor, to explore its cell death induction and anti-cancer effect in vitro, ex vivo, and in vivo. Mechanically, caspase activation and GPX4 protein degradation are required for PdPT-induced apoptosis and ferroptosis, respectively. Notably, PdPT-induced multiple deubiquitinase inhibition is essential for proteasomal degradation of GPX4. These findings not only identify a novel mechanism of post-translational modification of GPX4 in ferroptosis, but also suggest a potential anti-caner therapeutic strategy using Pan-DUB inhibition.
Collapse
Affiliation(s)
- Li Yang
- The Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qianqian Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jinghong Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qingtian Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Leyi Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ding Yan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiawen Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Peiquan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Nanshan Zhong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Jiang H, Wang H, De Ridder M. Targeting antioxidant enzymes as a radiosensitizing strategy. Cancer Lett 2018; 438:154-164. [PMID: 30223069 DOI: 10.1016/j.canlet.2018.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 12/22/2022]
Abstract
Radiotherapy represents a major anti-cancer modality and effectively kills cancer cells through generation of reactive oxygen species (ROS). However, cancer cells are commonly characterized by increased activity of ROS-scavenging enzymes in adaptation to intrinsic oxidative stress, leading to radioresistance. Abrogation of this defense network by pharmacological ROS insults therefore is shown to improve radioresponse in preclinical models; some of them are then tested in clinical trials. In this review, we address (1) the importance of ROS in radioresponse, (2) the main systems regulating redox homeostasis with a special focus on their prognostic effect and predictive role in radiotherapy, and (3) the potential radiosensitizers acting through inhibition of antioxidant enzymes.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
9
|
Liu K, Jin M, Xiao L, Liu H, Wei S. Distinct prognostic values of mRNA expression of glutathione peroxidases in non-small cell lung cancer. Cancer Manag Res 2018; 10:2997-3005. [PMID: 30214294 PMCID: PMC6118261 DOI: 10.2147/cmar.s163432] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Glutathione peroxidases (GPxs) constitutes an enzyme family which has the ability to reduce free hydrogen peroxide to water and lipid hydroperoxides to their corresponding alcohols, and its main biological roles are to protect organisms from oxidative stress-induced damage. GPxs include eight members in different tissues of the body, and they play essential roles in carcinogenesis. However, the prognostic value of individual GPx in non-small cell lung cancer (NSCLC) remains elusive. Materials and methods In the current study, we investigated the prognostic value of GPxs in NSCLC patients through the “Kaplan–Meier plotter” database, wherein updated gene expression data and survival information from a total of 1,926 NSCLC patients are included. Results High expression of GPx1 mRNA was correlated with worse overall survival (OS) in adenocarcinoma patients. High expression of GPx2 mRNA was correlated with worse OS for all NSCLC patients. In contrast, high expression of GPx3 mRNA was associated with better OS for all NSCLC patients. High expression of GPx4 mRNA was significantly correlated with worsening adenocarcinoma in these patients. GPx5 mRNA high expression correlated with worsening OS for all NSCLC patients. Discussion The current findings of prognostic values of individual mRNA expression of GPxs in NSCLC patients indicate some GPxs may have prognostic value in NSCLC patients, and this needs further study.
Collapse
Affiliation(s)
- Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Meng Jin
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Li Xiao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| |
Collapse
|
10
|
Kinowaki Y, Kurata M, Ishibashi S, Ikeda M, Tatsuzawa A, Yamamoto M, Miura O, Kitagawa M, Yamamoto K. Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma. J Transl Med 2018; 98:609-619. [PMID: 29463878 DOI: 10.1038/s41374-017-0008-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/15/2017] [Accepted: 10/23/2017] [Indexed: 01/19/2023] Open
Abstract
Regulation of oxidative stress and redox systems has important roles in carcinogenesis and cancer progression, and for this reason has attracted much attention as a new area of cancer therapeutic targets. Glutathione peroxidase 4 (GPX4), an antioxidant enzyme, has biological important functions such as signaling cell death by suppressing peroxidation of membrane phospholipids. However, few studies exist on the expression and clinical relevance of GPX4 in malignant lymphomas such as diffuse large B-cell lymphoma. In this study, we assessed the expression of GPX4 immunohistochemically. GPX4 was expressed in 35.5% (33/93) cases of diffuse large B-cell lymphoma. The GPX4-positive group had poor overall survival (P = 0.0032) and progression-free survival (P = 0.0004) compared with those of the GPX4-negative group. In a combined analysis of GPX4 and 8-hydroxydeoxyguanosine (8-OHdG), an oxidative stress marker, there was a negative correlation between GPX4 and 8-hydroxydeoxyguanosine (P = 0.0009). The GPX4-positive and 8-hydroxydeoxyguanosine-negative groups had a significantly worse prognosis than the other groups in both overall survival (P = 0.0170) and progression-free survival (P = 0.0005). These results suggest that the overexpression of GPX4 is an independent prognostic predictor in diffuse large B-cell lymphoma. Furthermore, in vitro analysis demonstrated that GPX4-overexpressing cells were resistant to reactive oxygen species-induced cell death (P = 0.0360). Conversely, GPX4-knockdown cells were sensitive to reactive oxygen species-induced cell death (P = 0.0111). From these data, we conclude that GPX4 regulates reactive oxygen species-induced cell death. Our results suggest a novel therapeutic strategy using the mechanism of ferroptosis, as well as a novel prognostic predictor of diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Anna Tatsuzawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Department of Analytical Information of Clinical Laboratory Medicine, Graduate School of Health Care Science, Bunkyo Gakuin University, 1-19-1, Mukougaoka, Bunkyo-ku, Tokyo, Japan
| | - Masahide Yamamoto
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
11
|
Choudhury AR, Singh KK. Mitochondrial determinants of cancer health disparities. Semin Cancer Biol 2017; 47:125-146. [PMID: 28487205 PMCID: PMC5673596 DOI: 10.1016/j.semcancer.2017.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
Mitochondria, which are multi-functional, have been implicated in cancer initiation, progression, and metastasis due to metabolic alterations in transformed cells. Mitochondria are involved in the generation of energy, cell growth and differentiation, cellular signaling, cell cycle control, and cell death. To date, the mitochondrial basis of cancer disparities is unknown. The goal of this review is to provide an understanding and a framework of mitochondrial determinants that may contribute to cancer disparities in racially different populations. Due to maternal inheritance and ethnic-based diversity, the mitochondrial genome (mtDNA) contributes to inherited racial disparities. In people of African ancestry, several germline, population-specific haplotype variants in mtDNA as well as depletion of mtDNA have been linked to cancer predisposition and cancer disparities. Indeed, depletion of mtDNA and mutations in mtDNA or nuclear genome (nDNA)-encoded mitochondrial proteins lead to mitochondrial dysfunction and promote resistance to apoptosis, the epithelial-to-mesenchymal transition, and metastatic disease, all of which can contribute to cancer disparity and tumor aggressiveness related to racial disparities. Ethnic differences at the level of expression or genetic variations in nDNA encoding the mitochondrial proteome, including mitochondria-localized mtDNA replication and repair proteins, miRNA, transcription factors, kinases and phosphatases, and tumor suppressors and oncogenes may underlie susceptibility to high-risk and aggressive cancers found in African population and other ethnicities. The mitochondrial retrograde signaling that alters the expression profile of nuclear genes in response to dysfunctional mitochondria is a mechanism for tumorigenesis. In ethnic populations, differences in mitochondrial function may alter the cross talk between mitochondria and the nucleus at epigenetic and genetic levels, which can also contribute to cancer health disparities. Targeting mitochondrial determinants and mitochondrial retrograde signaling could provide a promising strategy for the development of selective anticancer therapy for dealing with cancer disparities. Further, agents that restore mitochondrial function to optimal levels should permit sensitivity to anticancer agents for the treatment of aggressive tumors that occur in racially diverse populations and hence help in reducing racial disparities.
Collapse
Affiliation(s)
| | - Keshav K Singh
- Departments of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Environmental Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
12
|
Abstract
Five out of eight human glutathione peroxidases (GPxes) are selenoproteins and thus their expression depends on the selenium (Se) supply. Most Se-dependent GPxes are downregulated in tumor cells, while only GPx2 is considerably upregulated. Whether expression profiles of GPxes predict tumor development and patient survival is controversially discussed. Also, results from in vitro and in vivo studies modulating the expression of GPx isoforms provide evidence for both anti- and procarcinogenic mechanisms. GPxes are able to reduce hydroperoxides, which otherwise would damage DNA, possibly resulting in DNA mutations, modulate redox-sensitive signaling pathways affecting proliferation, differentiation, and cellular metabolism or initiate cell death. Considering these different processes, the role and functions of individual Se-dependent GPx isoforms will be discussed herein in the context of tumorigenesis.
Collapse
Affiliation(s)
- Anna P Kipp
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
13
|
Jiao Y, Wang Y, Guo S, Wang G. Glutathione peroxidases as oncotargets. Oncotarget 2017; 8:80093-80102. [PMID: 29108391 PMCID: PMC5668124 DOI: 10.18632/oncotarget.20278] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a disturbance in the equilibrium among free radicals, reactive oxygen species, and endogenous antioxidant defense mechanisms. Oxidative stress is a result of imbalance between the production of reactive oxygen and the biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Mounting evidence has implicated oxidative stress in various physiological and pathological processes, including DNA damage, proliferation, cell adhesion, and survival of cancer cells. Glutathione peroxidases (GPxs) (EC 1.11.1.9) are an enzyme family with peroxidase activity whose main biological roles are to protect organisms from oxidative damage by reducing lipid hydroperoxides as well as free hydrogen peroxide. Currently, 8 sub-members of GPxs have been identified in humans, all capable of reducing H2O2 and soluble fatty acid hydroperoxides. A large number of publications has demonstrated that GPxs have significant roles in different stages of carcinogenesis. In this review, we will update recent progress in the study of the roles of GPxs in cancer. Better mechanistic understanding of GPxs will potentially contribute to the development and advancement of improved cancer treatment models.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, PLA Army General Hospital, Beijing, P.R. China
| | - Yirong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
14
|
Banerjee S, Mukherjee S, Mitra S, Singhal P. Altered expression of mitochondrial antioxidants in oral squamous cell carcinoma. J Oral Sci 2017; 59:439-446. [DOI: 10.2334/josnusd.16-0655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sumita Banerjee
- Department of Oral Pathology, Dental College, Regional Institute of Medical Sciences
| | | | - Sanjib Mitra
- Department of Oral Pathology, Burdwan Dental College and Hospital
| | - Pallav Singhal
- Department of Oral Pathology, Sarjug Dental College and Mata R. Devi Hospital
| |
Collapse
|
15
|
Fontelles CC, Ong TP. Selenium and Breast Cancer Risk: Focus on Cellular and Molecular Mechanisms. Adv Cancer Res 2017; 136:173-192. [PMID: 29054418 DOI: 10.1016/bs.acr.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selenium (Se) is a micronutrient with promising breast cancer prevention and treatment potential. There is extensive preclinical evidence of Se mammary carcinogenesis inhibition. Evidence from epidemiological studies is, however, unclear and intervention studies are rare. Here, we examine Se chemoprotection, chemoprevention, and chemotherapy effects in breast cancer, focusing on associated cellular and molecular mechanisms. Se exerts its protective actions through multiple mechanisms that involve antioxidant activities, induction of apoptosis, and inhibition of DNA damage, cell proliferation, angiogenesis, and invasion. New aspects of Se actions in breast cancer have emerged such as the impact of genetic polymorphisms on Se metabolism and response, new functions of selenoproteins, epigenetic modulation of gene expression, and long-term influence of early-life exposure on disease risk. Opportunity exists to design interventional studies with Se for breast cancer prevention and treatment taking into consideration these key aspects.
Collapse
|
16
|
Mitochondrial Redox Signaling and Tumor Progression. Cancers (Basel) 2016; 8:cancers8040040. [PMID: 27023612 PMCID: PMC4846849 DOI: 10.3390/cancers8040040] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
Cancer cell can reprogram their energy production by switching mitochondrial oxidative phosphorylation to glycolysis. However, mitochondria play multiple roles in cancer cells, including redox regulation, reactive oxygen species (ROS) generation, and apoptotic signaling. Moreover, these mitochondrial roles are integrated via multiple interconnected metabolic and redox sensitive pathways. Interestingly, mitochondrial redox proteins biphasically regulate tumor progression depending on cellular ROS levels. Low level of ROS functions as signaling messengers promoting cancer cell proliferation and cancer invasion. However, anti-cancer drug-initiated stress signaling could induce excessive ROS, which is detrimental to cancer cells. Mitochondrial redox proteins could scavenger basal ROS and function as “tumor suppressors” or prevent excessive ROS to act as “tumor promoter”. Paradoxically, excessive ROS often also induce DNA mutations and/or promotes tumor metastasis at various stages of cancer progression. Targeting redox-sensitive pathways and transcriptional factors in the appropriate context offers great promise for cancer prevention and therapy. However, the therapeutics should be cancer-type and stage-dependent.
Collapse
|
17
|
Abstract
One of the prerequisites for cell growth and proliferation is the synthesis of macromolecules, including proteins, nucleic acids and lipids. Cells have to alter their metabolism to allow the production of metabolic intermediates that are the precursors for biomass production. It is now evident that oncogenic signalling pathways target metabolic processes on several levels and metabolic reprogramming has emerged as a hallmark of cancer. The increased metabolic demand of cancer cells also produces selective dependencies that could be targeted for therapeutic intervention. Understanding the role of glucose and lipid metabolism in supporting cancer cell growth and survival is crucial to identify essential processes that could provide therapeutic windows for cancer therapy.
Collapse
|
18
|
Mohamed MM, Sabet S, Peng DF, Nouh MA, El-Shinawi M, El-Rifai W. Promoter hypermethylation and suppression of glutathione peroxidase 3 are associated with inflammatory breast carcinogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:787195. [PMID: 24790704 PMCID: PMC3980917 DOI: 10.1155/2014/787195] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/22/2014] [Accepted: 01/30/2014] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) play a crucial role in breast cancer initiation, promotion, and progression. Inhibition of antioxidant enzymes that remove ROS was found to accelerate cancer growth. Studies showed that inhibition of glutathione peroxidase-3 (GPX3) was associated with cancer progression. Although the role of GPX3 has been studied in different cancer types, its role in breast cancer and its epigenetic regulation have not yet been investigated. The aim of the present study was to investigate GPX3 expression and epigenetic regulation in carcinoma tissues of breast cancer patients' in comparison to normal breast tissues. Furthermore, we compared GPX3 level of expression and methylation status in aggressive phenotype inflammatory breast cancer (IBC) versus non-IBC invasive ductal carcinoma (IDC). We found that GPX3 mRNA and protein expression levels were downregulated in the carcinoma tissues of IBC compared to non-IBC. However, we did not detect significant correlation between GPX3 and patients' clinical-pathological prosperities. Promoter hypermethylation of GPX3 gene was detected in carcinoma tissues not normal breast tissues. In addition, IBC carcinoma tissues showed a significant increase in the promoter hypermethylation of GPX3 gene compared to non-IBC. Our results propose that downregulation of GPX3 in IBC may play a role in the disease progression.
Collapse
Affiliation(s)
- Mona M. Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Dun-Fa Peng
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M. Akram Nouh
- Department of Pathology, National Cancer Institute, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Wael El-Rifai
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
19
|
Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health. Metallomics 2014; 6:25-54. [DOI: 10.1039/c3mt00185g] [Citation(s) in RCA: 421] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Sengupta A, Lichti UF, Carlson BA, Cataisson C, Ryscavage AO, Mikulec C, Conrad M, Fischer SM, Hatfield DL, Yuspa SH. Targeted disruption of glutathione peroxidase 4 in mouse skin epithelial cells impairs postnatal hair follicle morphogenesis that is partially rescued through inhibition of COX-2. J Invest Dermatol 2013; 133:1731-41. [PMID: 23364477 PMCID: PMC3652900 DOI: 10.1038/jid.2013.52] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selenoproteins are essential molecules for the mammalian antioxidant network. We previously demonstrated that targeted loss of all selenoproteins in mouse epidermis disrupted skin and hair development and caused premature death. In the current study we targeted specific selenoproteins for epidermal deletion to determine whether similar phenotypes developed. Keratinocyte-specific knockout mice lacking either the glutathione peroxidase 4 (GPx4) or thioredoxin reductase 1 (TR1) gene were generated by cre-lox technology using K14-cre. TR1 knockout mice had a normal phenotype in resting skin while GPx4 loss in epidermis caused epidermal hyperplasia, dermal inflammatory infiltrate, dysmorphic hair follicles and alopecia in perinatal mice. Unlike epidermal ablation of all selenoproteins, mice ablated for GPx4 recovered after 5 weeks and had a normal lifespan. GPx1 and TR1 were upregulated in the skin and keratinocytes of GPx4 knockout mice. GPx4 deletion reduces keratinocyte adhesion in culture and increases lipid peroxidation and COX-2 levels in cultured keratinocytes and whole skin. Feeding a COX-2 inhibitor to nursing mothers partially prevents development of the abnormal skin phenotype in knockout pups. These data link the activity of cutaneous GPx4 to the regulation of COX-2 and hair follicle morphogenesis and provide insight into the function of individual selenoprotein activity in maintaining cutaneous homeostasis.
Collapse
Affiliation(s)
- Aniruddha Sengupta
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Redox Protein Expression Predicts Radiotherapeutic Response in Early-Stage Invasive Breast Cancer Patients. Int J Radiat Oncol Biol Phys 2011; 79:1532-40. [DOI: 10.1016/j.ijrobp.2010.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/29/2010] [Accepted: 11/02/2010] [Indexed: 11/21/2022]
|
22
|
Brigelius-Flohé R, Kipp A. Glutathione peroxidases in different stages of carcinogenesis. Biochim Biophys Acta Gen Subj 2009; 1790:1555-68. [PMID: 19289149 DOI: 10.1016/j.bbagen.2009.03.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 03/05/2009] [Accepted: 03/08/2009] [Indexed: 01/12/2023]
Abstract
Cancer cells produce high amounts of reactive oxygen species (ROS) and evade apoptosis. Hydroperoxides support proliferation, invasion, migration and angiogenesis, but at higher levels induce apoptosis, thus being pro- and anti-carcinogenic. Accordingly, glutathione peroxidases (GPxs) regulating hydroperoxide levels might have dual roles too. GPx1, clearly an antioxidant enzyme, is down-regulated in many cancer cells. Its main role would be prevention of cancer initiation by ROS-mediated DNA damage. GPx2 is up-regulated in cancer cells. GPx1/GPx2 double knockout mice develop colitis and intestinal cancer. However, GPx2 knockdown cancer cells grow better in vitro and in vivo probably reflecting the physiological role of GPx2 in intestinal mucosa homeostasis. GPx2 counteracts COX-2 expression and PGE(2) production, which explains its potential to inhibit migration and invasion of cultured cancer cells. Overexpression of GPx3 inhibits tumor growth and metastasis. GPx4 is decreased in cancer tissues. GPx4-overexpressing cancer cells have low COX-2 activity and tumors derived therefrom are smaller than from control cells and do not metastasize. Collectively, GPxs prevent cancer initiation by removing hydroperoxides. GPx4 inhibits but GPx2 supports growth of established tumors. Metastasis, but also apoptosis, is inhibited by all GPxs. GPx-mediated regulation of COX/LOX activities may be relevant to early stages of inflammation-mediated carcinogenesis.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.
| | | |
Collapse
|
23
|
Zhuo P, Diamond AM. Molecular mechanisms by which selenoproteins affect cancer risk and progression. Biochim Biophys Acta Gen Subj 2009; 1790:1546-54. [PMID: 19289153 DOI: 10.1016/j.bbagen.2009.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 12/31/2022]
Abstract
Selenoproteins comprise a unique class of proteins that contain selenium in the form of selenocysteine. Several selenoproteins have been implicated in the risk or development of cancers in humans by genetic data. These include Selenoprotein P, 3 members of the glutathione peroxidase family of anti-oxidant enzymes and Sep15. At-risk alleles in the germline indicate a likely role in determining susceptibility to cancer, while loss of heterozygosity or chromosomal epigenetic silencing indicate that the reduction in the levels of the corresponding proteins contribute to malignant progression. Lower levels of these proteins are likely to be detrimental due to the resulting cellular stress and perturbations in important regulatory signaling pathways. The genetic data indicating the involvement of these selenoproteins in cancer etiology are discussed, as are the possible mechanisms by which these genes might promote carcinogenesis.
Collapse
Affiliation(s)
- Pin Zhuo
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
24
|
Abstract
An adequate selenium (Se) status has for long been considered to prevent the development of various forms of cancer. However, underlying molecular mechanisms remained unknown. In mammals, selenium exerts its functions as selenocysteine incorporated into selenoproteins. Therefore, Se compounds can either act as Se source for selenoproteins or, depending on their chemical forms, in distinct ways. Most potent chemopreventive effects have been attributed to compounds in which the Se moiety is methylated. These compounds are able to induce phase 2 enzymes which are involved in the cellular defense system that is regulated by the Nrf2 transcription factor. Selenoproteins best studied in cancer development are members of the glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) family. In various cancer cells and tissues, GPx2 and/or TrxR1 are up-regulated. Interestingly, both enzymes are targets of Nrf2. An enhanced expression of these enzymes may represent a mechanism to counteract carcinogenic pathways. They may, however, also provide a selective advantage for pre-existing tumor cells in guaranteeing survival and continuous proliferation.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition, Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal.
| |
Collapse
|